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Abstract

Occlusion between different objects is a typical challenge in Multi-Object Tracking (MOT),
which often leads to inferior tracking results due to the missing detected objects. The com-
mon practice in multi-object tracking is re-identifying the missed objects after their reappear-
ance. Though tracking performance can be boosted by the re-identification, the annotation of
identity is required to train the model. In addition, such practice of re-identification still can
not track those highly occluded objects when they are missed by the detector. In this paper,
we focus on online multi-object tracking and design two novel modules, the unsupervised re-
identification learning module and the occlusion estimation module, to handle these problems.
Specifically, the proposed unsupervised re-identification learning module does not require any
(pseudo) identity information nor suffer from the scalability issue. The proposed occlusion esti-
mation module tries to predict the locations where occlusions happen, which are used to estimate
the positions of missed objects by the detector. Our study shows that, when applied to state-
of-the-art MOT methods, the proposed unsupervised re-identification learning is comparable to
supervised re-identification learning, and the tracking performance is further improved by the
proposed occlusion estimation module.

Keywords: Muti-object tracking, occlusion, unsupervised learning, re-identification.

1. Introduction

Multi-Object Tracking (MOT) is a fundamental computer vision task with a wide range of
applications, including autonomous driving, robot navigation and video analysis. Benefiting
from the advance of object detection [16, 35, 25, 59], the tracking-by-detection paradigm has
become popular for MOT in the past decade. Though great performance has been achieved
recently [55, 58, 40, 56, 39], occlusion between objects still remains challenging for MOT.
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Figure 1: (a) The left and right are two adjacent frames from a video while the middle is an image from another scene. An
apparent observation is that objects with the same identity in adjacent frames share the similar appearance and objects in
different scenes (or within the same image) have different identities and appearances. (b): The left and right are tracking
results in previous and current frames, and the middle are the detected objects and occlusion centers in current frame.
Some lost objects that are missed by detector can be tracked with the help of predicted occlusion centers. Please refer to
Section 3.2.2 for more details about lost objects refinding.

In MOT scenarios, an object may be missed by the detector due to heavy occlusion, and then
reappear after a short while. In order to identify such reappeared objects, re-identification (Re-
ID) is often used to associate these reappeared objects with existing tracklets. Most existing MOT
works [48, 29, 2, 31] adopt an independent Re-ID model to learn discriminative representations
for objects, which introduces extra high computational cost since each object needs to be cropped
out and fed into the pre-trained Re-ID model. To achieve real-time tracking, some works try to
share the Re-ID feature computation with the backbone in anchor-based detector [30, 47] or
point-based detector [55] by introducing an extra Re-ID branch that is parallel to the detection
branch. Thanks to the sharing of feature maps between different branches, such methods can
enable tracking multiple objects in a real-time way.

However, these methods [60, 48, 47, 55] still suffer from the scalability issue in the Re-ID
representation learning. For example, [60, 47, 55] combine several existing tracking and human
detection (or Re-ID) datasets together and then learn the Re-ID representation by classifying each
identity appeared in the combined dataset as one class (pseudo identity label). Such classification
methods may work well for small datasets, but will encounter the learning difficulty when the
identity number is huge, because the dimension of the sibling classification layer (fully connected
layer) is linearly proportional to the identity number. More importantly, such supervised Re-ID
module learning requires the annotation of identities, which is highly expensive and unscalable.

To address this problem, we first propose a new Re-ID module learning mechanism. It adopts
an unsupervised matching based loss between two frames (images) rather than the supervised
classification loss used in [60, 47, 55]. This is based on the observation that objects with the
same identity in adjacent frames share the similar appearance and objects in different scenes
(or within the same image) have different identities and appearances, which is shown in Fig. 1
(a). Compared to the aforementioned methods, this newly proposed unsupervised Re-ID learning
mechanism has two merits: 1) it does not need any (pseudo) identity annotation; 2) The matching
based loss is irrelevant to the number of identities, thus can be directly trained on massive video-
based data that with large number of identities. In addition, the image-based data can also be
used for training if we treat two augmentations of one image as the adjacent frames.
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Though the Re-ID module can re-identify the reappeared objects after their short-term disap-
pearance, how to proactively track the objects with highly occlusion is still challenging. This
is because the severely occluded objects are easily missed by the detector, as shown in Fig. 1
(b). For example, in anchor-based detectors [35, 20], the Non-Maximum Suppression (NMS)
module will remove highly overlapped boxes. In point-based detectors [25, 59], as the object
centers are invisible for occluded objects, it is also difficult to learn reliable center point-based
features. Recently, how to address the missing detection issue caused by occlusion has attracted
lots of attention. Some initial attempts [60, 6, 10, 61] emerge, including detecting visible parts
of an object [60, 6], using one proposal for multi-prediction [10], and using paired anchors for
one detection [61].

Different from existing methods, we propose a novel occlusion estimation module to predict
whether two objects are occluded. Specifically, an occlusion map which shows all possible
occlusion locations in the current frame is predicted. By further combing the status of existing
tracklets, we finally design a lost object refinding mechanism to find the occluded objects back.

To evaluate the effectiveness of the above two modules, we conduct extensive experiments by
integrating them with different existing state-of-the-art MOT methods. For example, by replacing
the supervised classification based Re-ID module in FairMOT [55], the unsupervised Re-ID
learning module can still achieve comparable results on the MOT Challenge datasets[33, 11] but
neither needs any identity annotation nor suffers from any scalability issue. By integrating the
occlusion estimation module, both FairMOT [55] and CenterTrack [58] can handle the occlusion
better and achieve the performance gain.

To summarize, our contributions are three-fold as below:

• We propose a novel unsupervised Re-ID learning module without using any identity in-
formation. It can be trained on video-/image-based data, and also has better scalability to
datasets that with massive identities.

• We propose a new occlusion estimation module, which can effectively recognize and track
occluded objects when they are missed by the detector by estimating the occlusion location.

• Both the unsupervised Re-ID learning and occlusion module can be applied to existing
MOT methods in a natural way. Experimental results demonstrate the effectiveness of the
proposed method.

The rest of this paper is organized as follows. In Section 2, we review some related works in
terms of MOT, person re-identification, and occlusion handling. Then in Section 3, we elaborate
the details of the two newly proposed modules, and the designed lost object refinding mechanism.
To demonstrate the effectiveness, extensive experiment and ablation analysis are conducted in
Section 4. Finally, we conclude our work in Section 5.

2. Related Work

In this section, we first provide a brief overview about the popular tracking-by-detection
paradigm for MOT, and then introduce the re-identification for data association in MOT as well
as existing occlusion handling mechanisms in object detection and tracking.
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2.1. Tracking-by-detection

Most existing MOT frameworks follow a tracking-by-detection paradigm thanks to the ad-
vances of object detectors [35, 20, 25, 59]. Specifically, an object detector is used to detect
objects in each frame, then a subsequent tracker is utilized to associate the objects across differ-
ent frames. In terms of temporal information usage, existing MOT methods can be categorized
into online [48, 2, 29, 58, 55] and offline methods [5, 21]. Online methods process video se-
quences frame-by-frame and track objects by only using information up to the current frame. By
contrast, offline methods process video sequences in a batch and can even utilize the whole video
information. From the network structure perspective, they can be further categorized into sepa-
rate modeling [48, 2, 29, 5, 21] and joint modeling methods [58, 55, 47]. In separate modeling
methods, the tracker is independently trained and assumes the detection results are available in
advance. In joint modeling methods, the tracker is jointly trained with the detector by sharing
the same feature extractor backbone. Therefore, they are often more efficient than the separate
modeling methods. Both the newly proposed Re-ID module and occlusion estimation module
can be naturally integrated into the online tracking-by-detection MOT system and jointly learned
with the detector.

