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Abstract In this study, we investigate a finite-time consen-

sus tracking problem for a group of autonomous underwa-

ter vehicles (AUVs) with heterogeneous uncertain dynam-

ics. We firstly propose a two-layer distributed control strat-

egy, which consists of an upper-layer distributed observer

and a lower-layer controller, without using any global in-

formation. Based on Hölder’s inequality and the theory of

finite-time stability, we develop a distributed finite-time ob-

server for each follower to estimate the position information

of a leader (i.e., an exosystem). Based on the sliding mod-

e control method, we design a consensus tracking control

scheme for each AUV, by which all follower AUVs can track

the leader in finite-time. Secondly, when the parameters in

the AUV dynamics are uncertain, we introduce a parameter-

adaptive sliding mode control algorithm to improve the con-

trol performance. Finally, simulation results are presented to

demonstrate the effectiveness of the proposed control algo-

rithms.
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1 Introduction

In recent years distributed coordinate control of multiple au-

tonomous underwater vehicles (AUVs) has attracted signif-

icant attention. This is because of the broad applications of

multiple AUVs in many underwater missions, such as o-

cean graphic surveys, deep-sea inspections, seafloor map-

ping, and marine biology explorations [1–4]. Because of the

complications of missions and some special performance re-

quirements, the collaborative work of multiple relatively in-

expensive and small AUVs has several advantages, such as

better stability, greater efficiency, and extensive service ar-

eas [5–8], compared to an individual specialized AUV for

performing solo missions. The distributed coordinate con-

trol of multiple AUVs requires that the control protocol for

each AUV only uses local information to realize an overall

goal. To this end, a series of coordination control approach-

es, such as neural networks [9–11], backstepping control [5,

12], adaptive control [6,13], and sliding mode control [14–

22], have been developed over the past decades to improve

the coordination performance of multiple AUVs.

In contrast with other approaches, sliding mode control

has some advantages, such as fast response, strong robust-

ness, and simple physical implementation. Additionally, a

sliding mode surface can be designed and is independent of

the parameters and disturbances. Because of the complex-

ity, unmodeled dynamics, uncertainties of AUV’s models

and environmental disturbances, Taha et al. [14] proposed a

trajectory tracking control scheme based on a sliding mod-

e control method to increase the model’s robustness against

bounded disturbances and also the lateral motion control of

AUVs [15]. For the attitude control problem of AUVs with

input nonlinearities and unknown disturbances, Cui et al.

[16] simplified the three-dimensional (3D) space dynamics

model of an AUV to second-order dynamics. An adaptive

control law based on sliding mode control method was de-
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signed. Although the above control protocols based on slid-

ing mode possessed satisfactory control effects, the systems

showed a chattering phenomenon resulting from the discon-

tinuous switching terms in the proposed protocols. To avoid

chattering, Cui et al. [17] replaced the sign function with the

saturation function. Zakeri et al. [18] used a sigmoid func-

tion to replace the sign function. However, these methods

resulted in a reduction of tracking precision. Hence, Li and

Zhu [19] proposed an adaptive high-order sliding mode con-

trol law based on a continuous adaptive function. However,

the parameter uncertainties were not taken into considera-

tion. Sun et al. [20] proposed a sliding mode control scheme

combining a backstepping control technique. Parameter es-

timation was developed to address the problem associated

with parameter uncertainties. Unfortunately, this controller

was affected by the computational complexities of differen-

tial virtual control signals. Yang et al. [21] utilized a nonsin-

gular fast terminal sliding mode control technique to solve a

trajectory tracking control of AUVs when the attitude infor-

mation cannot be obtained accurately and when the hydro-

dynamic parameters are uncertain. When the AUV systems

suffered from ocean disturbances and uncertain parameters,

Wang et al. [22] proposed an adaptive robust sliding-mode

control scheme based on a neural network, dynamic surface,

and backstepping technique.

Up to now, most of the aforementioned distributed coor-

dinate control algorithms can achieve asymptotic stability or

exponential stability for AUV systems. However the short-

er stability time is crucial for distributed control of AUV

systems. Thus finite-time distributed control algorithms are

more desirable. Recently, Liu et al. [23] proposed a nonlin-

ear finite-time sliding mode control strategy based on a dis-

turbance observer to solve a trajectory tracking problem for

underwater vehicles. Yang et al. [21] proposed a robust dif-

ferentiator to estimate the external disturbances and uncer-

tain parts in the linearly parameterized AUV model and then

developed a finite-time controller based on the non-singular

fast terminal sliding-mode control. Ali et al. [24] proposed

a finite-time nonsingular fast terminal sliding mode control

method based on the extended state observer to address the

trajectory tracking control problem of an AUV subject to ex-

ternal disturbances and various hydrodynamic uncertainties.

It is noted that the results mentioned above were obtained

for a single AUV rather than multiple AUVs. The extension

of finite-time control algorithms from single AUV to mul-

tiple AUVs is significant, especially in the case of leader-

follower systems with heterogeneous dynamics. When the

control directions of multiple AUVs are not known, Gao

and Guo [25] proposed a Nussbaum gain technique-based

finite-time formation control approach to address a forma-

tion tracking problem. Qin et al. [26] presented a distribut-

ed finite-time containment control of multiple ocean bottom

flying robots subject to model uncertainties, thruster faults,

and external disturbances. Li et al. [27] proposed a nonsin-

gular fast sliding mode control technique to address a finite-

time consensus problem of multi-rigid systems by using the

neighbors’ acceleration information. Li and Wang [28] in-

vestigated a finite-time position consensus control problem

of multiple AUVs by assuming that the parameters in the

AUV model are precise, which may be inappropriate for the

harsh underwater environment during application.

