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a b s t r a c t

31Model-based reinforcement learning (MBRL) approaches have demonstrated great potential in handling
32complex tasks with high sample efficiency. However, MBRL struggles with asymptotic performance com-
33pared to model-free reinforcement learning (MFRL). In this paper, we present a long-horizon policy opti-
34mization method, namely model-based deterministic policy gradient (MBDPG), for efficient exploitation
35of the learned dynamics model through multi-step gradient information. First, we approximate the
36dynamics of the environment with a parameterized linear combination of an ensemble of Gaussian dis-
37tributions. Moreover, the dynamics model is equipped with a memory module and trained on a multi-
38step prediction task to reduce cumulative error. Second, successful experience is used to guide the policy
39at the early stage of training to avoid ineffective exploration. Third, a clipped double value network is
40expanded in the learned dynamics to reduce overestimation bias. Finally, we present a deterministic pol-
41icy gradient approach in the model that backpropagates multi-step gradient along the imagined trajec-
42tories. Our method shows higher sampling efficiency than the state-of-the-art MFRL methods while
43maintaining better convergence performance and time efficiency compared to the SOAT MBRL.
44� 2022 Elsevier B.V. All rights reserved.
45

46

47

48 1. Introduction

49 Reinforcement learning (RL) can be divided into two classes:
50 model-free RL (MFRL), which learns a policy directly from the
51 interaction with the environment without knowing its dynamics,
52 and model-based RL (MBRL), which optimizes a policy with a
53 learned dynamics model of the environment. MFRL has shown an
54 excellent capability to handle complex tasks in unknown environ-
55 ments, including the game of Go [1,2], Atari games [3,4], control
56 tasks [5–7], and images segmentation [8]. However, the low sam-
57 pling efficiency of MFRL limits its applications to control problems
58 in the real world, especially for tasks with high data collection
59 costs, such as robotics [9–11]. Compared with model-free methods,
60 MBRL requires orders-of-magnitude fewer samples [12–14] since
61 the simulation data can be gathered without interacting with the
62 environment. Another advantage of MBRL is that the value func-
63 tion can be estimated more accurately through the returns of
64 long-horizon rollouts in the dynamics model [15,16].

65MBRL algorithms improve the sampling efficiency roughly
66through three mechanisms. First, Dyna-style algorithms [13,17]
67use the learned dynamics to generate imaginary data and learn
68policy through a model-free approach, which do not exploit the
69gradient information provided by the dynamics. Second, shooting
70algorithms plan action sequences based on the trajectories sam-
71pling from the learned model, such as random shooting [18,19],
72or CEM [20], which have low convergence performance as multiple
73complete Monte Carlo experiments are required. Contrary to the
74above two categories, model-based policy gradient algorithms
75[12,21–23] exploit the differentiability of the model and calculate
76the gradient of the objective function with respect to the policy,
77which can be optimized directly, but few of them take into account
78the gradient information of multiple steps.
79Learning a sufficiently accurate model for planning has proven
80challenging. Based on the limited states visited from the explo-
81ration, it is difficult to fit a model that is uniformly applicable in
82the state space. Furthermore, the distribution from which the sam-
83ples are drawn to learn the model is not stationary, but changes
84with the behavior of the agent [24]. The aleatoric uncertainty
85and epistemic uncertainty contained in the environment raise
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86 another dilemma [25]. Defective models pose the problem of
87 cumulative errors during the rollout process [26,27].
88 RL requires extensive trial-and-error exploration in the environ-
89 ment, but much of this is repetitive and ineffective in the early
90 training. In contrast, imitation learning can reduce redundant
91 exploration guided by expert demonstrations. Behavioral cloning
92 (BC) [28] methods learn a state-to-action mapping directly from
93 demonstrations. Inverse reinforcement learning (IRL) [29] recovers
94 a reward signal from the expert behavior and constructs RL meth-
95 ods to learn the policy. However, the learner can never outperform
96 the expert with the cloned behavior in imitation learning.
97 In this paper, we propose a model-based deterministic policy
98 gradient (MBDPG) algorithm with an off-policy actor-critic frame-
99 work [30]. We use a linear combination of multiple Gaussian distri-

100 butions to approximate the dynamics model of the environment.
101 The LSTM [31] network is used as the memory module of the
102 dynamics model to encode the history state information. The
103 model is trained with multi-step prediction to reduce the cumula-
104 tive error. Successful experience is provided in the early training to
105 increase exploration efficiency. We expand the clipped value esti-
106 mation in the model, which provides a stable critic model with a
107 low overestimation bias. Finally, we derive the model-based deter-
108 ministic policy gradient by linking the dynamics model, the value
109 function, and the policy to form an end-to-end pathway for train-
110 ing. As a result, the policy gradient can be backpropagated through
111 rollout trajectories.
112 The main contributions of our work are summarized as follows:

113 (1) Mixture Gaussian Network for multi-step prediction. Deep
114 neural networks are utilized to parameterize linear combi-
115 nations of an ensemble of Gaussian distributions, which
116 effectively captures the stochasticity and uncertainty of the
117 environment. In contrast to other probabilistic ensemble
118 methods, our approach constructs a recurrent memory net-
119 work to encode historical information, and trains the model
120 on a multi-step prediction task to reduce the cumulative
121 error.
122 (2) Learning from successful experience. In early training, our
123 approach speeds up the convergence of policy by cloning
124 the behavior of the expert and learning critic model to inter-
125 pret the intention of the tasks.
126 (3) Long horizon planning with clipped value expansion and
127 deterministic policy gradient. We exploit multi-step expan-
128 sion based on the dynamics model for both critic estimation
129 and policy optimization. In addition, the model-based deter-
130 ministic policy gradient in our method avoids integration
131 over the action space in contrast to stochastic policy. We
132 backpropagate multi-step gradient along the imaginary tra-
133 jectories to obtain faster convergence compared to one-step
134 policy gradient methods in MBRL. The experiments demon-
135 strate that an appropriate growth of the horizon can acceler-
136 ate the convergence of the algorithm.
137