2.2. Re-identification for Association

Learning discriminative representations for objects is crucial to identity association in track-
ing. The representation can be used to re-identify lost objects that reappear after disappearing
for a while. Early methods [48, 2, 29, 1] crop the image patch of a detected object, resize and
feed it into a separate Re-ID model. It is inevitably time-consuming since the feature represen-
tation of different objects has to be computed independently. To reduce the computation, some
works attempt to share the Re-ID feature computation with the backbone in anchor-based de-
tector [30, 47, 44, 34] or point-based detector [55] by introducing an extra Re-ID branch that
is parallel to detection branch. The common practice in MOT to train the Re-ID module is to
classify each identity into one class [60, 22, 55, 47]. There are two fundamental weaknesses
of such methods: 1) the Re-ID module is less scalable especially when the amount of identities
is huge, because the classifier takes up a lot of memory. For example, FairMOT [55] performs
about 339K classification task to train the Re-ID module. 2) the training of Re-ID module needs
to be supervised by identity information. For example, several datasets dedicated for Re-ID are
adopted in [55, 47]. However, the acquisition of well annotated data costs a lot.

Despite the advance in supervised Re-ID learning [18, 27, 41, 28], some works for unsuper-
vised Re-ID learning have been proposed [17, 46, 22, 55, 49, 15]. These works can be divided
into two categories: pseudo identity based [22, 55, 49, 15] and identity free methods [46]. The
proposed method is also an identity free method. For the former category, pseudo identities can
be obtained by clustering [49, 15] or tracking [22]. However, the errors may accumulate and it
is challenging to estimate the number of pseudo identities while clustering, and a trajectory of
an object breaks into several short trajectories easily while tracking. For the latter category, the
correspondence between adjacent frames is used [46]. However, the birth and death of objects
are not handled and the relation between objects within one frame is also not exploited. Inspired
by these works, we propose to learn Re-ID representation in an unsupervised and matching based
loss without using any (pseudo) identity information. It is built upon the observation that objects
with the same identity in adjacent frames share the similar appearance and objects in different
scenes (or within the same image) have different identities and appearances. Different from the
works in [46], our method 1) introduces a placeholder to handle the birth and death of objects
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and 2) makes usage of the information that objects in different scenes (or within the same image)
have different identities. Besides, since our matching based loss is irrelevant to the number of
identities, it does not suffer from the scalability issue and can be directly trained on massive data.

2.3. Occlusions between Objects

Handling highly occluded objects is a challenging task for both detection [10, 61, 6] and
tracking [8, 60, 7, 9, 52, 29]. Some anchor-based methods are proposed to handle occlusion
[10, 61, 6] in detection, including predicting multiple instances for one proposal [10] or detecting
one pedestrian with a pair of anchors [61] (one is for head and another is for full body). However,
both works require a carefully designed NMS algorithm for post processing. In [6], a mask-
guided module is proposed to force the detector to pay attention to the more visible head part
and thus detect the whole body of a pedestrian. Different from these methods, we propose a new
occlusion estimation mechanism upon key-point based detection, which detects the locations
where occlusions happen and finds the missed objects caused by detector by combining the
tracking status of existing tracklets.

Instead of handling occlusions in the detection stage, there also exist some methods [8, 60,
7, 9, 52, 29] attempting to handle occlusions in the tracking stage for MOT task. The works in
[8, 9, 60, 7] utilize the single object tracking (SOT) method for MOT. In details, a SOT tracker
is created and maintained for each object. Once an object is heavily occluded and missed by the
detector, the position of it could be estimated by the corresponding SOT tracker. Such practice
indeed is an extra detection stage with dedicated detectors (i.e., SOT trackers). The topology
between different objects is also exploited to handle occlusions for MOT [52, 29]. The hypothesis
is that the topology between different objects in adjacent frames is invariant, which is positive to
the association of objects, especially when some objects are partially occluded. In addition, the
position of a lost object is estimated using the positions of its tracked neighbors [29] based on
the topology among them in previous frame.

Different from these works, our method detects the locations of occlusion in a frame, and
utilizes them to refind the missed objects while tracking online. More detail, if an object is
missed by the detector, then it is likely to be heavily occluded by other objects. The detected
occlusion locations could be used as the prior information to find it back.

Occlusion is also one critical issue in SOT task [43, 13]. Trying to find the visible region of
the single object is the main focus in SOT. However, our method detects the overlapped region
between different objects.

3. Method

As mentioned above, our paper proposes two key modules for existing multiple object tracking
systems. One is the unsupervised Re-ID module learning mechanism, which is competitive to
existing supervised counterparts and has better scalability. Another is the occlusion estimation
module, which predicts occlusion map to find the occluded objects back. In this section, we first
elaborate the details of these two modules, and then show how to naturally integrate them with
existing MOT systems.

3.1. Unsupervised Re-ID Learning

The proposed unsupervised Re-ID learning can be trained on both video-based and image-
based data. Note that it is only used in the training stage. Once the training procedure is finished,
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Figure 2: The proposed un-supervised Re-ID learning method. Left and right are the two adjacent frames and the objects.
Middle is the desired assignment results. For a better viewing, the identities of objects are encoded by color. However,
the identity information is unused in our method. Two types of supervision signals are exploited. 1) Strong supervision
signals: objects within the same frame should not be matched with each other. 2) Weak supervision signals: objects in
one frame are likely to be matched with objects in another frame.

the trained models can be directly used to extract discriminative features for different objects,
which is the same as existing supervised counterparts. For better understanding, we start with
the learning from video-based data, then illustrate learning from image-based data.

3.1.1. Learning From Video-Based Data

Let It ∈ RW×H×3 be the t-th frame from one video and bt
i = (xt

il
, yt

it
, xt

ir
, yt

ib
) be the groundtruth

bounding box of object i in frame It. W,H are the width and height of the frame, and
(xt

il
, yt

it
), (xt

ir
, yt

ib
) are the coordinates of the top-left and bottom-right corners respectively. For Re-

ID representation learning, we denote the appearance feature for object i in frame It as f t
i ∈ R

D,
where D is the dimension of the appearance feature vector. Our unsupervised Re-ID representa-
tion learning mechanism is general in how f t

i is calculated as long as it is differentiable. Possible
solutions include cropping the image patch based on the given bounding box and feeding the
cropped image patch into an extra Re-ID network like [46, 2, 29], extracting the ROI based
appearance features by sharing the same backbone as the detector like [47, 44], and extracting
the center point based appearance features like [55]. The usage of annotated bounding boxes is
equivalent to traditional Re-ID task in which the well cropped image patches are provided. Even
though, no identity information is used in the proposed method. In the following, the superscript
t of appearance feature is omitted for simplicity.