From the literature review and discussion mentioned above,

even though there have been some research works on finite-

time consensus control of multiple AUV systems by using

the sliding mode control technique. However, accurate mod-

els of AUVs may not be applicable to cases with complex

operation environment. Particularly, when the model param-

eters are uncertain and the complete state information can-

not be available as well, the existing approaches are not

available and thus a new control approach has to be inves-

tigated for uncertain heterogeneous AUV systems. For this

purpose, this study considers a finite-time consensus con-

trol problem for an uncertain heterogeneous leader-follower

AUV system by using a two-layer control strategy. The main

contributions of this study are summarized as follows: First,

we propose a finite-time distributed reduced-order observer

to estimate the position of the leader. Second, we develop

finite-time control laws for heterogeneous AUVs together

with a novel sliding surface. Third, we present finite-time

adaptive laws to estimate the uncertain parameters within

the heterogenous AUV dynamics.

The remainder of this paper is organized as follows: Sec-

tion 2 presents the preliminaries and problem formulation of

the heterogeneous multiple AUVs. The main results of this

study, including the distributed observer, the sliding-mode-

based and the adaptive sliding-mode-based finite-time con-

sensus are presented in Sections 3, 4, and 5, respectively.

The simulation studies are presented in Section 6, and Sec-

tion 7 summarizes the study.

2 Preliminaries and problem formulation

This section presents some basic notations, the algebraic

graph theory, some lemmas, and the problem formulation.

2.1 Notations

We denote sigα(x) = sgn(x)|x|α , where sgn(·) represents the

signum function and x,α ∈ R. Note that
d|x|α

dx
= αsigα−1(x).

For vectors x=(x1,x2, ..., xn)
T , y=(y1,y2, ..., yn)

T ∈ Rn, and

α ∈R, we denote xα =(xα
1 ,x

α
2 , ...,x

α
n )

T , sigα(x)= (sigα(x1),

sigα(x2), ...,sigα(xn))
T , |x|α = (|x1|α , |x2|α , ..., |xn|α), espe-

cially sgnα(x) = (sgnα(x1),sgnα(x2), ...,sgnα(xn))
T . x .∗ y

denotes (x1y1,x2y2, ..., xnyn)
T ∈ Rn. ‖x‖1 =

n

∑
i=1

|xi|, ||x||2 =
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√
xT x denote the 1-norm and Euclidean norm of vector x,

respectively. A basic property is that ||x||2 ≤ ||x||1,∀x ∈ Rn.

Let In denote the n× n identity matrix. For arbitrary matri-

ces A ∈ Rm×n and B ∈ Rp×q, A⊗B ∈ Rmp×nq denotes their

Kronecker product, where m,n, p,q are arbitrary positive in-

tegers. For any angle α ∈ R, denote sα = sinα,cα = cosα .

2.2 Algebraic Graph Theory

In this study, we assume that there are n follower AUVs. It

is conventional to model the communication network asso-

ciated with the group of AUVs using a directed graph (or

digraph). Let G = (V,E,A) be a weighted directed graph,

where V = {✈1,✈2, ...,✈n} is the node set, E =
{

(✈ j,✈i)|✈ j,
✈i ∈ V

}

is the edge set, and A = [ai j] ∈ Rn×n is a weighted

adjacency matrix, where ai j > 0 if (✈ j,✈i) ∈ E, otherwise

ai j = 0. The set of in-neighbors of the agent i is denoted by

Ni =
{

j ∈V |(✈ j,✈i) ∈ E
}

. Therefore, agent i can receive

the information of agent j for j ∈ Ni. A directed path in a

digraph G is an edge sequence with distinct nodes. A di-

rected tree is a directed graph, where every node has exactly

one parent except for the root, and there exists a directional

path from the root to the other nodes. A directed spanning

tree of G is a directed tree, where there exists a directional

path from the root to the remaining nodes in G. A diagonal

matrix D = diag{d1,d2, ...,dn} is the degree matrix whose

diagonal elements are defined by di = ∑
j∈Ni

ai j, and then the

Laplacian matrix of the digraph G is defined as L = D−A.

For the consensus tracking control of multiple AUVs, we

assume that there exists a leader denoted by node ✈0, whose

state is a time-varying reference signal for the followers de-

noted by nodes ✈1,✈2, ...,✈n. The communication topology

graph of the leader-follower multiple AUVs is denoted as

Ḡ = (V̄ , Ē), where V̄ =V ∪{0} is the set of nodes, and Ē ⊆
V̄ ×V̄ . We use a diagonal matrix B = diag{b1,b2, ...,bn} to

describe the interaction relationships between the follower

AUVs and the leader. If the i-th follower AUV has access to

the leader, then bi > 0, otherwise bi = 0. Let H = L+B, then

we have

Lemma 1 [29] The eigenvalues of the matrix H have pos-

itive real parts if the augmented communication topology

graph contains at least one directed spanning tree with root

✈0.

2.3 Some Lemmas

Some useful basic concepts and lemmas are reviewed in this

section.