138 2. Related work

139 2.1. Dynamics model

140 The learning of dynamics model is essentially a supervised
141 learning problem. PILCO [12] uses Bayesian non-parametric and
142 probabilistic Gaussian Processes (GPs) [32] to estimate the dynam-
143 ics model, but it is difficult to apply to high-dimensional tasks.
144 Neural networks (NNs) are used to parameterize deterministic
145 models of high-dimensional state space in [33] due to their power-
146 ful representation capabilities. However, deterministic models
147 cannot represent stochasticity and uncertainty in complex envi-
148 ronments. PETS [34] uses an ensemble of probabilistic networks

149to sample the trajectory and incorporates the uncertainty into
150the learned dynamics model. The recurrent neural network is used
151to integrate previous observation information as prior knowledge
152in [35]. AMRL [36] uses aggregators to increase the robustness of
153LSTM against noise, to maintain the information gradient in the
154long horizon. PlaNet [37] builds a recurrent state-space model with
155both deterministic and stochastic components. Our method is sim-
156ilar to World Models [38], in the sense that we both use a Mixture
157Density Network combined with an RNN network, but in our
158method, the dynamics model is trained for multi-step prediction.

1592.2. Policy optimization

160Heuristic algorithms can quickly obtain near-optimal solutions
161to an optimization problem from the search space. SLEPSO [39]
162proposes a novel path planning method for intelligent robots based
163on non-homogeneous Markov chain and differential evolution to
164balance local search and global search. RODDPSO [40] presents a
165distributed approach to introduce randomly occurring time-
166delays to expand the search space and improve the performance
167of getting rid of the local optima dilemma. To alleviate the prema-
168ture convergence problem and escape from the local optima,
169DNSPSO [41] proposes a distance-based dynamic neighborhood
170to integrate the neighborhood information, and an adaptively
171adjusted switching learning strategy to close the global optimum.
172Random Shooting (RS) methods [19,42] sample several random
173action sequences from a policy, and perform these sequences in the
174learned dynamics model. The agent selects the optimal action
175sequence with the highest episode return and executes the first
176action in the real environment. However, action sampling in RS
177lacks effective planning. In the CEM algorithm [20], the most
178rewarding actions are sorting out according to long-term rewards
179to obtain a better solution. In PETS [34], the policy is trained using
180the RS method and the CEM method respectively. Our algorithm
181differs from the PETS, in the meaning that we use end-to-end gra-
182dient information to update the policy instead.
183The dynamics model in ME-TRPO [17] and SLBO [43] is used to
184generate imagination data, which is employed as a supplement to
185the environment data to optimize policy with TRPO [44]. MBPO
186[13] uses an ensemble of probabilistic neural networks to approx-
187imate the dynamics of the environment, which is similar to PETS,
188but uses a MFRL method, SAC [7], to update the policy. In our
189approach, multi-step planning can be performed in the learned
190model. Compared to MBPO, which utilizes one-step gradient infor-
191mation, our method can roll out state sequences and obtain more
192gradient information within the foresight horizon.
193The policy gradient methods in MFRL have demonstrated their
194strong asymptotic performance. SAC [7,45] maximizes the entropy
195to encourage the agent to explore the environment. Under the
196actor-critic framework, deterministic policy gradient (DPG) [46]
197and Deep DPG (DDPG) [47] optimize the deterministic policy with
198the formulation of deterministic policy gradient. DPG proves that
199the deterministic policy gradient algorithm is significantly more
200effective than the stochastic policy gradient algorithm in the
201high-dimensional action space. TD3 [48] mentions that overesti-
202mation bias is a common problem in the Q learning process, and
203proposes a clipped double Q-learning algorithm to overcome the
204overestimation bias. We give the model-based derivation of the
205deterministic policy gradient. Compared with the model-free pol-
206icy gradient methods, our method uses the model to carry out
207multi-step gradient backpropagation, which yields much higher
208sampling efficiency than model-free methods.
209Prior works have explored either directly planning the actions
210or incorporating policy gradient methods into MBRL to speed up
211the convergence. In PILCO [12] algorithm, the policy is optimized
212by the gradient sampled from model rollouts. Since it learns the
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213 dynamics model through the Gaussian process, when the dimen-
214 sionality of the task increases, the complexity of the algorithm will
215 increase exponentially. SVG [23] uses reparameterization to intro-
216 duce noise into the policy and model and makes the backpropaga-
217 tion of stochastic sampling possible. MAAC [22] and Dreamer [49]
218 perform a latent space representation of the input image informa-
219 tion. The policy gradient is estimated by backpropagating its gradi-
220 ent through the trajectory to learn a stochastic policy in MAAC. Our
221 method proposes a model-based deterministic policy gradient
222 method, which does not require complicated sampling in the
223 action space in contrast to stochastic policy gradient. In addition,
224 the learned model is used to correct the value estimations in our
225 algorithm.