Given two adjacent frames It−1 and It, let i ∈ {0, ...,N t−1−1, ...,N t−1 +N t−1} be the index of all
objects in both two frames, where N t is the number of objects in frame It. The first N t−1 objects
are from frame It−1 and the rest are from frame It. We have two observations: 1) objects in the
same frame have different identities; 2) an object is likely to appear in both adjacent frames.
Accordingly, as shown in Fig. 2, if we want to assign an object to another object, two types of
supervision signals can be exploited: 1) objects within the same frame should not be matched
with each other, which is regarded as strong supervision signal; 2) objects in one frame are likely
to be matched with objects in another adjacent frame, which is weak supervision signal. In order
to learn the Re-ID representation with such supervision signals, we first define a similarity matrix
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S ∈ R(N t−1+N t)×(N t−1+N t) that measures the similarity between each pair of objects, where:

S i, j =


fi· f j

|| fi ||2 || f j ||2
i f i , j,

−∞ otherwise.
(1)

Obviously, S i, j = S j,i. The values in the diagonal of S are set to negative infinity to avoid
assigning an object to itself (Eq. (2)). In general, if objects i and j share the same identity,
S i, j > 0, otherwise, S i, j < 0. The assignment matrix M ∈ R(N t−1+N t)×(N t−1+N t) can be obtained by
applying row-wise softmax function to S as:

Mi, j =
eS i, jT∑
j eS i, jT

, (2)

where T is the temperature of the softmax function. Consider the fact that the number of objects
in adjacent frames (i.e., the size of S ) could be various, we follow the works in CycAs [46] and
set T = 2log(C + 1), where C = N t−1 + N t is the number of columns in S . With this adaptive
temperature, the maximum values in each row are almost equally highlighted/maximized even
the size of S varies. Since objects in the same frame have different identities, we can supervise
the values in the top-left and right-bottom part of M by a intra-frame loss:

Lintra
id =

∑
0≤i, j<N t−1

Mi, j +
∑

N t−1≤i, j<N t−1+N t

Mi, j. (3)

This corresponds to the aforementioned strong supervision signal. To leverage the weak supervi-
sion signal, we first consider the ideal case where all the objects appear in both frames for better
understanding. In this case, all the objects in the frame It−1 should be matched to the objects in
the frame It in a one-to-one manner. Then for each row in M, we encourage each object to be
matched to another object with a high confidence by using the below inter-frame margin loss:

Linter
id =

∑
i

max{ max
j′, j′, j∗

Mi, j′ + m − Mi, j∗ , 0},

where j∗ = arg max
j

Mi, j.
(4)

This shares a similar spirit as the popular triple loss, i.e., the maximum matching probability
Mi, j∗ is larger than the sub-maximum value by a pre-defined margin m (0.5 by default).

Besides the above margin loss, we further add another cycle constraint loss Lcycle
id for M, which

means the forward and backward assignment should be consistent with each other. In details, if
an object i in frame It−1 is matched with object j in frame It, then the object j in frame It must
be matched with object i in frame It−1:

Lcycle
id =

∑
N t−1≤i<N t−1+N t ,0≤ j<N t−1

|Mi, j − M j,i|. (5)

Since two adjacent frames in video-based data often share some objects with the same identi-
ties, we call such two adjacent frames a positive sample for the Re-ID module training. The total
loss for unsupervised Re-ID learning on such positive samples is:

Lpos
id =

1
N t−1 + N t (Lintra

id + Linter
id + Lcycle

id ). (6)
7



Unlike the above ideal case, an object in frame It−1 may disappear in frame It (death of objects)
and an object may appear in frame It for the first time but invisible in frame It−1 (birth of objects)
in a general case. However, for each row in assignment matrix M, the inter-frame margin loss
Linter

id will force the maximum value to be larger than the other values by a margin m, which
is unsuitable when the corresponding object is disappeared or newly appeared since it does not
share the same identity with any one of the other objects. To handle this issue, a new similarity
matrix S ′ ∈ R(N t−1+N t)×(N t−1+N t+1) is obtained by padding a placeholder column to S . All values
in the padded placeholder column are the same, which is denoted as p. The detailed discussion
on p is presented in Experiments Section 4.3.1. With the existence of placeholder column, the
similarity scores between disappeared/newly appeared objects and other objects are encouraged
to be learned smaller than p. Let M′ ∈ R(N t−1+N t)×(N t−1+N t+1) be the assignment matrix by applying
row-wise softmax function to S ′ 2. Then we replace M with M′ in Eq. (3), Eq. (4) and Eq. (5)
for this general case. In our implementation, the loss for this general case is adopted.

3.1.2. Learning From Image-Based Data

To train the proposed Re-ID module on image-based data, a straightforward way is to get
two augmentations of one image and treat these two augmentations as adjacent frames like the
video-based data. However, we find only using the above positive sample based loss does not
perform very well, since objects in the two augmentations have very similar appearance, thus not
strong enough in learning discriminative Re-ID features. Considering the fact that objects in two
different static images usually have different identities, we further introduce a negative sample
based loss Lneg

id by treating two different static images from different scenes as a negative sample
pair:

Lneg
id =

∑
0≤i, j<N t−1+N t

M′i, j. (7)

Similarly, in this formulation, we introduce the extra placeholder p and encourage the cosine
distance between the objects in the negative pair to be less than p, which also means that all
objects should be assigned to the placeholder. Note that the design of Lneg

id shares the same spirit
with the intra-frame loss Lintra

id , while the inter-frame margin loss Linter
id and cycle constraint loss

Lcycle
id are not used for negative sample pairs.
Therefore, the overall unsupervised Re-ID learning loss for the image based data is:

Lid =
N pos

N pos + Nneg Lpos
id +

Nneg

N pos + Nneg Lneg
id , (8)

where N pos and Nneg are the number of positive and negative samples in a batch. In our default
setting, Nneg

N pos is set to 0.25.
Although the Re-ID module can help re-identify reappeared objects after their short-term dis-

appearance, it is inherently unable to track the occluded objects if they are not detected by the
detector. To mitigate the issue caused by the missed detection, we propose an occlusion estima-
tion module to predict whether any occlusion occurs and find lost objects back by combining the
predicted occlusions and the tracking status of existing tracklets.
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Figure 3: Typical occlusion cases. Translucent blue areas denote the positions where occlusions happen and red circles
are the occlusion centers. Left: A small box covered by a larger box. Right: Two boxes overlapped with each other.

3.2. Occlusion Estimation Module
3.2.1. Occlusion Detection

Inspired by the work of key-point estimation [25, 59], the locations of occlusion are treated
as key-points and detected by key-point estimation. Different from the above Re-ID module, the
learning of the occlusion estimation module is designed in a supervised way. We automatically
generate occlusion annotation based on the bounding boxes of objects, which are available in
existing tracking datasets like MOT16 and MOT17 [33].

First, we need to define when an occlusion occurs. Given the bounding box coordinates of
two objects i and j within one frame, their overlapped region is defined as oi j = O(bi, b j) =

(xi jl , yi jt , xi jr , yi jb ). Considering two typical occlusion examples as shown in Fig. 3, we define
an indicator function H(·) that indicates whether an occlusion is valid or not. Only when the
overlapped region occupies a large portion of object i or j, the occlusion oi j is valid. Specifically:

H(oi j) =

 1 i f A(oi j)
min(A(bi),A(b j))

> τ,

0 else,
(9)

where A(·) is the function computing the area of a box, and τ is a hyper-parameter which is
set as 0.7 by default. In order to refind an occluded object back (Section 3.2.2), we define the
center point of oi j as the occlusion location of two overlapped objects. The groundtruth occlusion
map Y is rendered by a 2D Gaussian kernel function based on all the valid occlusions defined in
Eq. (9) as:

Yx,y = maxi jG(oi j, (x, y)), subject toH(oi j) = 1, (10)

where G(oi j, (x, y)) = exp(− ((x,y)−b
pi j
R c)

2

2σ2
oi j

) is the Gaussian kernel function, and pi j =

(
xi jl +xi jr

2 ,
yi jt +yi jb

2 ) is the center point of occlusion oi j. The standard deviation σoi j of the Gaussian
kernel is set to be relative to the size of oi j following the definition in [25]. In our implementation,
we introduce an extra CNN head to obtain the predicted occlusion center heatmap Ŷ ∈ RW