Consider the following nonlinear system

ẋ = f(x), f(0) = 0, x ∈ Rn (1)

where f(x) : U → Rn is continuous on an open neighborhood

U of the origin x = 0 in Rn.

Lemma 2 [30] For system (1), if there exists a positive defi-

nite Lyapunov function V (x) : U0 → R+, where U0 ⊆U ∈ Rn

is an open neighborhood of the origin. For real number-

s c > 0 and α ∈ (0,1) such that V̇ (x) + cV α(x) ≤ 0, x ∈
U0 \{0}. Then, the origin of system (1) is finite-time stablil-

ity. If U =U0 = Rn, the origin is a globally finite-time stable

equilibrium. Additionally, the finite settling time T satisfies

T ≤ V 1−α (x(0))
c(1−α) .

Lemma 3 [31] For the nonlinear system (1), and suppose

that there is a C1 function V (x) : D → R, where D ∈ Rn is a

neighborhood of the origin, and the real number λ > 0, 0 <

γ < 1 and 0 < η < ∞, if V (x) with V (0) = 0 is positive defi-

nite on D and the following inequality holds:

V̇ (x)≤−λV γ(x)+η (2)

Then, the trajectory of system (1) is practical finite-time sta-

bility.

Lemma 4 [32] Let hi j > 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ m and

∑
m
j=1 p−1

j = 1 with p j > 1 for j = 1,2, ...,m. Then, the well-

known Hölder’s inequality is expressed as follows:

n

∑
i=1

m

∏
j=1

hi j ≤
m

∏
j=1

(

n

∑
i=1

h
p j

i j

) 1
p j

(3)

and the special case Cauchy’s inequality is expressed as fol-

lows:

(

n

∑
i=1

xiyi

)2

≤
(

n

∑
i=1

x2
i

)(

n

∑
i=1

y2
i

)

(4)

Lemma 5 [33] For any xi ∈ R, i = 1,2, ...,n, and a real

number q ∈ (0,1], the following inequality holds:

(

n

∑
i=1

|xi|
)q

≤
n

∑
i=1

|xi|q ≤ n1−q

(

n

∑
i=1

|xi|
)q

(5)

2.4 Problem Formulation

In this paper, we consider a system consisting of n heteroge-

nous AUVs, the kinematics and dynamics of the ith AUV

are described as follows [1]:

{

ṗi = Ji(Θ i)vi

Miv̇i +Di(vi)vi +gi(Θ i) = τ i

(6)

where pi = (xi,yi,zi)
T ,Θ i = (φi,θi,ψi)

T denote the position

and attitude vectors (i.e., roll φi, pitch θi, yaw ψi, as illustrat-

ed in Figure 1) in the inertial reference frame, respectively.

vi = (ui,vi,wi)
T represents the velocity vector in the body-
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Fig. 1 The reference frames of AUV.

fixed reference frame, τ i =(Fu,Fv,Fw)
T denotes the general-

ized thrust force, and Mi = diag{Mu̇i
, Mv̇i

,Mẇi
} represents

the inertia matrix, including the added mass. The transfor-

mation matrix Ji(Θ i) is then described as follows:

Ji(Θ i) =





cψi
cθi

−sψi
cφi

+ sφi
sθi

cψi
sψi

sφi
+ sθi

cψi
cφi

sψi
cθi

cψi
cφi

+ sφi
sθi

sψi
−cψi

sφi
+ sθi

sψi
cφi

−sθi
sφi

cθi
cφi

cθi



 ,

Di(vi) = diag{Xui
,Yvi

,Zwi
}+ diag{Du|ui|,Dv|vi|, Dw|wi|}

is the damping matrix, where Xui
,Yvi

and Zwi
represent the

linear damping coefficients, Du,Dv and Dw represent the

nonlinear damping coefficients, gi(Θ i) = [(Wi − Bi)sinθi,

−(Wi −Bi)cosθi sinφi,−(Wi −Bi)cosθi cosφi]
T , where Wi

and Bi represent the gravitational and buoyancy forces, re-

spectively, is the restoring force. For brevity, we denote Ji =
Ji(Θ i), Di = Di(vi), gi = gi(Θ i). Note that the transforma-

tion matrix Ji satisfies JiJ
T
i = I3 [28].

Assumption 1 The inertia matrix Mi is a symmetric posi-

tive definite matrix.

In this study, we assume that the attitude angles of all

follower AUVs are fixed. The dynamic equations of the ith

AUV can then be rewritten as follows:
{

ṗi = Jivi

Miv̇i +Civi +Di|vi|vi +gi = τ i

(7)

where Ci = diag{Xui
,Yvi

,Zwi
} ,Di = diag{Du,Dv, Dw}, and

|vi|vi =(|ui|ui, |vi|vi, |wi|wi)
T . For the position trajectory track-

ing control problem, we consider the leader dynamics as fol-

lows to generate the tracking reference signal:

ẋ0 = A0x0 (8)

where x0 = (pT
0 , vT

0 )
T with p0 ∈ R3 and v0 ∈ R3 are the

states of the leader, which are only available to a part of the

follower-AUVs.

Some useful assumptions are given as follows:

Assumption 2 There exists a directed spanning tree with

the leader node ✈0 as the root in the graph Ḡ.