226 3. Preliminaries

227 In this section, we describe the reinforcement learning problem
228 in detail and explain the notation used in this paper.
229 We regard a standard RL problem as a Markov decision process
230 (MDP) [50], which is defined by a tuple S;A; p;R; c;q0ð Þ. Here, S and
231 A denote the state and action spaces, respectively. R represents the
232 reward function, q0 represents the initial state distribution and
233 c 2 0;1ð Þ is the discount factor. Inputting the current state st and
234 action at , the state transition model stþ1 � p st ; atð Þ returns the next
235 state stþ1, and the reward function rtþ1 � R st ; atð Þ returns the
236 immediate reward rtþ1. The goal of reinforcement learning is to
237 obtain an optimal policy that maximizes the expected reward:
238

Rt ¼ E
X1
t¼0

ctR st; atð Þ
" #

ð1Þ
240240

241 MBRL algorithms learn the dynamics model from the empirical
242 data s ¼ s0; ao; s1; a1; :::ð Þ by interacting with the environment. We
243 use a parameterized function stþ1 � f s st; atð Þ to approximate the
244 state transition function p st ; atð Þ of the environment, Similarly, a
245 parametric function rtþ1 � f r st ; atð Þ is used to approximate the
246 ground truth reward function R st; atð Þ. H represents the length of
247 the horizon in the model.
248 In actor-critic methods, the actor model and the critic model are
249 updated alternately. We learn an action-value function
250 qt ¼ Q st ; atð Þ that approximates the expected return conditioned
251 on a state st and action at . Then, the learned critic model is used
252 to optimize a policy at ¼ l stð Þ.
253 Generally, the action-value function, Q, is evaluated by itera-
254 tively minimizing the Bellman residual in Q-learning method:
255

Qðst ; atÞ  Qðst ; atÞ þ a rtþ1 þ cmax
a

Qðstþ1; aÞ � Qðst; atÞ
h i

ð2Þ257257

258 Where rtþ1 þ cmaxaQðstþ1; aÞ � Qðst ; atÞ is called TD error, c
259 here is the discount factor which controls the contribution of
260 rewards further in the future, and a is the step size. In Q-
261 learning, a greedy strategy is employed to update the Q function,
262 which may cause large estimates of the value function, called
263 overestimation bias.
264 For a large state space, DQN constructs function approximators
265 with neural networks parameterized by w. Given state and action
266 as the input, the Q-Network outputs Q-value estimation. The opti-
267 mization objective is to minimize the loss:
268

JQ ðwÞ ¼ E Qðst; atjwÞ � rtþ1 þ cQ stþ1; atþ1jw0ð Þð Þð Þ2
h i

ð3Þ270270

271 The target value is given by the target network Q st; at jw0ð Þ to
272 maintain a fixed objective over multiple iterations.
273 In actor-critic methods, the actor-network l st jhð Þ is trained to
274 maximize the outputs of the learned Q-networks through the
275 DPG algorithm:
276

rhJðhÞ ¼ Es�ql rhlðsjhÞraQðs; aÞja¼lðsjhÞ
h i

ð4Þ 278278

279The off-policy approach is applied in the actor-critic framework,
280sampling randommini-batches from an experience replay buffer to
281reduce the correlation among the samples.

2824. Methods

283Our approach focuses on modeling dynamics for long-term pre-
284diction and exploiting multi-step policy gradient to improve con-
285vergence performance. In this section, we first present the
286Mixture Gaussian Network to approximate the dynamics for
287multi-step prediction. Second, we use an imitation learning
288approach to accelerate the initial period of exploration. Finally,
289we present a model-based deterministic policy gradient approach
290to update the policy in an end-to-end manner.

2914.1. Dynamics model learning

292Before planning, we need to construct a simulation of the envi-
293ronment from the agent trajectories s ¼ s0; ao; s1; a1; � � �ð Þ, which
294approximates the ground truth sufficiently well over a long hori-
295zon. The computation graph is shown in Fig. 2.

2964.1.1. Mixture Gaussian network

297We consider sample sequences st ; at ; rtf gTt¼1 with time step t,
298state st , continuous action at , and scalar reward rt . A Mixture Gaus-
299sian Network is used to predict the next state ŝtþ1 and reward r̂tþ1.
300Stochastic dynamics models can capture part of the aleatoric
301uncertainty of the environment, but a single probability density
302function still cannot accurately fit all situations, since the stochas-
303ticity of the environment is not unimodal. Therefore, we define an
304ensemble of Gaussian distributions
305Nðl1;r1Þ;a1

� �
; :::; NðlM ;rMÞ;aM

� �� �
. Each Gaussian distribution

306of the ensemble is parameterized by a probabilistic feed-forward
307neural network, which outputs the mean li, variance ri, and corre-
308sponding weights ai of the distribution. Each Gaussian distribution
309represents a single dynamics model, which generates the predicted

310state ŝitþ1 and reward r̂itþ1 by sampling in the probability density:
311

pðŝitþ1; r̂itþ1 st; atj Þ ¼Nðli;riÞ ð5Þ 313313

314By summing the predicted values of Gaussian distributions with
315adaptive weights, the Mixture Gaussian Network can output a
316more accurate state ŝtþ1 and reward r̂tþ1 in the long term:
317

pðŝtþ1; r̂tþ1 st; atj Þ ¼
XM
i¼1

ai ŝitþ1; r̂
i
tþ1 �Nðli;riÞ

� �
ð6Þ

319319

320To mitigate the partial observability, LSTM is used as the mem-
321ory component of the Mixture Gaussian Network, which enables
322the agent to utilize historical data as prior knowledge. We express
323the memory model as htþ1 ¼ f ht ; st ; atð Þ, which encodes the sequen-
324tial inputs into the hidden state ht . The dynamics model contains a
325state model ŝtþ1 � f s st; at ;htð Þ, to predict the next state, and a
326reward model r̂tþ1 � f r st ; at ;htð Þ, to predict the reward. In more
327detail, the LSTM network outputs the next hidden state htþ1 condi-
328tioned on st , at and ht , and the multilayer fully connected network
329maps the next hidden state htþ1 into the parameters
330l1;r1;a1; � � � ;lM ;rM;aM

� �
of the ensemble of Gaussian distribu-

331tions. According to Eq. (6), we obtain the dynamics model in our
332work:
333Hidden state model:
334

htþ1 ¼ f hðht ; st; atÞ ð7Þ 336336

337Gaussian distributions:
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338