R ×
H
R . It

is parallel to the detection head and shares the same backbone network. R is the downsampling
factor of the backbone network. Intuitively, the value Ŷx,y ∈ [0, 1] denotes the probability of an
occlusion center that locates in (x, y) and is supervised by:

Lcen
occ =

∑
x,y

L(Yx,y, Ŷx,y), (11)

2In this case, C = Nt−1 + Nt + 1 for the calculation of temperature T .
9
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Figure 4: Illustration of lost object refinding. (a): Tracking results in the previous frame. (b): Predicted box b̃t
i from bt−1

i

via motion, the overlapped boxes with b̃t
i , and the predicted occlusion center points that locate within b̃t

i . (c): The chosen
occlusion center p̂t

ik′
and box b̃t

j′ used for recovering bt
i . (d): Recovered box bt

i for the lost object i.

where L(·, ·) is a variant of focal loss function used in [25] with two hyper-parameters α, β
(default values are 2 and 4 respectively):

L(y, ŷ) =

 − (1 − ŷ)αlog(ŷ) i f y = 1,

− (1 − y)β(ŷ)αlog(1 − ŷ) else.
(12)

Considering that R is often larger than 1, we take the inspiration from [59] and add another
CNN head to produce an offset heatmap Λ̂ ∈ RW

R ×
H
R ×2, which can help compensate the quanti-

zation error in generating the occlusion center heatmap Y . The simple L1 loss is used to regress
the center offset:

Lo f f
occ =

∑
i j

|Λ̂
b

pi j
R c
− (

pi j

R
− b

pi j

R
c)|. (13)

Need to note that the offset supervision is only given at the center locations. The overall occlusion
estimation loss is:

Locc =
1∑

i, jH(oi j)
(Lcen

occ + Lo f f
occ ). (14)

3.2.2. Lost Object Refinding
While tracking online, the occlusion estimation module is used to detect the possible occlusion

locations, i.e., the center points of overlapped regions between different objects in a frame. For
severely occluded objects, they are easily missed by the detector (thus lost by the tracker). In
such case, the corresponding occlusion locations can be used as the prior information to refind
them. Specifically, given the set of existing tracklets in frame t − 1 and the set of newly detected
objects in frame t, we match the newly detected objects with existing tracklets. If some tracklets
cannot match with any newly detected objects, we treat them as potential lost tracklets/objects
and try to find them back. The detailed tracking logic is elaborated in Algorithm 1. Through
the refinding of lost objects, the number of false negative objects could be reduced, leading to a
higher tracking performance.

Once there exist some potential lost objects, we propose to find the lost objects back by using
the predicted occlusion locations and the motion information of the corresponding tracklets,
which can be estimated by Kalman filter. In details, suppose we want to refind the lost object
i in It, its bounding box in It−1 is denoted as bt−1

i = (xt−1
il
, yt−1

it
, xt−1

ir
, yt−1

ib
). We first predict its

location at It via Kalman filter and denote the location as b̃t
i = (x̃t

il
, ỹt

it
, x̃t

ir
, ỹt

ib
). Then we search

all the detected objects that possibly occlude i by considering the estimated occlusion centers
10
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Figure 5: Illustration of applying of our unsupervised Re-ID module and occlusion module to FairMOT [55]. While
integrating, the occlusion module is added to be parallel with detection module which remains unchanged. Re-ID features
from two frames are needed to train the Re-ID module.

close to b̃t
i. The detailed search process is illustrated in Fig. 4. Specifically, for each box bt

j

that possibly overlapped with b̃t
i, we first calculate the overlapped region as õi j = O(b̃t

i, b
t
j).

Then we get a score between õi j and one of the predicted occlusion centers p̂t
ik = (x̂t

ik, ŷ
t
ik) that

locates within b̃t
i using the aforementioned Gaussian kernel function. Finally, we choose the best

matched pair by ( j
′

, k
′

) = argmax j,kG(õt
i j, p̂t

ik). If G(õt
i j′
, p̂t

ik′ ) > τo (τo = 0.7 by default), then

object i is likely to be occluded by object j
′

, leading to missing detection. Suppose that the box
bt

j′ and occlusion center p̂t
ik′ are all correctly estimated and the size of object i in adjacent frames

keeps unchanged, the estimated box bt
i for object i can be calculated as:

xt
il

= F (x̃t
il
, x̃t

ir
, xt

j′l
, xt

j′r
, x̂t

ik′
),

yt
it

= F (ỹt
it
, ỹt

ib
, yt

j′t
, yt

j′b
, ŷt

ik′
),

xt
ir

= xt
il

+ x̃t
ir
− x̃t

il
,

yt
ib

= yt
it

+ ỹt
ib
− ỹt

it
,

(15)

where F (a1, a2, b1, b2, z) =
2z − b1 − (a2 − a1) i f a1 ≤ b1 and a2 ≤ b2,
z − (a2 − a1)/2 i f a1 > b1 and a2 ≤ b2,
2z − b2 i f a1 > b1 and a2 > b2,
a1 else.

(16)

3.3. Integration into Existing Methods
The above two modules can be naturally integrated into existing state-of-the-art MOT systems,

such as [47, 55, 58, 29]. In details, as long as the original MOT system has or is able to add
the differentiable Re-ID feature learning part, the proposed Re-ID learning mechanism can be
applied into it and allows large scale unsupervised Re-ID learning. For the occlusion estimation

11



Algorithm 1: Tracking logic between Two Consecutive Frames

Input : T t−1 = {(bt−1
i , idi,wi, pt−1

i )}N
t−1

i=1 : cached trackltes in frame t − 1 with box bt−1
i , identity idi, number of

consecutive frames wi being lost, center point pt−1
i .

Dt = {(bt
j, pt

j)}
Nt

j=1: detected objects in frame t with box bt
j, center point pt

j.

P̂t = { p̂t
k}

Nt
occ

k=1 : predicted occlusion center points in frame t
Output: T t: cached tracklets in frame t.

Bt: tracking results in frame t.
1 Step1: Initialize as empty set
2 T t ← ∅, Bt ← ∅

3 Step2: Assign objects to tracklets, and get the assigned index pairs, lost tracklet and unassigned object indices
4 {(ia, ja)}Aa=1, {il}

L
l=1, { ju}

U
u=1 ← Assign(T t−1,Dt)

5 Step3: Update tracklets with assigned objects
6 for (ia, ja) ∈ {(ia, ja)}Aa=1 do
7 w ja ← 0, id ja ← idia
8 T t ← T t ∪ {(bt

ja , id ja ,w ja , pt
ja

)}
9 Bt ← Bt ∪ {bt

ja , id ja }

10 Step4: Initialize new tracklets with unassigned objects
11 for ju ∈ { ju}Uu=1 do
12 w ju ← 0, id ju ← NewID()
13 T t ← T t ∪ {(bt

ju , id ju ,w ju , pt
ju

)}
14 Bt ← Bt ∪ {bt

ju , id ju }

15 Step5: Handle lost tracklets
16 for il ∈ {il}Ll=1 do
17 if wil < τw then /*τw is the time window threshold*/

18 /* select the occlusion point and box in current frame to recover the box for lost tracklet */

19 j
′
, k
′

= argmax j,kG(O(b̃t
il , b

t
j), p̂t

k)

20 if G(O(b̃t
il , b

t
j′ ), p̂t

k′ ) > τo then
21 bt

il
← get occluded object box based on Eq. (15)

22 T t ← T t ∪ {(bt
il
, idil ,wil , pt

il
)}

23 Bt ← Bt ∪ {bt
il
, idil }

24 else
25 wil ← wil + 1
26 T t ← T t ∪ {(b̃t

il , idil ,wil , pt
il

)}

27 Return T t , Bt .
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module, it is compatible with MOT systems that are equipped with the modern CNN detector.
We can simply implement it by adding the occlusion estimation module as a parallel head to the
original detection head and sharing the same CNN backbone.