Assumption 3 For the leader, the states p0 and ṗ0 are all

bounded. Without loss of generality, we assume ||ṗ0||∞ ≤ a0.

The main objective of the present study is to design a

distributed consensus control law τ i, such that the states of

all follower AUVs can track the time-varying reference tra-

jectory in a finite time. In other words, there exists a constant

T0 such that the states of all AUVs satisfy pi −p0 = 0 and

vi −v0 = 0 (i = 1, ...,n) for t ≥ T0.

3 Distributed Reduced-Order Observer

This section presents an upper-layer distributed observer for

each AUV before designing the tracking control. In this s-

tudy, not all AUVs can obtained the state information of the

leader directly, which requires the collaborative estimation

of the state information of leader using the local informa-

tion from the follower-AUVs. To this end, the following dis-

tributed reduced-order observer is designed for the ith AUV

to obtain an estimation of the leader’s information p0:

˙̂pi0 =− l1sigα

[

n

∑
j=1

ai j(p̂i0 − p̂ j0)+bi(p̂i0 −p0)

]

− l2sgn

[

n

∑
j=1

ai j(p̂i0 − p̂ j0)+bi(p̂i0 −p0)

]

(9)

where p̂i0 denotes an estimation of p0, and l1 > 0, l2 >
a0, 0 < α < 1 .

To analyze the finite-time convergence of the distribut-

ed observer, we denote p̄i0 = p̂i0 − p0, ṗL = 1n ⊗ ṗ0, p̄ =

(p̄T
i0, ...,

p̄T
n0)

T and ξ = (H ⊗ I3)p̄. The estimation error dynamics of

the overall multiple AUV systems are expressed as follows:

˙̄p =−l1sigα(ξ )− l2sgn(ξ )− ṗL (10)

Next, we will give the main result about the distributed

observer (9).

Theorem 1 Under Assumptions 2 and 3, the estimation er-

ror system (10) is globally finite-time convergent, namely,

there exists a constant T01 such that p̂i0 = p0 for t ≥ T01.

Proof Choose the Lyapunov candidate function as follows:

V =
1

2
p̄T (H ⊗ I3)p̄ (11)

From Lemma 1, we have H is positive, that is, λmax(H) >

λmin(H) > 0. Then, V is positive definite and satisfies V ≤
1
2
λmax(H)||p̄||22.

The time derivative of equation (11) is expressed as fol-

lows:

V̇ = ξ T ˙̄p =−l1ξ T
sigα(ξ )− l2ξ T

sgn(ξ )−ξ T
ṗL (12)
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From Lemma 4, by taking p1 = 1+α, p2 =
1+α

α , it fol-

lows that

||ξ ||1 =
3(n+1)

∑
i=1

(|ξi|×1)

≤
(

3(n+1)

∑
i=1

|ξi|1+α

)
1

1+α
(

3(n+1)

∑
i=1

1
1+α

α

)
α

1+α

= [ξ T
sigα(ξ )]

1
1+α [3(n+1)]

α
1+α (13)

and taking p1 = 1, p2 =+∞, we also have |ξ T
ṗL| ≤ ||ξ T ||1·

||ṗL||∞. Based on the two inequalities, from equation (12)

with the fact that ||x||2 ≤ ||x||1, we have

V̇ ≤−l1(3n)−α ||ξ ||1+α
2 − (l2 −||ṗL||∞)||ξ ||2

≤−l1(3n)−α λ 1+α
min (H)||p̄||1+α

2

− (l2 −||ṗL||∞)λmin(H)||p̄||2 (14)

Because V ≤ 1
2
λmax(H)||p̄||22, it can be obtained that

V̇ ≤− l1(3n)−α λ 1+α
min (H)2

1+α
2

λ
1+α

2
max (H)

V
1+α

2

− (l2 −||ṗL||∞)λmin(H)
√

2

λ
1
2

max(H)
V

1
2 (15)

From inequality (15), Assumption 3 and Lemma 2, we

can establish that p̂i0 → p0 in finite time. It is seen that each

following AUV can adequately estimate the position of the

leader through cooperative observation and estimation by

using the distributed observer (9).

Remark 1 For the ith follower AUVs, the observer (9) can

estimate the leader’s position information in finite-time, that

is, there exists a constant T01 satisfying

T01 ≤min

{

(3n)α λ
1+α

2
max (H)2

1−α
2 V

1−α
2 (0)

(1−α)l1λ 1+α
min (H)

,
√

2λ
1
2

max(H)V
1
2 (0)

(l2−||ṗL||∞)λmin(H)

}

. That

is p̂i0 = p0 for t ≥ T01.

4 Finite-time Consensus Tracking

To achieve the consensus tracking objective, now this sec-

tion develops a lower-layer control strategy for each AUV.

We firstly define a sliding mode surface for the ith AUV as

follows:

Si = ε̇ i +λisigα1(εi) (16)

where ε i = pi − p̂i0,λi > 0 and α1 ∈ (0,1).