ðli;ri;aiÞMi¼1 ¼ f gðht ; st; atÞ ¼ gðhtþ1Þ ¼ gðf hðht ; st; atÞÞ ð8Þ340340

341 State model:
342

ŝtþ1 ¼ f sðst ; at ;htÞ ¼ pðŝtþ1 st ; at ;htj Þ ¼
XM
i¼1

ai ŝitþ1 �Nðli;riÞ
� �

ð9Þ
344344

345 Reward model:
346

r̂tþ1 ¼ f rðst ; at ;htÞ ¼ pðr̂tþ1 st ; at ;htj Þ

¼
XM
i¼1

ai r̂itþ1 �Nðli;riÞ
� �

ð10Þ
348348

349 4.1.2. Multi-step prediction training
350 We include the multi-step prediction loss in the overall training
351 goal, in which the error information at each step is utilized to mod-
352 ify the parameters. During dynamics training, we execute the same
353 action sequences a0; a1; � � � ; aH�1f g in the simulation model as in
354 the ground-truth trajectory
355 s ¼ s0; a0; r1; s1; a1; r2; � � � ; sH�1; aH�1; rH; sHf g from an initial state s0.
356 The objective function contains the Maximum Likelihood Estima-
357 tion of the Gaussian distribution and the error of the predicted
358 reward. The training objective aims to maximize the probability
359 of the ground-truth state st under the learned mixture Gaussian

360 distribution Nðli;riÞMi¼1, and minimizes the mean-squared error
361 (MSE) between the predicted and true rewards:

362

Jf s ;f r ¼
XH
t¼1

rt � r̂tð Þ2 �
XH
t¼1

XM
i¼1

ailogpi st li;ri

��� � ð11Þ
364364

365Where pi st li;ri

��� �
represents the probability of the ground

366truth st under the ith Gaussian distribution. The greater the likeli-
367hood is, the closer the learned mixture Gaussian distribution is to
368the state distribution of the real environment. Compared with
369one-step training, multi-step training significantly reduces the
370cumulative error for prediction.
371Note that in our work, a deterministic dynamics model is
372employed during planning. Sampling from Gaussian distributions
373in stochastic dynamics makes the model non-differentiable, which
374prevents our algorithm from training the policy end-to-end. The
375reparameterization trick can maintain the differentiability of the
376dynamics model but introduces additional computation. In
377stochastic methods, the learned Gaussian distributions are con-
378structed by linear transformation with the noise drawn from a
379standard normal distribution:

380

ŝitþ1 ¼ li þ ri � e; e �Nð0;1Þ ð12Þ 382382

383In contrast, the deterministic model avoids sampling operations
384when predicting the next state and reward and allows gradient
385backpropagation along the model. As the training of the stochastic
386dynamics model proceeds, the variance of the Gaussian distribu-

Fig. 1. Continuous control tasks in OpenAI Gym and MuJoCo used in our expertiments. Several challenges in RL are included in these environments, such as sparse rewards,
high-dimensional spaces, many degrees of freedom, and complex dynamics. Our approach shows great generalization in different environments.

Fig. 2. Computation graph of learning dynamics model. Given the initial state, the same sequence of actions is executed respectively in the model and in the environment.
Solid lines represent forward propagation, dashed lines with double arrows denote the loss calculation between the predictions and the ground truth data.
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387 tion gradually converges. While using the model, we directly use
388 the weighted sum of the means of the Gaussian distributions as
389 the predicted value:
390

ŝtþ1; r̂tþ1 ¼
XM
i¼1

aili ð13Þ
392392

393 4.2. Learning from success with imitation learning

394 The following shows the initialization of the critic model and
395 actor model with successful demonstrations.
396 Expert data is collected in advance using SOTA MFRL methods.
397 We adopt TD3 [48] to train expert behavior and gather the trajec-
398 tories of completed tasks in the environment.
399 Deep neural networks are employed to represent the actor and
400 critic models with parameters h and w, respectively. To learn the
401 intent of the expert, we update the critic model with successful
402 experience. Here, the critic network qt � Q st ; at jwð Þ is updated with
403 a temporal difference method. The optimization objective of the
404 critic model in a time step t is to minimize the error between the
405 target value rtþ1 þ cQ stþ1; atþ1ð Þ and the estimated value Q st ; atð Þ:
406

JQ wð Þt ¼ E Q st ; atð Þ � rtþ1 þ cQ stþ1; atþ1ð Þð Þð Þ2
h i

ð14Þ408408

409 The updated critic model outputs estimations with a small vari-
410 ance, which facilitates robustness for later learning and prevents
411 abrupt changes.
412 The actor-network at � l st hjð Þ is updated with behavioral clon-
413 ing. The problem is converted into a supervised learning problem
414 by solving a regression task to obtain an initial policy.
415

Jl hð Þ ¼ E l stð Þ � atð Þ2
h i

ð15Þ417417

418 In most cases, we cannot guarantee that the expert policy is
419 optimal. In our approach, only successful trajectories for complet-
420 ing tasks are collected as expert demonstrations. Although expert
421 behavior is defective, it still provides enough learning signals for
422 the initialization of the actor and critic model. Guided by expert
423 data, a roughly accurate policy and value function that points to
424 the endpoint of the task can be quickly obtained, along with ade-
425 quate empirical data that is effectively explored. However, the
426 learned critic and actor model have a large bias and poor general-
427 ization due to data limitation. In the following, with the guidance
428 of the initialized actor and critic model, we further optimize the
429 policy in the dynamics model to obtain the optimum that outper-
430 forms the expert.