In Fig. 5, we take the popular tracking framework FairMOT [55] as an example and show the
integrated framework. The original FairMOT has one point based detection module, and one
supervised Re-ID module that is learnt by classifying each identity as one independent class,
which needs costly Re-ID annotation and suffers from the aforementioned dimension explosion
problem for huge identity number. We integrate the two proposed modules by changing its Re-
ID learning mechanism and adding the occlusion estimation module as described above. In the
following experiments, besides FairMOT, we also try to integrate our modules into CenterTrack
[58]. Since CenterTrack does not have the Re-ID feature learning module, we only incorporate
the occlusion estimation module into it.

4. Experiments

4.1. Implementation Details

The state-of-the-art methods FairMOT [55] and CenterTrack [58] are both implemented based
on the key-point based detector CenterNet [59]. We integrate the proposed modules into them to
demonstrate the effectiveness. The occlusion loss Locc is added to the detection loss of FairMOT
and CenterTrack with the weight of 0.5. The estimation branch for occlusion centers and offsets
in the occlusion estimation module both consists of one 3 × 3 convolutional layer whose output
is a 256-channel feature map and one 1 × 1 convolutional layer that produces the task-specific
heatmap. Between these two layers, a ReLU activation function is adopted. For the occlusion
center branch, the output heatmap Ŷ is activated by the sigmoid function, while for the occlu-
sion offset heatmap Λ̂, no activation function is adopted. When replacing the supervised Re-ID
learning in FairMOT [55] with our unsupervised Re-ID learning, we directly substitute the orig-
inal Re-ID loss in FairMOT with the loss Lid in Eq. (8) while keeping other unchanged. The
dimension D of Re-ID feature is set to 256.

By default, the Adam optimizer [24] with the initial learning rate 1e − 4 is used. The models
in FairMOT and CenterTrack are trained for 30 and 70 epochs respectively. For the positive sam-
ples of unsupervised Re-ID learning from video-based data, the adjacent frames are randomly
sampled from consecutive 20 frames.

4.2. Datasets

The proposed method is evaluated on the standard MOTChallenge datasets, including MOT16,
MOT17 [33] and MOT20 [11]. There are 7 training and other 7 testing videos in MOT16.
MOT17 contains the same videos as MOT16 but with different annotations. MOT20 contains
4 training videos and 4 testing videos. The videos in MOT20 are captured in crowd scenes,
which are quite different from those in MOT16 and MOT17. External dataset CrowdHuman [38]
is adopted for pre-training. Note that pre-training on external dataset is a common practice in
previous works [36, 55, 47, 45, 56]. Besides the bounding box annotation for detection, identity
information is also provided in MOT16, MOT17 and MOT20. However, the identity information
is not used in our training process.

We adopt the standard metrics of MOTChallenge for evaluation, including: Multi-Object
Tracking Accuracy (MOTA) [3], Multi-object Tracking Precision (MOTP) [3], ID F1 Score
(IDF1), Mostly Tracked objects (MT), Mostly Lost objects (ML), Number of False Positives
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Table 1: Tracking results on the MOT17 validation set with respect to different Re-ID learning methods. FairMOT3 and
FairMOTw/o mean the results with or without the original supervised Re-ID method used in FairMOT. ↑means the larger
the better and ↓ means the smaller the better. Best results are shown in bold and highlighted with underline.

Trackers MOTA↑ IDF1 ↑ MT↑ ML↓ FP↓ FN ↓ IDS↓
FairMOTw/o 65.8% 61.0% 133 62 2620 14735 1098

FairMOT3 [55] 67.5% 70.2% 134 55 2814 14263 492
FairMOT+CysAs [46] 67.0% 70.8% 134 60 2631 14681 503

FairMOT+UTrack 67.6% 71.8% 137 63 2621 14388 503

(FP), Number of False Negatives (FN), Number of Identity Switches (IDS) [26] and number
of Fragments (Frag). Some other metrics, including R1 and mAP, are also introduced for the
evaluation of different Re-ID methods.

4.3. Ablation Studies
Without losing generality, we do ablation study on the MOT17 dataset for simplicity, following

the work in FairMOT [55] and CenterTrack [58]. Since no validation data is provided in the
MOTChallenge, the common practice is to split each video in the training set into two half
videos, the first part is for training and the second part is for validation [55, 58, 37, 45, 50]. No
external dataset is used if not specified.

4.3.1. Unsupervised Re-ID Learning
In this sub-section, we conduct the ablation study for the unsupervised Re-ID learning module

by integrating it into the MOT system FairMOT [55].
Comparison with other Re-ID learning methods: We first compare different learning meth-

ods for the Re-ID feature module, including the proposed method (UTrack), the unsupervised
method CycAs [46] and the supervised method in FairMOT [55]. CycAs utilizes the cycle as-
signment consistence to learn the Re-ID module, which is the latest identity free method for
Re-ID learning. FairMOT treats each identity as a class and the Re-ID module is trained in a
supervised classification manner. The detailed comparison results are shown in Tab. 1. In order
to demonstrate the effectiveness of the Re-ID module, the tracking results without Re-ID are also
presented in the first row and denoted as FairMOTw/o. Note that, except the training method of
the Re-ID module, all the other parts remain the same.

Comparing the first row with the remaining three rows, we can find that MOTA, IDF1 and
IDS are all greatly improved with the Re-ID module. For example, our UTrack improves MOTA
and IDF1 by 1.8% and 10.8% respectively when the tracker is equipped with the Re-ID mod-
ule trained by the proposed unsupervised method. Compared to the supervised Re-ID used in
FairMOT3, our UTrack can achieve almost the same MOTA even without using any Re-ID su-
pervision. Though FairMOT possesses a slightly lower IDS, our method UTrack performs better
in IDF1 by 1.6%, demonstrating the effectiveness of the proposed unsupervised Re-ID learning
method. More importantly, our method does not suffer from the dimension explosion issue and is
more friendly to the real large-scale MOT systems. Comparing our method UTrack with CysAs
[46], both of whom are unsupervised methods, we find that both trackers achieve the same IDS,
but our method performs better in terms of MOTA and IDF1. We attribute this to the introduction
of the placeholder in the similarity matrix and the strong supervision signal Lintra

id within the same
frame (Eq. (3)).

3This tracker is trained by ourselves using its official code since the model is not available, which achieves the same
MOTA, higher IDF1 and lower IDS.
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(a) FairMOT (b) FairMOT+CycAs [46] (c) FairMOT+UTrack (Ours)

Figure 6: Visualized Re-ID features for identities in MOT17 validation set using t-SNE [32]. From left to right are
the features learnt by (a): the supervised method in FairMOT [55]. (b): the unsupervised method CysAs [46]. (c): the
proposed unsupervised method. Note that only the first 30 identities are presented here. Different colors indicate different
identities.
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Figure 7: Illustration of assignment between two frames. Left and right are the detection results, in which the color of
boxes and the numbers attached to the boxes indicate the identities. Middle is the assignment matrix M′.

In Fig. 6, we visualize the learned Re-ID features for different methods by t-SNE [32]. As
we can see, compared with the supervised method originally used in FairMOT [55] and the
unsupervised method CycAs [46], the features for the same identities are better grouped by the
proposed unsupervised method. We further present the assignment between two frames in Fig. 7.
As we can see, the object pair with the same identity achieves a much higher similarity score than
the counterpart with different identities.

Analysis of Re-ID loss: We then do some ablation analysis on the Re-ID loss Lpos
id in Eq. (6).

