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Abstract—Previous studies have shown the great potential of
capsule networks for the spatial contextual feature extraction
from hyperspectral images (HSIs). However, the sampling loca-
tions of the convolutional kernels of capsules are fixed and cannot
be adaptively changed according to the inconsistent semantic
information of HSIs. Based on this observation, this paper
proposes an adaptive spatial pattern capsule network (ASPCNet)
architecture by developing an adaptive spatial pattern (ASP) unit,
that can rotate the sampling location of convolutional kernels on
the basis of an enlarged receptive field. Note that this unit can
learn more discriminative representations of HSIs with fewer
parameters. Specifically, two cascaded ASP-based convolution
operations (ASPConvs) are applied to input images to learn
relatively high-level semantic features, transmitting hierarchical
structures among capsules more accurately than the use of the
most fundamental features. Furthermore, the semantic features
are fed into ASP-based conv-capsule operations (ASPCaps) to
explore the shapes of objects among the capsules in an adaptive
manner, further exploring the potential of capsule networks.
Finally, the class labels of image patches centered on test samples
can be determined according to the fully connected capsule layer.
Experiments on three public datasets demonstrate that ASPCNet
can yield competitive performance with higher accuracies than
state-of-the-art methods.

Index Terms—Capsule networks, adaptive spatial pattern neu-
ral network, hyperspectral image classification

I. INTRODUCTION

HYPERSPECTRAL remote sensing technology has at-
tracted much attention in recent years since it can

include hundreds of contiguous spectral bands and capture
more accurate and discriminative features for different objects,
especially compared with panchromatic and multi-spectral im-
ages. Hyperspectral image classification (HSIC), which refers
to automatically assigning a specific label for each pixel in a
scene, has become an active topic in many research fields,
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such as defense and security [1], intelligent transportation,
intelligent healthcare [2], [3], and forest and unmanned aerial
vehicle monitoring (e.g., mangrove biomass estimation) [4],
[5].

During the last few decades, a large number of pixelwise-
based classifiers, mainly based on spectral signatures, have
been proposed for classification tasks, such as support vec-
tor machines (SVMs) [6], logistic regression [7], k-nearest-
neighbors [8], [9], and random forests [10], [11]. With the im-
provement in sensor spatial resolution, many spectral-spatial-
based classification methods play roles [12]–[18], taking the
spatial information of images into consideration and im-
proving the classification accuracies. As one of the crucial
steps in spectral-spatial classification, feature extraction-based
methods have attracted much attention. Some state-of-the-art
feature extraction methods, which are mainly based on general
machine learning techniques, have achieved good classification
performance, such as the image fusion and recursive filtering
[19] method, the extended morphological profiles (EMP) [20]
method, the edge-preserving filter (EPF) [21] method, and
the superpixel segmentation method [22], [23]. However, the
aforementioned feature extraction approaches mainly classify
an image in a shallow manner, e.g., the feature extractors
and classifiers only focus on a single layer. Comparatively,
deep learning-based techniques can allow computers to learn
different image features through a series of hierarchical layers,
and the learning process is totally automatic and efficient. Cur-
rently, deep network models are widely used in many image
processing tasks [24]–[28]. Typical deep learning networks for
HSIC can be summarized into five categories [29]: stacked
autoencoders [30], [31], deep belief networks [32], recurrent
neural networks [33], generative adversarial networks [34], and
convolutional neural networks (CNNs) [35].

Unlike other deep learning methods, CNN models possess
local receptive fields and shared weight architecture, and
have shown strong abilities in the feature extraction process.
Generally, CNNs can be grouped into two classes: (1) The first
class extracts spectral-spatial characteristics by simultaneously
using 3D filtering. As the layers go deeper, the model features
become more precise and reliable [36], [37]. Considering
that the pooling operation of CNNs may lose the spatial
information of hyperspectral images (HSIs), the dilated neural
networks were introduced for HSIC [38]–[40], and the core
idea of which is to avoid resolution reduction in the pooling
layer while enlarging the receptive field through a dilated
convolution strategy. Moreover, a multi-scale dilated residual
CNN has been proposed to improve further classification
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performance [41]. (2) The second class extracts the spectral
and spatial characteristics and subsequently fuses them. In the
literature [42], a spectral-spatial fully convolutional network is
proposed that introduces a dense conditional random field into
two parallel flows to balance the obtained spectral and spatial
features. In contrast, Li et al. used a fusion scheme with layer-
specific regularization and smooth normalization to adaptively
learn the fusion weights of local and global information
[43]. Moreover, the fusion of multilevel and multiscale-based
spatial-spectral CNNs also has potential for HSI [44], [45].