431 4.3. Long horizon planning

432 In this section, we show a model-based deterministic policy
433 gradient method, MBDPG, that backpropagates multi-step gradient
434 along the imaginary trajectories to update the deterministic policy
435 under the actor-critic framework. The architecture of MBDPG is
436 shown in Fig. 3.

437 4.3.1. Critic model with clipped value expansion
438 In our approach, a critic model is constructed to estimate the
439 action-value function Q . Compared to MFRL, the bias of the value
440 function can be reduced by value expansion in the learned dynam-
441 ics. We roll out H steps in simulation dynamics to obtain an imag-
442 inary trajectory a0; ŝ1; a1; ŝ2; a2 . . . ; ŝHf g and imagined rewards
443 r̂1; r̂2; . . . ; r̂Hf g from an initial state s0. Here, a neural network is
444 used to approximate the critic with parameters w. The optimiza-
445 tion goal of the critic model is to minimize the error between the
446 estimated and the target Q through the Bellman equation. We give
447 the objective function of the critic model from time step t:

448

JQ ðwÞt ¼ E Q ŝt ; atð Þ � PH�1
h¼t

chr̂hþ1 þ cHQ ŝH; aHð Þ
	 
	 
2

" #

¼ E Q ŝt ; atð Þ � PH�1
h¼t

chf rðŝh; ahÞ þ cHQ ŝH; aHð Þ
	 
	 
2

" # ð16Þ

450450

451The target state-action value approximates the ground-truth
452return by accumulating the simulation rewards of multi-steps
453

PH�1
h¼t chr̂hþ1. The Q ŝH; aHð Þ contains the expected return over the

454horizon.
455In the actor-critic framework, maximizing the expectation of a
456critic network containing noise induces a consistent overestima-
457tion of the Q estimates. The overestimation bias causes a negative
458state to be overestimated, and it is easily propagated and accumu-
459lated through multiple updates, which leads to a suboptimal pol-
460icy. Here, we construct a clipped double Q-network, which has
461two Q networks with the same structure to estimate the Q values
462independently. Then, we choose the minimum of them as the final
463estimation result to reduce the overestimation error:
464

Q ¼ min
i¼1;2

Qi st ; atð Þ ð17Þ
466466

467Although taking the minimum may induce an underestimation
468bias, it is far preferable to overestimation bias [48]. Our approach
469expands the clipped estimates in the learned model to further
470reduce the variance of the estimator error, which results in a more
471stable learning target for the update.

Algorithm 1. Model-based Deterministic Policy Gradient

1: Initialize environment buffer Denv and model buffer Dmodel.
Initialize networks of dynamics f /, critic Qw, actor lh, and
corresponding learning rates kf , kQ , and kl.

2: Train expert via TD3 and generate demonstrations.
3: Update policy lh and critic Qw via demonstrations.
4: for N epochs do
5: Sample trajectories from the environment via stochastic

policy p. Add them to Denv.
6: for M epochs do
7: Sample data from Denv and update dynamics model

/ /� kfr/Jf /ð Þ.
8: end
9: for E epochs do

(continued on next page)

Fig. 3. Computation graph of Model-based deterministic policy gradient and
clipped value expansion with horizons of H in the model.
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a (continued)

Algorithm 1. Model-based Deterministic Policy Gradient

10: for H steps rollout in the model do
11: Perform H steps rollout in model using policy lh.
12: Add trajectories data to Dmodel.
13: Update value function w w� kQrwJQ wð Þ.
14: Update policy h hþ klrhJl hð Þ.
15: end
16: end
17: end
18: Return an optimal policy lh.

503

504 4.3.2. Actor model with deterministic policy gradient
505 We use parameterized neural networks to represent a deter-
506 ministic policy as at ¼ l st hjð Þ, where h is the parameter of the pol-
507 icy network. Consider an imagined trajectory with a finite horizon
508 H under policy l. The objective function of the actor model aims to
509 maximize the total immediate rewards and the value estimations
510 for the trajectory:
511

JlðhÞ ¼ E b
PH�1
t¼0

ct r̂tþ1 þ
PH
t¼1

ctQðŝt ; atÞjŝt¼f sðŝt�1 ;at�1Þ ;at¼lðŝtÞ
� �

¼ E b
PH�1
t¼0

ct f rðŝt ; atÞ þ
PH
t¼1

ctQðŝt; atÞjŝt¼f sðŝt�1 ;at�1Þ ;at¼lðŝtÞ
� � ð18Þ

513513

514 Where the parameter b is adaptive and indicates the weight of
515 the immediate rewards

PH�1
t¼0 ct r̂tþ1 in the total return. The agent

516 can avoid short-sightedness and neglecting the future return by
517 updating the parameter b. The term of the value estimations
518

PH
t¼1ctQðŝt ; atÞ can prevent the exploding and vanishing gradient

519 effect caused by backpropagation over time.
520 To optimize the objective function, we use the analytic gradient
521 of the neural network. Utilizing the recurrence relation of the
522 dynamics model, we can calculate the gradient of multiple steps
523 in the trajectory. Here the model, policy, and value function are
524 all deterministic and differentiable. Based on the chain rule and
525 the deterministic policy gradient theorem [23], we give the
526 method for calculating the gradient of the objective function with
527 respect to the policy parameters in the model-based case:
528

rhJlðhÞ ¼ E½b PH�1
t¼0

ct rsf rðŝt ; atÞrh ŝt þraf rðŝt ; atÞrhlhðŝtÞ
� �

þPH
t¼1

ct raQðŝt ; atÞrhlhðŝtÞ
� ���

ŝt¼f sðŝt�1 ;at�1 Þ ;at¼lhðŝtÞ
�

ð19Þ
530530

531 According to the Markov property and the learned state transfer
532 model ŝt � f s ŝt�1; at�1ð Þ, the gradient of the state with respect to the
533 policy parameters can be expressed as the recursive formula:
534

rh ŝt ¼ rhf sðŝt�1; at�1Þ
¼ rsf sðŝt�1; at�1Þrhŝt�1 þraf sðŝt�1; at�1Þrhlhðŝt�1Þ

ð20Þ
536536

537 Multi-step imagination is expanded in the model, which means
538 that the agent can reach a larger state space, and richer gradient
539 information can be exploited to optimize the policy compared to
540 MFRL.
541 In general, a deterministic policy cannot guarantee sufficient
542 exploration in the environment, unless there is adequate noise in
543 the environment. We now consider an off-policy method that uses
544 a stochastic actor p s sl; sr

��� �
as a behavioral policy to augment the

545 exploration in the environment. The stochastic policy is a Gaussian
546 distribution, the mean sl is the output of the deterministic policy
547 l st hjð Þ, and the variance sr is a parameter that can be learned.