It consists of three components. 1) Lintra
id : the loss used to avoid assigning an object to another one

that locates in the same frame. 2) Linter
id : the loss that makes sure an object can be successfully

matched with another object that locates in different frames or the placeholder. 3) Lcycle
id : the

loss that constraints that the forward and backward assignment should be consistent with each
other. Results are shown in Tab. 2. It can be seen that, the performance gain from different
Re-ID losses in terms of MOTA is not that significant since MOTA is highly affected by the
detection performance, i.e., FN and FP. But both IDS and IDF1 are improved by introducing
more constraints on the Re-ID module, which demonstrates the effectiveness of each loss in

Table 2: Analysis of Re-ID loss on validation set.

Linter
id Lintra

id Lcycle
id MOTA↑ IDF1 ↑ MT↑ ML↓ FP↓ FN ↓ IDS↓

X 67.3% 69.9% 134 58 2422 14669 592
X X 67.5% 70.6% 133 63 2492 14566 531
X X X 67.6% 71.8% 137 63 2621 14388 503
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Table 3: The impact of temperature T on tracking performance. Evaluated on MOT17 validation set. C is the number of
columns in similarity matrix.

Tracker T MOTA↑ IDF1 ↑ MT↑ ML↓ FP↓ FN ↓ IDS↓

FairMOT+UTrack

1.0 67.5% 63.2% 145 57 2778 13978 788
2.0 67.9% 63.5% 147 58 2717 13840 789
3.0 67.6% 65.0% 147 57 2894 13791 838
4.0 65.5% 69.1% 128 62 3186 14874 565
5.0 65.4% 70.1% 129 59 3130 15059 502

2log(C + 1) 67.6% 71.8% 137 63 2621 14388 503

Table 4: Tracking results on the MOT17 validation set with respect to different settings for placeholder.

placeholder MOTA↑ IDF1 ↑ MT↑ ML↓ FP↓ FN ↓ IDS↓
w/o 67.4% 71.1% 142 62 2457 14588 557
zero 66.9% 70.7% 138 60 2685 14735 494
mean 67.6% 71.8% 137 63 2621 14388 503

Eq. (6).
Discussion on the temperature T : In our default settings, T is adaptive to the number of

objects. To show its superiority, we train several models with different fixed temperatures, the
tracking results are shown in Tab. 3. As we can see, provided with larger temperatures (T ≥ 4),
the trackers achieve better IDF1 score but degraded MOTA score compared with those trackers
equipped with smaller temperatures (T ≤ 3). With the help of adaptive temperature, the tracker
obtains a better balance between IDF1 and MOTA scores.

Discussion on the placeholder: Finally, we have a discussion on the value of placeholder p.
As mentioned before, the placeholder p is introduced to handle the birth and death of objects, i.e.,
the newly appeared objects in It and the objects appearing in It−1 but disappearing in It should
be assigned to the placeholder. Let S i, j be the cosine similarity between the Re-ID feature of
objects i and j. For sensible matching, S i, j should be greater than p if object i and j have the
same identity, otherwise S i, j < p.

Taking into intuitive consideration that the cosine similarity between the Re-ID feature of two
objects should be positive if they have the same identity, otherwise negative, it is straightforward
to set p = 0. However, at the early training stage, we observe that the variance of the values in
S is small (about 0.015) and the cosine similarity between any pair of objects is around 0.75.
So it is hard for the model to handle the birth and death of objects well at the beginning if
p = 0. Therefore, we set p as the dynamic mean of the values in S except the diagonal values by
default. Interestingly, we observe that the mean of the values in S is about 0 after convergence
when trained with this strategy.

The results of three different placeholder settings are shown in Tab. 4: without placeholder p,
p = 0, and p as the dynamic mean. As we can see that the tracker achieves the best results in
terms of MOTA, IDF1 and FN when the placeholder is set to the dynamic mean of similarity
values. Compared to the setting without the placeholder, using placeholder can achieve much
lower IDS, which demonstrates the effectiveness of the placeholder.

4.3.2. Occlusion Estimation Module
To demonstrate the effectiveness of the proposed occlusion estimation module, we apply it to

both FairMOT [55] and CenterTrack [58]. Another work of lost object refinding, GSM [29], is
also evaluated. As shown in Tab. 5, with the help of the occlusion estimation module (OccE),
many lost objects can be found back, leading to lower FN. Though the FP is slightly increased,
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Table 5: Tracking results on the MOT17 validation set with the occlusion estimation module (OccE) integrated in Cen-
terTrack [58] and FairMOT [55] to show its effectiveness respectively.

trackers MOTA↑ IDF1 ↑ MT↑ ML↓ FP↓ FN ↓ IDS↓
FairMOT+UTrack 67.6% 71.8% 137 63 2621 14388 503

FairMOT+UTrack+GSM [29] 68.1% 71.8% 164 49 5095 11763 366
FairMOT+UTrack+OccE 68.5% 72.0% 142 57 2840 13797 396

CenterTrack 60.7% 62.7% 112 76 2179 18447 564
CenterTrack+GSM [29] 61.5% 63.9% 131 63 4508 15943 254

CenterTrack+OccE 62.1% 64.6% 127 68 3372 16583 440

(a)

(c)

(b)

(d)

Figure 8: Some cases where lost objects are re-found by the proposed occlusion estimation module. For each case, from
left to right are tracking results in the previous frame, detection results, predicted occlusions and tracking results in the
current frame respectively. Specifically, objects 36, 3, 11 and 9 are found back for cases (a), (b), (c) and (d), respectively.
Note that the images here are cropped from original images for better viewing.

the main tracking metric MOTA is still improved. In addition, more objects can be mostly tracked
(MT), and fewer objects are mostly lost (ML). Besides, IDS are greatly reduced. Compared with
OccE, GSM introduces more FP, resulting a slightly lower MOTA. Though lower IDS is achieved
by GSM, the construction and matching of graphs are time consuming.

In Fig. 8, some typical cases where occlusion happens are presented. For each case, the left
to the right columns are the tracking results in the previous frame, the detection results and
the predicted occlusions, as well as the tracking results in the current frame respectively. As
we can see, some occluded objects are missed by the detector and are challenging for existing
MOT systems to track successfully. Without such refinding mechanism, they can only handle the
detected objects and keep undetected boxes untracked. By integrating the proposed occlusion
estimation module and the accompanying object refinding algorithm, we can refind the missed
objects back and link them with existing tracklets.

Discussion on the threshold τ: The hyper-parameter τ in Eq. (9) controls the valid number
of occlusions in a frame while training. We evaluate the impact of τ on tracking performance by

Table 6: The impact of τ on tracking performance. Evaluated on MOT17 validation set.

trackers τ MOTA↑ IDF1 ↑ MT↑ ML↓ FP↓ FN ↓ IDS↓

FairMOT+UTrack+OccE

0.3 68.3% 70.4% 145 57 3228 13501 412
0.5 68.3% 72.0% 143 55 3114 13609 426
0.7 68.5% 72.0% 142 57 2840 13797 396
0.9 68.4% 71.8% 141 58 2758 13928 397

17



Table 7: Comparison of re-identification capability of different methods on the MOT17 train split by directly applying
the pre-trained models on CrowdHuman [38] without fine-tuning.

Trackers R1↑ mAP ↑
FairMOT[55] 42.9% 25.4%

FairMOT+CysAs [46] 54.8% 32.9%
FairMOT+UTrack 56.4% 34.1%

Table 8: The impact of the ratio between the number of negative and positive samples on re-identification capability.
These models are trained on CrowdHuman [38] and evaluated on MOT17 train split without fine-tuning.