Although general CNNs are capable of image feature ex-
traction, some shortcomings still exist that strongly threaten
the performance of deep learning methods, such as problems
related to the loss of local information caused by the pooling
layer and an inability to understand spatial positional rela-
tionships among features. To overcome these issues, Sabour
et al. proposed a capsule network (CapsuleNet) [46] that can
achieve results superior to those of CNNs. Later, capsulenet
was first introduced for HSIC in [47]. However, the original
capsulenet includes only one convolution layer and one fully
connected capsule layer. To deepen the method and allow
it to solve problems due to the stacking of multicapsule
layers, many capsulenet-based expansions have been proposed
that can achieve better classification performance [48]–[52].
Motivated by the core ideas of CNNs, a modification of the
traditional capsulenet named conv-capsule has been proposed
for classification [50], [51], which uses a conv-capsule unit
to achieve a local connection and shared transform matrices.
Experimental results indicate that the conv-capsule unit pro-
vides results competitive with those of traditional capsulenet.
Moreover, Xu et al. designed multiple kernels with parallel
convolution to extract image features in a multi-scale way,
reducing the redundancy of parameters and achieving high
accuracies for HSIC [52]. These works have demonstrated the
excellent performance of capsulenet.

However, there are still some shortcomings in the existing
capsulenets. First, the semantic features fed into primarycaps
are extracted by a simple convolutional layer, which may
not be efficient in representing and transferring hierarchical
structures among capsules, compared with relatively high-level
semantic features. Second, although the 3D conv-capsulenet
uses local connections and shared weights to fully use the
spectral-spatial information, the window size is fixed and
cannot be adjusted according to the different shapes of input
images. Third, the traditional neural networks use pooling
layers to enlarge the receptive field while reducing the model
complexity. However, some detailed features might disappear
after several pooling operations. To overcome these defects, a
novel adaptive spatial pattern capsule network (ASPCNet) has
been proposed that consists of the following major steps:

First, relatively high-level features obtained by adaptive
spatial pattern convolution operations (ASPConvs) are fed
into primarycaps. Next, adaptive spatial pattern-based conv-
capsule operations (ASPCaps) are proposed during the dy-
namic routing process, adaptively adjusting the convolutional
kernel sampling locations. Finally, the class label of pixels can
be determined according to the fully connected capsule layer.
The contributions of this paper are described as follows:

GroundTruthTraining patches

The training process

Model

Hyperspectral
 Images

Classification
 Map

…

The testing process

…

Fig. 1. The architecture of the supervised learning-based classification of
hyperspectral images.

1) A novel adaptive spatial pattern (ASP) unit is constructed
by adaptively rotating the sampling location on the basis
of dilated convolutions. Instead of using the downsampling
strategy, the cascaded ASP layers can simultaneously expand
the receptive field and avoid checkerboard effects.

2) A series of ASPConvs are used for feature extraction
before the primarycaps layer. The obtained relatively high-
level semantic features can offer better services for hierarchi-
cal relationship representation among capsules regarding the
transmission efficiency and representation ability.

3) ASPCaps is developed into a dynamic routing process
that can adaptively adjust the shape of local connections
according to HSI’s complex spatial contexts to ensure that
the model has a strong generalization ability.

4) Experiments conducted on several real hyperspectral
datasets demonstrate that the proposed ASPCNet can always
obtain better results and more accurate classification maps than
state-of-the-art methods.

The remainder of this paper is organized as follows. Sec-
tion II describes the related works. Section III presents the
details of the proposed ASPCNet approach. In Section IV,
the experimental results and discussions are provided. Finally,
conclusions are given in Section V.