548The variance decreases with the increase in the expected reward
549of the deterministic policy. As the deterministic policy gradually
550converges, the stochasticity of exploration can be reduced. Two
551independent experience reply buffers are constructed to store
552environmental exploration samples and imagination data respec-
553tively. During the training process, the ratio of sampling from the
554model and environment can be tuned to control the sampling
555efficiency.
556To prevent instability in the training process, we use target net-
557works for the actor and critic, and the update frequency of the tar-
558get network is lower than that of the actor and critic network.

5595. Experiments

560In this section, we describe the details of the experimental
561implementation. Our experiment aims to explore the following
562questions: (1) How well does our algorithm perform compared to
563the state-of-the-art model-based and model-free algorithms? (2)
564Whether our algorithm has an advantage in terms of time cost
565compared to other model-based methods? (3) What are the factors
566that affect the overall performance of the algorithm?
567We compare our algorithm against two model-free and two
568model-based baselines. For MFRL baselines, we compare ours to
569soft actor-critic (SAC) [7], which has proven excellent convergence
570performance by maximizing entropy, and Twin Delayed Deep
571Deterministic policy gradient (TD3) [48], which considers the
572interplay between function approximation error in both value
573and policy updates. For MBRL baselines, we choose probabilistic
574ensembles with trajectory sampling (PETS) [34], which demon-
575strates excellent performance in approximating dynamics, and
576model-based policy optimization (MBPO) [13], which uses
577model-free SAC to accelerate the convergence of the policy.
578We evaluate MBDPG and the baselines on a set of OpenAI Gym
579[51] and MuJoCo [52] continuous control tasks, illustrated in Fig. 1.
580These tasks have a series of challenges, including sparse rewards,
581complex dynamics, high-dimensional action space and state space.
582The actions are continuous and range from 2 to 8 dimensions. In
583BipedalWalker-v3 and LunarLanderContinuous-v2, there are
584abrupt changes in rewards that present a challenge to policy
585optimization.

5865.1. Experiment implementation

587All experiments are performed on a single Nvidia RTX TITAN XP
588GPU. To ensure the comparability of the experimental results, we
589modify all the algorithms to adapt to the experimental tasks and
590test them under the same experimental environment and condi-
591tions. The same hyperparameters are used across all tasks. In all
592methods, the random seed is set as 12345, and the initial parame-
593ters of all networks are generated from a Gaussian distribution
594with mean 0 and variance 1. To ensure a uniform evaluation stan-
595dard, the maximum time steps for a test episode are set as 1,000.
596To prevent exploration from falling into an endless loop, an episode
597is terminated when the time steps exceed 1,000. If the agent
598reaches the termination state, we terminate the current episode
599in advance and start a new exploration episode.
600In our method, the memory network is composed of LSTM Cells,
601which output hidden states and cell states. Three dense layers of
602size 256 are used to encode the hidden states to generate an
603ensemble Gaussian distribution and scaled rewards. The policy
604network, the critic network, and all other functions are imple-
605mented by three fully connected layers with hidden size of 256.
606In particular, the critic network adopts a double-Q network with
607the same structure. We use ELU activation to avoid the vanishing
608gradient problem in long-horizon prediction and planning.
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609 A total of 4,000 time steps of random data are collected to ini-
610 tialize the parameters of the dynamics model. We sample batches
611 of 128 containing sequences of length 200 to train the dynamics
612 model, critic model, and actor model with learning rate 2� 10�4.
613 The discount factor c is set as 0.99. The entire training process is
614 the alternate update of the critic model and the policy. The critic
615 model is trained with a maximum step of 1000 per epoch in the
616 model to achieve convergence, and then the actor model is
617 updated.

618 5.2. Comparative experiments

619 We compare our method with the SOTA MBRL and MFRL meth-
620 ods in terms of sampling efficiency, time efficiency, and progres-
621 sive performance.
622 Performance in Box2D. We evaluate MBDPG and the baselines
623 on the continuous control tasks in Box2D. Fig. 4 shows the learning
624 curves for all methods over 200 k time steps. The results show that
625 our method converges faster than baseline methods at the begin-
626 ning of training. In addition, the results demonstrate that our
627 method requires fewer samples than model-free methods. The
628 learned dynamics model can simulate trajectories with a long hori-
629 zon, so the sampling efficiency of our algorithm is higher than that
630 of MBRL with one-step prediction. Moreover, our MBDPG method
631 can converge in fewer time steps than the model-free method,
632 and finally achieve comparable performance. For example, MBDPG
633 approaches the best performance at 50 k time steps in the
634 BipedalWalker-v3 task, but TD3 is still in the process of conver-
635 gence at 200 k steps. The long horizon planning in our method
636 drives the agent to stress the future rewards to approach the global
637 optimal policy, while more exploration is needed in TD3 to obtain
638 the equivalent learning signals.
639 Performance in MuJoCo. To verify the performance of MBDPG
640 in high-dimensional tasks, we conducted comparative experiments
641 in several MuJoCo environments. The results in Fig. 5 prove the
642 good performance of MBDPG in high-dimensional tasks. Compared
643 to MFRL, the learned dynamics model turns the RL problem into a
644 planning problem so that the error of value estimation can be
645 reduced and the gradient information can be backpropagated along
646 the trajectory by expansion in the model. Compared to other MBRL
647 algorithms, our method shows faster convergence of the policy,
648 even several times faster on some tasks, proving the potential of
649 multi-step deterministic policy gradient for fast optimization of