Next, we obtain the derivative of the sliding mode sur-

face as follows:

Ṡi = Jiv̇i − ¨̂pi0 +λiα1|pi − p̂i0|α1−1.∗ (Jivi − ˙̂pi0) (17)

The distributed finite-time control law for the ith AUV

can be designed as follows:

τ i = MiJ
−1
i

[

−βisigα2(Si)− γisgn(Si)+JiM
−1
i Civi

+JiM
−1
i Di|vi|vi +JiM

−1
i gi + ¨̂pi0

−λiα1|pi − p̂i0|α1−1.∗ (Jivi − ˙̂pi0)
]

(18)

where βi > 0, γi > 0 and α2 ∈ (0,1).
Applying the controller (18) to equation (17) results in

Ṡi =−βisigα2(Si)− γisgn(Si) (19)

Based on the above analysis, the tracking control per-

formance of this controller and finite-time stability of the

multiple AUV systems can be summarized as follows:

Theorem 2 Consider the multiple AUV systems (7). Under

Assumption 2 and the proposed control law (18), the con-

sensus tracking can then be achieved in finite-time for the

multiple AUV systems.

Proof Choose the Lyapunov candidate function as V (t) =

∑
n
i=1 Vi(t), where

Vi =
1

2
ST

i Si (20)

From the definition of the Euclidean norm, we have V

and Vi are positive definite and satisfy Vi =
1
2
||Si||22.

The time derivative of V is written as follows:

V̇ =
n

∑
i=1

ST
i Ṡi (21)

By substituting equation (19) into equation (21), we can

obtain the following:

V̇ =
n

∑
i=1

[

−βiS
T
i sigα2(Si)− γiS

T
i sgn(Si)

]

=
n

∑
i=1

[

−βiS
T
i sigα2(Si)− γi||Si||1

]

(22)

From Lemma 4, by taking p1 = 1+α2, p2 = 1+α2
α2

, it

follows that

||Si||1 =
3

∑
i=1

(|Si|×1)

≤
(

3

∑
i=1

|Si|1+α2

) 1
1+α2

(

3

∑
i=1

1
1+α2

α2

)

α2
1+α2

= 3
α2

1+α2

(

ST
i sigα2(Si)

)
1

1+α2 (23)

Then, we have 3−α2 ||Si||1+α2
1 ≤ ST

i sigα2(Si). From e-

quation (22) with the fact that ||x||2 ≤ ||x||1, we can establish

that

V̇ ≤
n

∑
i=1

(

−3−α2βi||Si||1+α2
2 − γi||Si||2

)

(24)
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Because Vi =
1
2
||Si||22, it can be established that

V̇ ≤
n

∑
i=1

(

−3−α2 2
1+α2

2 βiV
1+α2

2
i −

√
2γiV

1
2

i

)

(25)

From equation (19), we have

V̇ ≤−3−α22
1+α2

2 β
n

∑
i=1

V
1+α2

2
i −

√
2γ

n

∑
i=1

V
1
2

i (26)

where β =min{β1,β2, ...,βn},γ =min{γ1,γ2, ..., γn}. Using

Lemma 5, one can obtain the following:

V̇ ≤−3−α22
1+α2

2 β

(

n

∑
i=1

Vi

)

1+α2
2

−
√

2γ

(

n

∑
i=1

Vi

) 1
2

(27)

From inequality (27) and Lemma 2, we can see that the

position of all follower AUVs will converge to the sliding

mode surface Si = 0 in finite-time with upper time bound

T02 satisfying T02 ≤ min

{

3α2 2
1−α2

2 V
1−α2

2 (0)
β (1−α2)

,
√

2V
1
2 (0)

γ

}

.

Next, for the position error dynamics ε̇ i +λisigα1(εi)
= 0, we can choose the Lyapunov candidate function as

V1(t) = ∑
n
i=1 V1i(t), where V1i =

1
2
εT

i εi. The time derivative

of V1 is expressed as follows:

V̇1 =
n

∑
i=1

εT
i ε̇ i =

n

∑
i=1

εT
i (−λisigα1(εi)) (28)

From Lemma 4, as in inequality (23), we have 3−α1 ||εi||1+α1
1

≤ εT
i sigα1(εi). With the fact ||x||2 ≤ ||x||1 and V1i =

1
2
||εi||22,

we can obtain the following:

V̇1 ≤
n

∑
i=1

(

−3−α1λi||εi||1+α1
2

)

=
n

∑
i=1

(

−3−α1 2
1+α1

2 λiV
1+α1

2
1i

)

(29)

Using Lemma 5, one can obtain

V̇1 ≤−3−α1 2
1+α1

2 λ
n

∑
i=1

V
1+α1

2
1i

≤−(3)−α12
1+α1

2 λ

(

n

∑
i=1

V1i

)

1+α1
2

=−3−α1 2
1+α1

2 λV
1+α1

2
1 (30)

where λ = min{λ1,λ2, ...,λn}.

From inequality (30) and Lemma 2, all errors converge

to zero in finite-time T03 satisfying T03 ≤ 3α1 2
1−α1

2 V

1−α1
2

1 (0)

λ (1−α1)
.

The position consensus of the leader-follower multiple AU-

Vs is then achieved in finite-time with upper time bound

T0 = max{T01,T02,T03}, which completes the proof.

5 Adaptive Finite-time Consensus Tracking

It is well known that during underwater tasks, because of

the changing ocean environment, such as the flow rate, den-

sity, and temperature gradients of the water, the exact dy-

namic model parameters of AUVs may not be known a pri-

ori. Moreover, such uncertainties can limit the application

of model-based controllers and affect the performance of

the systems significantly. Therefore, it is necessary to de-

sign a control strategy that considers these uncertainties or

eliminates them as much as possible. Motivated by this rea-

son, adaptive finite-time position consensus tracking control

will be developed in this section for multiple AUV systems

where the parameters within the models have uncertainties.