Tracker Nneg/N pos R1↑ mAP ↑

FairMOT+UTrack

1/9 54.6% 32.8%
2/8 56.4% 34.1%
3/7 58.1% 31.8%
4/6 57.9% 31.3%
5/5 not converged
6/4 not converged

applying it to FairMOT [55]. Results are shown in Tab. 6. Specifically, the tracker achieves more
FN but less FP with a larger τ. This is because fewer occlusions could be detected if the model is
trained with a larger τ, thus fewer lost objects could be found back. However, the overall tracking
performance (MOTA) is not sensitive to the value of τ and we set it to 0.7 by default.

4.3.3. Pre-Training on Image-Based Data
The proposed method can benefit from pre-training on image-based data. To demonstrate it,

we use the CrowdHuman dataset [38] for pre-training. Need to note that, the original FairMOT
[55] also pre-trains their model on CrowdHuman and its Re-ID module is trained with pseudo
identity labels, i.e., a unique identity is assigned to each annotated box, in a classification manner.
There are about 339K boxes in CrowdHuman, so the pseudo identity number is massive, causing
the number of parameters in the classifier to be even larger than the total number of parameters
in the other modules (54.0M vs. 19.4M). By contrast, there are no extra parameters introduced
in the proposed unsupervised Re-ID learning method. While training, two augmentations of an
image are treated as a positive sample pair, and two different static images are sampled as a
negative sample pair.

We first compare the re-identification capability of the proposed unsupervised Re-ID learning
method UTrack, pseudo identity based method FairMOT [55], and the latest identity free method
CysAs [46] in Tab. 7. While evaluation, each tracklet in MOT17 train split is divided into two
half parts. The first part is used as query and the rest part is used as gallery. As we can see,
both CysAs and the proposed UTrack achieve much better results than FairMOT. Compared with
CysAs, UTrack obtains 1.6% higher R1 and 1.2% higher mAP. We argue this to the introduction
of placeholder and the strong supervision signal.

We then evaluate the impact of Nneg

N pos on re-identification capability while training on image-
based data in Tab. 8. The model achieves the best R1 score when Nneg

N pos = 3
7 , but achieves the

best mAP score when Nneg

N pos = 2
8 . Interestingly, we find that the Re-ID module cannot converge if

Nneg

N pos ≥ 1. We set Nneg

N pos to 2
8 for the balance between R1 and mAP scores.

In Tab. 9, we show the tracking results of trackers on MOT17 dataset by directly applying
the CrowdHuman pre-trained model without fine-tuning. Compared with the supervised Re-ID
learning in FairMOT and unsupervised Re-ID learning CysAs [46], our UTrack performs much
better in terms of MOTA, IDF1, MT, FN and IDS, demonstrating the superiority of the proposed
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Table 9: Tracking results on the MOT17 validation set by directly applying the pre-trained trackers on CrowdHuman
[38] without fine-tuning.

Trackers MOTA↑ IDF1 ↑ MT↑ ML↓ FP↓ FN ↓ IDS↓
FairMOT [55] 64.0% 64.6% 138 63 2130 16806 501

FairMOT+CysAs [46] 63.9% 64.9% 137 62 2781 16105 594
FairMOT+UTrack 64.8% 69.2% 143 64 2390 16203 418

Table 10: Tracking results on the MOT17 validation set by fine-tuning the CrowdHuman pre-trained trackers on the
MOT17 dataset. Trackers marked with/without ? correspond pre-training on CrowdHuman or not.

trackers MOTA↑ IDF1 ↑ MT↑ ML↓ FP↓ FN ↓ IDS↓
impact on Re-ID module

FairMOT [55] 67.5% 70.2% 134 55 2814 14263 492
FairMOT? [55] 70.7% 74.7% 172 48 3255 12171 431

FairMOT+CysAs [46] 67.0% 70.8% 134 60 2631 14681 503
FairMOT+CysAs [46]? 69.4% 70.8% 158 46 3412 12515 592

FairMOT+UTrack 67.6% 71.8% 137 63 2621 14388 503
FairMOT+UTrack? 70.8% 73.8% 165 45 3222 12052 524

impact on occlusion estimation module
FairMOT+UTrack+OccE 68.5% 72.0% 142 57 2840 13797 396

FairMOT+UTrack+OccE? 72.0% 73.1% 168 46 3565 11119 417
CenterTrack[58] 60.7% 62.7% 112 76 2179 18447 564

CenterTrack?[58] 66.1% 64.2% 140 72 2442 15286 588
CenterTrack+OccE 62.1% 64.6% 127 68 3372 16583 440

CenterTrack+OccE? 67.4% 67.6% 158 63 4086 13107 414

unsupervised Re-ID learning method.
We further show the results in Tab. 10 by fine-tuning the CrowdHuman pre-trained models

(marked by ?) on the MOT17 dataset. For reference, we also provide the results without pre-
training. From the results, we can observe that pre-training on the image-based data can generally
boost the overall tracking performance. Compared to the supervised Re-ID learning method used
in FairMOT, our unsupervised tracker UTrack can achieve very comparable tracking performance
without using any ID supervision. By contrast, pre-training on image-based data using CysAs
cannot improve the IDF1 performance.

4.4. Results on MOTChallenge
Though the main focus of this paper is not to achieve the state-of-the-art performance, we

still show the tracking results on the standard MOTchallenge benchmark by integrating the pro-
posed modules into FairMOT [55] and CenterTrack [58] respectively. For notation simplicity,
we denote the variant of FairMOT that integrates our unsupervised Re-ID learning and occlusion
estimation module as ”OUTrackfm”, and the variant of CenterTrack that integrates our occlusion
estimation module as ”OTrackct”. We conduct the evaluation on both public and private detec-
tion. For the public detection evaluation, we follow the works in [2, 29, 58, 19, 23, 37, 45, 50]
to refine the public detections and keep the bounding boxes that are close to the tracked objects.
Note that only the provided training sequences are used to train the model for public detection
evaluation. For private detection, we follow CenterTrack and FairMOT to pre-train our tracker
with the CrowdHuman dataset. However, the original FairMOT also involves a mixture dataset
that consists of five extra datasets4. For fair comparison, we train FairMOT on CrowdHuman
and MOTChallenge without these five extra datasets, which is denoted as FairMOT§.

4These datasets are ETH [14], CityPerson [53], CalTech [12], CUHK-SYSU [51] and PRW [57]. Besides the box
annotations, the identity information is also provided in the last three datasets.
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Table 11: Benchmark results on MOTChallenge. Trackers marked with † track objects in an offline manner. FairMOT§ is
pre-trained on CrowdHuman without five extra datasets4. Best results are shown in bold and highlighted with underline.

benchmark methods MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ Recall↑ IDS↓ Frag↓ Hz↑

M
O

T
16

Public

Tracktor++ [2] 56.2% 54.9% 20.7% 35.8% 2394 76844 57.9% 617 1068 1.6
GSMTracktor [29] 57.0% 58.2% 22.0% 34.5% 4332 73573 59.6% 475 859 7.6
MPNTrack† [5] 58.6% 61.7% 27.3% 34.0% 4949 70252 61.5% 354 684 6.5

Lif T† [21] 61.3% 64.7% 27.0% 34.0% 4844 65401 64.1% 389 1034 0.5
TMOH [40] 63.2% 63.5% 27.0% 31.0% 3122 63376 65.2% 635 1486 0.7

OTrackct (ours) 65.3% 62.7% 26.1% 34.9% 5179 57484 68.5% 628 1616 17.2
OUTrackfm (ours) 69.3% 67.5% 37.3% 19.1% 10657 44059 75.8% 1284 2677 24.5