650policy. PETS requires multiple Monte Carlo experiments in the
651model to optimize the policy, which leads to its lower convergence
652performance. MBPO only uses the model to generate imaginary
653samples and does not fully utilize the gradient information of the
654model. In contrast, our approach exploits the model to both
655improve the accuracy of the critic model and enrich the learning
656signal of the policy. Compared to stochastic policy methods, the
657gradient estimation of deterministic policy in MBDPG avoids inte-
658gration in action space, which ensures higher sampling efficiency
659than stochastic versions. For example, our policy performance is
660several times better than MBPO and SAC with the same number
661of training samples in the Hopper-v2 environment. Furthermore,
662MBDPG can accomplish tasks with high-dimensional actions, such
663as Ant-v2, which cannot be achieved for some model-based meth-
664ods such as PETS, showing the importance of purposeful
665exploration.
666Time efficiency. We estimate the wall-clock time required for
667various methods to complete 200 k training time steps in different
668tasks, and the results are shown in Table 1. The time efficiency of
669our method exceeds that of some model-based methods, such as
670PETS, and is slightly lower than that of MFRL because of model
671learning. The time efficiency of some MB methods, such as PETS,
672is sensitive to the state-space and action-space dimensions of the
673task. PETS is inefficient in high-dimensional tasks, such as
674HalfCheetah-v2, because it requires a large number of complete tri-
675als. MBDPG is effective on complex tasks due to the use of the
676deterministic model and deterministic policy. The length of the
677horizon has a greater impact on the time efficiency of our algo-
678rithm. When H ¼ 10, the time efficiency can be compared to SAC
679and TD3.
680Aggregation methods of the dynamics model. We evaluate
681the prediction performance of the learned dynamics model with
682different aggregation methods, and Fig. 6 shows the results. In
683the bootstrap aggregating (bagging) method, we train each Gaus-
684sian network in the ensemble separately, and use the average of
685multiple independent Gaussian networks as the prediction result,
686which reduces the prediction variance of the learned dynamics
687model. In the XGBoost method, we choose a single Gaussian net-
688work from the ensemble as a regressor and keep using other Gaus-
689sian networks in the ensemble to fit the prediction residuals of the
690previous Gaussian network. The results show that this sequential
691aggregation method reduces the bias but not the variance. In con-
692trast, the Mixture Gaussian Network in our approach demonstrates

Fig. 4. Training curves of our algorithm and baselines in Box2D environment within 200 k total training time steps and 1000 steps in a test episode. The solid line indicates
the mean of five experiments and the shaded regions indicate the standard deviation.
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693 a trade-off between bias and variance because of the adaptive
694 weights parameterized by the neural networks.

695 5.3. Design evaluation

696 We next make comparison and ablation experiments on our
697 method to investigate the factors affecting the performance of
698 the algorithm.

699 5.3.1. Hyperparameters
700 Experiments on the hyperparameters of the dynamics model
701 are implemented as follows.
702 Size of the ensemble. To investigate its ability to approximate
703 dynamics, we compare the prediction errors of multiple Mixture
704 Gaussian Networks with different numbers n of Gaussian distribu-
705 tions. The networks are trained in the same environment with

706sequence samples of length 50, and Fig. 7(a) shows their prediction
707errors within 200 steps. The results show that increasing the size of
708the ensemble can effectively improve the prediction performance
709of the dynamics model, because more Gaussian distributions cap-
710ture more stochasticity in the environment. When n > 5, the
711improvement in prediction accuracy from increasing the ensemble
712size is not significant. In contrast, more Gaussian models will bring
713more computational pressure. In our method, the number of Gaus-
714sian distributions is set to 5.
715Model training length. The dynamics model is trained with dif-
716ferent lengths L of rollouts, and the accuracy of the predictions is
717compared. Fig. 7(b) shows the error between the prediction and
718ground truth dynamics by implementing 200 steps in the model.
719We found that increasing L improves the accuracy of the predic-
720tions, as more training targets can be obtained, and the hidden
721states of LSTM can learn more historical information from longer
722trajectories. During one-step training, the prediction error for
723longer steps increases sharply. When L > 10, the error of each step
724is controlled in a small range, effectively suppressing the impact of
725accumulated error. However, an excessive L does not help much to
726improve the prediction accuracy, and it brings a computational
727burden. We set L ¼ 10 in the experiments.
728Experiments on the hyperparameters of policy optimization are
729implemented as follows.
730Horizons. One of the important parameters in MBDPG is the
731planning horizon H. Fig. 8(a) shows the performance of MBDPG
732with different imagination horizons in the BipedalWalker-v3 envi-
733ronment. Increasing H speeds up the convergence while H < 20, as
734it allows more sufficient exploration in the state space, which gives
735more informative policy gradient. Meanwhile, more precise value
736estimations can be obtained with a longer planning horizon. How-
737ever, when H > 50, the error of the learned dynamics model will
738offset or even negate the benefit of more exploration. Moreover,
739the gradient backpropagation through an excessive horizon would
740consume unnecessary computation. We find that our algorithm
741still works when H ¼ 200, benefiting from the value function,

Fig. 5. Training curves of our algorithm and baselines in MuJoCo environment within 200 k total training time steps and 1000 steps in a test episode. The solid line indicates
the mean of five experiments and the shaded regions indicate the standard deviation.