We assume that the parameters Mi,Ci,Di,gi within the

AUV models are not known, then an adaptive sliding mode

control strategy is designed for the ith AUV as follows:

τ
′
i = M̂i

[

−βiJ
−1
i sigα2(Si)− γiJ

−1
i sgn(Si)+J−1

i
¨̂pi0

−λiα1J−1
i |pi − p̂i0|α1−1.∗ (Jivi − ˙̂pi0)

]

+ Ĉivi + D̂i|vi|vi + ĝi

= M̂iXi + Ĉivi + D̂i|vi|vi + ĝi (31)

where Xi =−βiJ
−1
i sigα2(Si)−γiJ

−1
i sgn(Si)+J−1

i
¨̂pi0 −λiα1

J−1
i |pi − p̂i0|α1−1.∗ (Jivi − ˙̂pi0), M̂i = diag

{

M̂i1, M̂i2,M̂i3

}

,

Ĉi = diag
{

Ĉi1,Ĉi2,Ĉi3

}

, D̂i = diag
{

D̂i1, D̂i2, D̂i3

}

, ĝi =(ĝi1,

ĝi2, ĝi3)
T . The according adaptive estimation laws are pro-

posed as follows:






















˙̂Mi j =−k1i jS
T
i JiXi j

˙̂Ci j =−k2i jS
T
i JiM

−1
i vi j

˙̂Di j =−k3i jS
T
i JiM

−1
i |vi j|vi j

˙̂gi j =−k4i jS
T
i JiM

−1
i 1i j

(32)

where Xi j =(0,Xi j,0)
T ,vi j =(0,vi j,0)

T , |vi j|vi j =(0, |vi j|vi j,

0)T ,1i j = (0,1i j,0)
T , j = 1,2,3 and k1i j, k2i j,k3i j,k4i j are all

positive gain parameters.

Theorem 3 Consider the multiple AUV systems (7). Under

Assumption 2 and the control strategy (31), the consensus

tracking can then be achieved in finite-time for the multiple

AUV systems.

Proof Choose the Lyapunov candidate function as V (t) =
n

∑
i=1

Vi(t), where

Vi =
1

2
ST

i Si +
3

∑
j=1

1

2k1i jMi j

M̃2
i j +

3

∑
j=1

1

2k2i j

C̃2
i j

+
3

∑
j=1

1

2k3i j

D̃2
i j +

3

∑
j=1

1

2k4i j

g̃2
i j, (33)

M̃i j = M̂i j −Mi j,C̃i j = Ĉi j −Ci j, D̃i j = D̂i j −Di j and g̃i j =
ĝi j − gi j represent the estimation errors of parameters. We



Finite-time observer based tracking control of uncertain heterogeneous underwater vehicles using adaptive sliding mode approach 7

can also rewrite the Lyapunov candidate function as Vi =

Vi1 +Vi2, where Vi1 = 1
2
ST

i Si and Vi2 = ∑
3
j=1

1
2k1i jMi j

M̃2
i j +

∑
3
j=1

1
2k2i j

C̃2
i j+∑

3
j=1

1
2k3i j

D̃2
i j+∑

3
j=1

1
2k4i j

g̃2
i j. The time deriva-

tive of equation (33) is expressed as follows:

V̇ =
n

∑
i=1

(

ST
i Ṡi +

3

∑
j=1

1

k1i jMi j

M̃i j
˙̂Mi j +

3

∑
j=1

1

2k2i j

C̃i j
˙̂Ci j

+
3

∑
j=1

1

2k3i j

D̃i j
˙̂Di j +

3

∑
j=1

1

2k4i j

g̃i j
˙̂gi j

)

(34)

By substituting equations (17) and (32) into equation

(34), and from Assumption 1, we have

V̇ =
n

∑
i=1

(

ST
i

(

−JiM
−1
i Civi −JiM

−1
i Di|vi|vi −JiM

−1
i gi

+JiM
−1
i τ

′
i − ¨̂pi0 +λiα1|pi − p̂i0|α1−1.∗ (Jivi − ˙̂pi0)

)

−
3

∑
j=1

M̃i j

k1i jMi j

k1i jS
T
i JiXi j −

3

∑
j=1

1

k2i j

C̃i jk2i jS
T
i JiM

−1
i vi j

−
3

∑
j=1

1

k3i j

D̃i jk3i jS
T
i JiM

−1
i |vi j|vi j

−
3

∑
j=1

1

k4i j

g̃i jk4i jS
T
i JiM

−1
i 1i j

)

(35)

From the control strategy (31), we further have:

V̇ =
n

∑
i=1

(

ST
i

(

JiM
−1
i C̃ivi +JiM

−1
i D̃i|vi|vi +JiM

−1
i g̃i

−βisigα2(Si)− γisgn(Si)
)

−
3

∑
j=1

1

k2i j

C̃i jk2i jS
T
i JiM

−1
i vi j

−
3

∑
j=1

1

k3i j

D̃i jk3i jS
T
i JiM

−1
i |vi j|vi j

−
3

∑
j=1

1

k4i j

g̃i jk4i jS
T
i JiM

−1
i 1i j

)

(36)

or equivalently,

V̇ =
n

∑
i=1

[

−βiS
T
i sigα2(Si)− γiS

T
i sgn(Si)

]

=
n

∑
i=1

[

−βiS
T
i sigα2(Si)− γi||Si||1

]

≤ 0 (37)

From equation (37), we can show that Si,M̃i j,C̃i j, D̃i j

and g̃i j are all bounded. Because Mi j,k1i j,k2i j,k3i j and k4i j

are positive constants, the functions Vi1,Vi2 are bounded.