II. RELATED WORKS

A. CNN

CNNs, typical supervised learning methods, use image
patches centered on labeled pixels as the training patches for
a model training and then the well-trained model can be used
for HSIC; see Fig. 1. Unlike other tools that learn manually
designed features, a CNN classifier can learn different types
of natural features through a stack of layers [53]–[55] that
includes convolutional layers, pooling layers, and fully con-
nected layers. In a CNN model, there are a series of fixed
boxes named convolution kernels that share the weights of
the network to simulate 3-D convolutional operations, and
these replicated weights can significantly reduce the number
of parameters in its network. The different convolution kernels
slide over an input image and can transform this image into
another feature domain for effectively modeling these visual
features.
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(a)

(b)

Fig. 2. Illustration of the differences between different sampling locations
on the University of Pavia dataset. (a) Sampling locations based on regular
convolution and (b) Sampling locations based on deformable convolution.

Specifically, we assume that the input image patches (cen-
tered on labeled pixels) are of size N×N×C. In the convo-
lution layers, k1 different filter kernels with windows sizes of
n×n spatially slide over the image patches, obtaining a 3-D
tensor of feature maps of size M×M×k1. In addition to mul-
tiple convolutions, considering the increasing computational
burden, the CNN-based model subsequently employs pooling
layers to conduct feature downsampling operations for learning
the hierarchy of those different features. After convolutional
and pooling layers are achieved, the fully connected layers
stack the output values of all previous layers into an n-
dimensional vector. After a series of fully connected layers,
the softmax layer is used to generate the distribution of the
probability that the pixel belongs to each class.

B. DCNN

CNNs are successful models that can effectively extract the
detailed features of input images and assign a specific class
label for each particular pixel. Suppose the receptive fields of a
traditional convolution are of size N×N, and given a pixel a,
suppose the image location of a is (x,y), and its corresponding
value is p(x,y). The output form of centered pixel a can be
obtained as follows

O(x,y) = ∑
(xn,yn)∈s

ω(xn,yn) · p(x+ xn,y+ yn), (1)

where s = (x,y) | (0,0),(0,1), . . . ,(N− 1,N− 1), which enu-
merates the location of the kernel and ω represents the weight
of the kernel.

However, considering that the spatial shapes and locations
of convolutional operations N × N are fixed, which is not
suitable for representing complex image features, deformable
convolution neural networks (DCNNs) were conceived in the
computer vision field to overcome the problem [56], [57].
Later, the ideal of deformable neural networks was introduced
into HSIC [58], which can effectively extract HSI features,
especially for its complex spatial structures. As we can see

from Fig. 2, there is a contrast between the sampling locations
of regular convolution and sampling locations of deformable
convolution, in which the deformable convolution is present in
the shapes of a rhombus and a circle, showing better coverage.
Specifically, two values ∆x, and ∆y are introduced into the
offset field. In this way, the output form of centered a can be
changed as follows:

O(x,y) = ∑
(xn,yn∈s)

ω(xn,yn) · p(x+ xn +∆x,y+ yn +∆y). (2)

However, ∆x and ∆y are fractional locations, and they cannot
directly obtain the real locations. Thus, to avoid checkerboard
artifacts, bilinear interpolation is used to obtain these values.
The value of p(∆x,∆y) is calculated according to the values
of the four surrounding integer locations. The weights of the
convolutional filters for generating offset fields are trained
based on spatial features to enable the sampling locations to
be transferred to similar neighboring pixels.

C. CapsuleNet

In capsulenets, specific types of functional neurons are
grouped together to form capsules, and individual neurons
represent one of various attributes of a specific entity in an
image. A capsulenet can discriminate the consistency of the
contextual information of the capsules and therefore has a
better ability to model the spatial positions of visual features
of images than a CNN. Due to their advantages, capsulenets
have been widely used in many image processing tasks, such
as face recognition, optical character recognition, and scene
classification [59], [60].

In a capsulenet, the steps for transformation from the output
active vector ui of the shallow feature layer to the output active
vector v j of the high feature layer are as follows:

First, the ui of the previous capsule is multiplied by a
weighted matrix Wi j, and then the prediction vector u j|i can
be obtained by

u j|i =Wi jui, (3)

where ui represents the ith feature in the shallow layer, and u j|i
is its jth prediction feature in the high feature layer. Then, s j
in capsule j is obtained as a weighted sum of all the prediction
vectors u j|i from the shallow layer.

s j = ∑
i

ci ju j|i, (4)

where ci j denotes the coupling coefficient, which is determined
by a routing softmax processing of dynamic routing [46], and
s j is the input vector of capsule j. Finally, capsule j uses the
length of s j to determine the probability of the existence of the
entity; therefore, a nonlinear function called squash function
is used to squash vector s j as follows

v j =

∥∥s j
∥∥2

1+
∥∥s j

∥∥2
s j∥∥s j
∥∥ , (5)

where v j represents the output of capsule j, which can be
considered a vector representation of the input. Through the
capsulenet, a more robust extracted feature representation of
the input image patch can be obtained. Later, the probability
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Fig. 3. The framework of the proposed ASPCNet for HSIC.

of the entity can be determined by calculating the length of
the activity vector.