Private

JDE[47] 64.4% 55.8% 35.4% 20.0% - - - 1544 - 22.0
LM CNN† [1] 67.4% 61.2% 38.2% 19.2% 10109 48435 73.4% 931 1034 1.7

LMP† [42] 71.0% 80.2% 46.9% 21.9% 7880 44564 75.6% 434 587 0.5
SOTMOT [56] 72.1% 72.3% 44.0% 13.2% 14344 34784 - 1681 - 16
FairMOT[55] 74.9% 72.8% 44.7% 15.9% 10163 34484 81.1% 1074 2567 25.4
FairMOT§[55] 72.7% 74.0% 42.0% 17.8% 12930 35804 80.4% 1121 2732 25.4
OTrackct (ours) 73.3% 70.3% 41.3% 15.9% 30057 115944 79.5% 4440 8742 17.0

OUTrackfm (ours) 74.2% 71.1% 44.8% 14.0% 13214 32581 82.1% 1324 2413 24.8

M
O

T
17

Public

Tracktor++ [2] 56.3% 55.1% 21.1% 35.3% 8866 235449 58.3% 1987 3763 1.5
GSMTracktor [29] 56.4% 57.8% 22.2% 34.5% 14379 230174 59.2% 1485 2763 8.7
MPNTrack† [5] 58.8% 61.7% 28.8% 33.5% 17413 213594 62.1% 1185 2265 6.5

Lif T† [21] 60.5% 65.6% 27.0% 33.6% 14966 206619 63.4% 1189 3476 0.5
CenterTrack [58] 61.5% 59.6% 26.4% 31.9% 14076 200672 64.4% 2583 4965 17.5

TMOH [40] 62.1% 62.8% 26.9% 31.4% 10951 201195 64.3% 1897 4622 0.7
SiamMTOT [39] 65.9% 63.3% 34.6% 23.9% 18098 170955 - - - 17
OTrackct (ours) 63.9% 62.3% 25.7% 35.5% 14903 186878 66.9% 1949 4952 17.2

OUTrackfm (ours) 69.0% 66.8% 37.6% 19.7% 28855 141587 74.9% 4449 8733 24.8

Private

CenterTrack [58] 67.8% 64.7% 34.6% 24.6% 18498 160332 71.6% 3039 6102 17.5
SOTMOT [56] 71.0% 71.9% 42.7% 15.3% 39537 118983 - 5184 - 16
FairMOT [55] 73.7% 72.3% 43.2% 17.3% 27507 117477 79.2% 3303 8073 25.9
FairMOT§ [55] 71.8% 73.1% 40.9% 19.0% 34764 120909 78.6% 3534 8724 25.9
OTrackct (ours) 69.0% 67.8 % 35.4% 21.1% 39159 133143 76.4% 2643 6261 16.9

OUTrackfm (ours) 73.5% 70.2% 43.3% 15.2% 34764 110577 80.4% 4110 7506 25.4

M
O

T
20

public

SORT [4] 42.7% 45.1% 16.7% 26.2% 27521 264694 48.8% 4470 17798 57.3
MLT[54] 48.9% 54.6% 30.9% 22.1% 45660 216803 58.1% 2187 3067 3.7

Tracktor++[2] 52.6% 52.7% 30.3% 25.0% 6439 36680 55.4% 1648 4374 1.2
TMOH [40] 60.1% 61.2% 46.7% 17.8% 38043 165899 67.9% 2342 4320 0.6

OTrackct (ours) 60.8% 60.0% 56.4% 14.3% 70156 129703 74.9% 2783 2984 9.4
OUTrackfm (ours) 65.3% 65.0% 49.4% 13.3% 38709 13799 73.4% 2832 7212 10.7

private

FairMOT [55] 61.8% 67.3% 68.8% 7.6% 103440 88901 80.6% 5243 7874 13.2
FairMOT§ [55] 68.1% 71.1% 53.3% 12.9% 30503 131380 74.6% 3019 10509 13.2
SOTMOT [56] 68.6% 71.4% 64.9% 9.7% 57064 101154 - 4209 - 8.5
OTrackct (ours) 65.8% 61.8% 58.9% 13.1% 48947 125152 73.8% 2897 3064 10.3

OUTrackfm (ours) 68.5% 69.4% 57.9 % 12.2% 37431 123197 76.2% 2147 5683 12.4
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(a)

(c)

(b)

(d)

Figure 9: The tracking results and predicted occlusion heatmaps of OUTrackfm.

Results are shown in Tab. 11. Overall, our FairMOT based tracker OUTrackfm achieves state-
of-the-art performance on all datasets and our CenterTrack based tracker OTrackct outperfoms
CenterTrack by a large margin. Compared to offline methods, such as Lif T [21] and MPNTrack
[5], both OUTrackfm and OTrackct have a higher Frag, the reason is that the short broken tracklets
can be linked to a long trajectory by a post process, which is not allowed in online trackers.

Compared with FairMOT, OUTrackfm achieves very comparable performance on MOT17 with
much less pretraining data and better performance with the same pretraining data in terms of
MOTA. As for IDF1, FairMOT performs better than OUTrackfm by 2.1%. The main reason is
that FairMOT supervises Re-ID module with identity information, while the Re-ID module in
OUTrackfm is trained in a totally unsupervised manner. It is interesting that OUTrackfm performs
much better than FairMOT on MOT20 with private detection. The main reasons may be in two
folds: 1) FairMOT fine-tunes the models on MOT20 after pre-training on the mixture dataset,
while the mixed datasets used in FairMOT are different from MOT20 that is captured in crowd
scenes. However, we fine-tune the model on MOT20 after pre-training on CrowdHuman and the
images in CrowdHuman are all collected from crowd scenes. 2) A higher detection confidence
(0.5) is used in OUTrackfm, since FairMOT (0.3) has a much higher FP. When training FairMOT
on the same dataset as OUTrackfm and increasing the detection confidence to 0.5, the main metric
MOTA is greatly improved. But OUTrackfm still performs better.

Compared to CenterTrack, OTrackct performs much better on MOT17 for both the private and
public detection settings. For example, our OTrackct surpasses CenterTrack on MOT17 in terms
of MOTA by 2.4% and 1.2% with public and private detection, respectively. Through finding the
lost objects based on the predicted occlusions, a higher Recall is also achieved. Though more FP
are involved when finding the missed objects, the FN is greatly reduced.

In Fig. 9, some tracking results and the predicted occlusion heatmaps of OUTrackfm are pre-
sented. For the first case, we can see that some objects (63 and 35) can be re-identified when they
reappeared after a short-term disappearance, demonstrating the effectiveness of our unsupervised
Re-ID learning method. For both cases, occlusions between different objects can be effectively
detected by occlusion estimation module and those highly occluded objects still can be tracked,
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indicating the effectiveness of our occlusion estimation module.

5. Conclusion

In this paper, we present a new occlusion-aware multi-object tracking framework. It involves
two key modules: unsupervised Re-ID learning and occlusion estimation module. The unsu-
pervised Re-ID learning adopts an unsupervised matching based loss between adjacent frames,
whose motivation is that objects with the same identity in adjacent frames share similar ap-
pearance and objects in two images that from different scenes (or within the same image) have
different identities and appearances. Compared to the supervised classification based Re-ID
learning, it does not suffer from the dimension explosion issue for a large identity number and is
more friendly to real large-scale applications. The occlusion estimation module can alleviate the
tracking lost issue caused by missing detection. It can find the occluded objects back by estimat-
ing the occlusion map that shows all possible occlusion locations. The two proposed modules
can be applied to existing MOT systems in a natural way and demonstrate their effectiveness.
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