From Lemma 4 and inequality (23), using the same analysis

of Theorem 2, we can obtain the following:

V̇ ≤
n

∑
i=1

(

−3−α2βi||Si||1+α2
2 − γi||Si||2

)

(38)

Because Vi1 =
1
2
||Si||22, it can be obtained that

V̇ ≤
n

∑
i=1

(

−3−α2 2
1+α2

2 βiV
1+α2

2
i1 −

√
2γiV

1
2

i1

)

=
n

∑
i=1

(

−C1V
1+α2

2
i1 −C2V

1
2

i1

)

(39)

where C1 = 3−α22
1+α2

2 βi,C2 =
√

2γi.

We can rewrite inequality (39) as follows:

V̇ ≤
n

∑
i=1

(

−C1V
1+α2

2
i1 −C1V

1+α2
2

i2 +C1V
1+α2

2
i2

−C2V
1
2

i1 −C2V
1
2

i2 +C2V
1
2

i2

)

=
n

∑
i=1

(

−C1

(

V
1+α2

2
i1 +V

1+α2
2

i2

)

−C2

(

V
1
2

i1 +V
1
2

i2

)

+C1V
1+α2

2
i2 +C2V

1
2

i2

)

(40)

From Lemma 5 and inequality (40), we obtain the fol-

lowing:

V̇ ≤−C1

n

∑
i=1

(Vi1 +Vi2)
1+α2

2 −C2

n

∑
i=1

(Vi1 +Vi2)
1
2

+
n

∑
i=1

(

C1V
1+α2

2
i2 +C2V

1
2

i2

)

(41)

From inequality (37), since Vi2 is bounded, then

∑
n
i=1

(

C1V
1+α2

2
i2 +C2V

1
2

i2

)

is bounded. Let η = sup0<t<∞

{

∑
n
i=1

(

C1V
1+α2

2
i2 +C2V

1
2

i2

)}

, we obtain η is a positive con-

stant. Then, we further have

V̇ ≤−C1

(

n

∑
i=1

Vi

)

1+α2
2

−C2

(

n

∑
i=1

Vi

) 1
2

+η

=−C1V
1+α2

2 −C2V
1
2 +η (42)

From inequality (42) and Lemma 3, we can see that the

sliding mode surface Si can converge to zero in finite-time.

Using a similar analysis of Theorem 2, the consensus track-

ing can be achieved for the multiple AUV systems in finite-

time. This completes the proof.

Remark 2 Compared to the controller (18), the adaptive laws

in the control strategy τ
′
i given by (31) can estimate the un-

known parameters online. Therefore, the controller (31) is

more practical for AUVs in real cases. Additionally, the s-

liding surface can converge to zero in finite-time with an

upper bound T02 while the observer (9) has the same time

bound, as shown in Section 4. Thus the controller (31) can

guarantee the finite-time convergence of the multiple AUV

systems with upper time bound smaller than T0.



8 Bo Chen et al.

6 Numerical Simulations

In this section, we present two simulation examples to val-

idate the dynamic performance of the two distributed con-

sensus control strategies proposed in Sections 4 and 5, re-

spectively.

Example 6.1: Consider a group of four follower AUVs

and a leader. The interconnection network of the AUVs and

the leader is illustrated in Fig.2.

Fig. 2 Interconnection network topology

Without loss of generality, we assume that ai j = 1 if

j ∈ Ni, otherwise ai j = 0. In the network, there is a directed

spanning tree with the leader node ✈0 as the root. Thus the

matrices L and H = L+B are expressed as follows:

L =









1 −1 0 0

−1 1 0 0

0 0 1 −1

−1 0 0 1









,H =









2 −1 0 0

−1 1 0 0

0 0 1 −1

−1 0 0 1









The model parameters are chosen as Mi = diag
{

2000,

1800,1900
}

,Ci = diag{2,1,3}, Di = diag{2,3,1} ,Wi =

1028N,Bi = 1008N,φi = π/10,θi =−π/10, and ψi = π/12,

∀i ∈ 1,2,3,4. The leader dynamics is given as follows:

(

ṗ0

v̇0

)

=

















0

1 0 0

0 −1 0

0 0 1

−1 0 0

0 1 0

0 0 −1

0

















(

p0

v0

)

(

p0(0)
v0(0)

)

= (25 20 −25 1.5 2 −1.5)T

Choose the control law parameters as α =α2 = 0.9,α1 =

0.95, l1 = 2, l2 = 26,λ = diag{15,9,9,6},β = diag{15,9,6,

6},γ = diag{0.5, 0.5,0.4,0.5}. The initial states of all AU-

Vs are given as follows: p1(0)= (25;−10;25),v1(0)= (0;0;0),

p2(0)= (−25;30;25),v2(0)= (0;0;0),p3(0) = (25;40;−25),

v3(0) = (0;0;0),p4(0) = (−20;−25; 20),v4(0) = (0;0;0).