Table 1
The total wall-clock time in hours consumed for each algorithm to complete 200 k steps training and test.

Methods BipedalWalker-v3 LunarLanderContinuous-v2 HalfCheetah-v2 Hopper-v2 Ant-v2

TD3 4.5 h 4.9 h 3.9 h 3.1 h 3.7 h
SAC 5.9 h 6.1 h 4.9 h 4.2 h 4.9 h
OURS 6.5 h 6.2 h 7.6 h 6.7 h 10.4 h
PETS 14.2 h 13.8 h 20.2 h 10.2 h 25.2 h
MBPO 10.4 h 9.8 h 17.2 h 10.1 h 21.6 h

Fig. 6. Aggregation methods of the dynamics model.
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742 although the performance is worse than for shorter values. The
743 value function contains long-term returns outside the horizon.
744 The upcoming predicted rewards and the value function depend
745 on the predicted state, so an accurate model over a long horizon
746 is critical. On the other hand, increasing the horizon improves
747 the sampling efficiency, as more simulation samples can be
748 obtained from the model. In our experiments, H ¼ 20 is an appro-
749 priate value.
750 Update frequency of the target networks. The update fre-
751 quency C is a crucial factor. In our experiments, the critic networks
752 are updated in each iteration, and the target networks are only
753 updated after C iterations. The result in Fig. 8(b) shows that the
754 convergence of the policy is not robust when C ¼ 1, because updat-
755 ing the target network and the critic model simultaneously leads to
756 unstable learning objectives. When C P 5, increasing C hurts pol-
757 icy learning, as updating the target network too late makes it inac-
758 curate in the current state space. In our experiments, we set C ¼ 3
759 to obtain a stable and accurate target value.

7605.3.2. Ablation experiments
761The following will discuss a series of ablation experiments in
762the BipedalWalker-v3 environment to verify the role of each com-
763ponent in our algorithm.
764Mixture Gaussian Network. To prove its effectiveness, we com-
765pare our Mixture Gaussian Network to a deep neural network with
766three fully connected layers. The hidden size of each layer is 256.
767The results in Fig. 9(a) show that removing the Mixture Gaussian
768Network module significantly reduces the multi-step prediction
769performance of learned dynamics. The prediction errors of the
770deep neural network increase dramatically with the length of roll-
771out in the model, even after training the network for multi-step
772prediction. Fully connected layers have difficulty capturing the
773aleatoric uncertainty and the epistemic uncertainty in the system.
774In contrast, the prediction errors of the Mixture Gaussian Network
775can still be controlled in a reasonable range when H ¼ 200, which
776guarantees the robustness of planning in the learned model.
777Successful experience. We test the performance of the algo-
778rithm with and without demonstrations and show the result in

Fig. 7. Learing curves with different hyperparameters of dynamics model. The solid line indicates the mean of five experiments and the shaded regions indicate the standard
deviation.

Fig. 8. Learing curves with different hyperparameters of policy optimization. The solid line indicates the mean of five experiments and the shaded regions indicate the
standard deviation.

S. Gao, H. Shi, F. Wang et al. Neurocomputing xxx (xxxx) xxx

9

NEUCOM 24897 No. of Pages 12, Model 5G

9 February 2022

Unc
orr

ec
ted

 P
roo

f



779 Fig. 9(b). The algorithm performance is severely declined in the
780 early stage of training without the guidance of expert data, proving
781 the importance of successful experience on policy learning.
782 Terminal value. The standard MBDPG and the version without
783 the terminal value expansion are compared under the same set-
784 tings. Without using the terminal Q value, the performance of
785 the algorithm is severely degraded, and the agent ignores the tem-
786 poral backup from the future value function and only takes advan-
787 tage of the reward sequence. As a result, the agent struggles with
788 the local optima dilemma. Fig. 9(c) shows that terminal value
789 expansion indeed contributes to long-horizon planning and tasks
790 with delayed rewards.
791 Model. Ablating the model, which yields the model-free version
792 of the current algorithm, severely slows the convergence in Fig. 9
793 (d). Using the same number of environment samples, the learned
794 dynamics model increases the richness of the training samples
795 with imaginary data compared to the model-free version, even if
796 there are errors in the model. In addition, the data generated by
797 the model prevents overfitting. The time efficiency does improve
798 when using only the environment data, but the algorithm would
799 not be able to match the sample efficiency requirements.

800 6. Conclusions

801 In this work, we present the model-based deterministic policy
802 gradient, MBDPG, a model-based policy optimization method that
803 exploits the gradient information of multi-step simulation in the
804 learned dynamics to optimize a deterministic policy. Our algorithm
805 demonstrates significantly higher sampling efficiency than SOTA
806 MFRL methods. To ensure the accuracy of long-term prediction, a
807 Mixture Gaussian Network equipped with a recurrent module is
808 built to approximate the dynamics model. Second, this work incor-
809 porates guidance from successful experience. Third, we roll out
810 multi-step simulation in the learned dynamics model and back-
811 propagate the trajectory gradient in an end-to-end manner
812 through the differentiable dynamics model. A clipped value expan-
813 sion is used to learn an accurate and stable critic model. Experi-
814 mental results demonstrate that our MBDPG method achieves
815 faster convergence than SOTA MBRL methods, especially for tasks
816 with large action spaces. Future research will be directed to extend
817 the state representation to high-dimensional visual information. It
818 would be enticing to apply the algorithm to a real environment,
819 such as robotics, unmanned vehicles, video games, and multi-
820 agent games. In addition, we aim to develop our algorithm to
821 improve the performance of Mixture Gaussian Network by inte-
822 grating the latest aggregation methods, such as the attention
823 mechanism.
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