The simulation results are shown in Fig. 3-5. The esti-

mation performance is illustrated in Fig. 3, which indicates

that the estimates p̂i0 equal the position state p0 of the lead-

er after time 0.8. The evolution of the sliding-mode surface

0 1 2 3 4 5 6 7 8 9 10

time

-30

-20
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10

20

30

p
i0

x
(t

)
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AUV1
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AUV40.68 0.7 0.72 0.74

time

18

19

20

(a)

0 1 2 3 4 5 6 7 8 9 10

time

-20
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0
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20

p
i0

y
(t

)

leader

AUV1

AUV2

AUV3

AUV4
0.54 0.56 0.58 0.6

time

14

15

16

(b)

0 1 2 3 4 5 6 7 8 9 10

time

-30

-20

-10

0
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20

30

p
i0

z
(t

)

leader

AUV1

AUV2

AUV3

AUV40.65 0.7 0.75

time

-20

-19

-18

(c)

Fig. 3 The evolution of the state estimation of the distributed observer

(9). (a) xp̂i0
→ xp0

; (b) yp̂i0
→ yp0

; (c) zp̂i0
→ zp0

.

0 1 2 3 4 5 6 7 8 9 10

time

-200

-100

0

100

200

300

400

S
i(t

)

AUV1

AUV2

AUV3

AUV4

1.2 1.4 1.6 1.8 2

time

-2

0

2

Fig. 4 The evolution of the sliding mode surface (19).

is shown in Fig. 4. The position evolution of the AUVs is

shown in Fig. 5, which demonstrates that the follower AU-

Vs can follow the leader in finite-time under the proposed

control strategy (18). Thus the simulation results validate

Theorem 2.

Example 6.2: In this example, the interconnection topol-

ogy is similar to that in Example 6.1. We assume that the
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Fig. 5 The position evolution under the control strategy (18). (a) xi →
x0; (b) yi → y0; (c) zi → z0.
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Fig. 6 The evolution of the adaptive sliding mode surface under the

controller (31).

model parameters are unknown and employ the adaptive s-

liding mode control strategy (31) together with the adaptive

law (32). We choose the control law parameter values as α =

α1 = α2 = 0.9, l1 = 2, l2 = 26, λ = diag{12,9,9,6},β =

diag{18,12,15,24},γ = diag{0.5,0.5,0.4,0.5},k1i j = 0.0015,

k2i j = 0.02,k3i j = 0.02,k4i j = 0.02. We take the parameter
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Fig. 7 The position evolution under the adaptive sliding mode control

(31). (a) xi → x0; (b) yi → y0; (c) zi → z0.

values in Example 6.1 as the initial values of the adaptation

law (32), i.e., M̂i(0)= diag
{

2000,1800,1900
}

, Ĉi(0)= diag{2,1,3},
D̂i(0)= diag{2,3,1} , ĝi(0)= diag{−6.1803,−5.8779,−18.0902},∀i∈
1,2,3,4. The initial states of all follower AUVs are similar

to those in Example 6.1. The simulation results are shown in

Fig. 6-8.

Fig. 6 shows the evolution of the adaptive sliding-mode

surface under the controller (31). The AUVs’ position evolu-

tion under the adaptive sliding mode control (31) is depicted

in Fig. 7, which shows that the AUVs can follow the leader

in a shorter time than in Example 6.1. The evolution of the

parameter estimation errors is shown in Fig. 8. The simula-

tion results validate Theorem 3 when the parameters within

the AUV models are unknown.

7 Conclusion

In this study, we have investigated a finite-time consensus

tracking problem for multiple AUV systems with uncertain
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Fig. 8 The evolution of the parameter estimation errors under the adap-

tive laws (32). (a) The errors of M̂i; (b) The errors of Ĉi; (c) The errors

of D̂i; (d) The errors of ĝi.

heterogeneous dynamics. We have proposed a two-layer dis-

tributed control strategy, where the upper layer provides a

distributed finite-time observer for each AUV to estimate

the state of the leader, and the lower layer offers a consensus

tracking control algorithm based on a sliding mode method.

Theoretical analysis showed that each follower AUV can

track the leader in finite-time. When the parameters within

the heterogenous AUV models are unknown, we have fur-

ther introduced adaptive laws to estimate the parameters and

thus improve the performance of the finite-time sliding mod-

e control. In future, we will further consider the finite-time

or fixed-time consensus control of AUVs with velocity-free

measurements.
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Figures

Figure 1

The reference frames of AUV.



Figure 2

Interconnection network topology



Figure 3

The evolution of the state estimation of the distributed observer (9). (a) xpˆi0  xp0 ; (b) yˆpi0  yp0 ; (c)
zˆpi0  zp0 .



Figure 4

The evolution of the sliding mode surface (19).



Figure 5

The position evolution under the control strategy (18). (a) xi  x0; (b) yi  y0; (c) zi  z0.



Figure 6

The evolution of the adaptive sliding mode surface under the controller (31).



Figure 7

The position evolution under the adaptive sliding mode control (31). (a) xi  x0; (b) yi  y0; (c) zi  z0.



Figure 8

The evolution of the parameter estimation errors under the adap-tive laws (32). (a) The errors of ˆMi; (b)
The errors of ˆCi; (c) The errors of ˆDi; (d) The errors of ˆgi.