III. THE PROPOSED APPROACH

Assume an input HSI X with the size of H×W ×D, and
X∈RH×W×D. Each training pixel Xk ∈R1×1×D, k = 1,2, ...,K,
where D and K represent the dimension of HSI and the number
of training samples, respectively. Suppose that T represents
the total class in HSI. For each pixel Xk, the truth label of
Xk can be represented as tk, which is actually a vector of
length t with value “1” at the position of the correct label and
“0” elsewhere. Different from the natural image classification,
which inputs whole images, the HSI classification based on
CNN uses image patches centered on labeled pixels as the
input samples. Here, we conduct a standard preprocessing
step, i.e., the principal component analysis (PCA) algorithm,
for HSI dimension reduction. Therefore, HSI’s band channels
shrink from D to d. Let Xk ∈R1×1×d be the center pixel of di-
mension reduction images, the image patch can be represented
as Yk ∈ Rm×m×d of the window size m×m, and {Yk, tk}K

k=1
represents the input samples. Since the ASP units are the core
components of the proposed ASPCNet, in Section III-A, we
first give a detailed description of the ASP unit and ASP-
based convolution operation (ASPConvs) in the task of HSIC.
Then, we develop the ASP unit into the process of the original
capsulenet (ASPCaps) in Section III-B. Finally, the overall
architecture of the proposed ASPCNet is given in Section III-C
and Fig. II-B.

A. ASPConvs

Given an image patch (centered on labeled pixel) Yk ∈
Rm×m×d with a window size of m× m, the sampling lo-
cations of the input image can be represented as s1 =
{(0,0),(0,1), ...,(m− 1,m− 1)}. The traditional convolution
operation consists of two steps: 1) sampling using a series
of regular grids ℜ of size p× q slide over the input image
patch and 2) the summation of sampled values weighted by
W for different convolution kernels. A larger size of regular
grids ℜ can be replaced by multiple smaller sizes of ℜ with
the same receptive field. As the convolution network model
goes deeper, the pooling layers are supposed to shrink the

conv offset field

ASP
Conv

conv offset field

ASP
Conv

offsets

Fig. 4. Illustration of the process of the ASPConv module. The pixel marked
by the orange box is the central pixel. After ASPConv is applied to the
input images, the sampling locations of regular convolutional filters can be
transferred to the pixels in the purple boxes.

model’s parameters. Unfortunately, the principle behind the
pooling operation is to preserve distinctive and representative
features of each pooling area. This means that some details
tend to disappear after several pooling operations, which is
extremely unfavorable for classification accuracy. In addition,
the sampling locations of the general convolution layer are
fixed; this configuration cannot effectively extract the spatial
information according to the different structures of input
image patches. Therefore, to overcome these issues, the ASP
unit is proposed in this paper, which simultaneously expands
the receptive field and rotates the sampling location, i.e.,
integrating dilated and deformation operations into one unit
(see Fig. 4). The details are shown as follows:

First, we can introduce the dilated convolution to implement
the larger receptive field with fewer parameters. For instance,
two 3×3 filters along with a 2-dilation rate can be equally
replaced by one 9×9 filter with a 1-dilation rate, which
can prevent the loss of the spatial relative relationship of
pixels caused by the downsampling operation. Grid ℜ′ defines
the locations of the modified dilated convolution kernels,
which are described below. Suppose the dilation rate hdr=3,
ℜ′ = {(x,y)|(−3,−3),(−3,−1), ...(1,3),(3,3)}. Here, hdr can
be changed freely in this model according to the different
shapes of images; its effect is analyzed in Section IV-D3. For
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(a) (b) (c) (d)

Fig. 5. Two image patches with the same region of interest. (a) and (b) Pseudo
color images and (c) and (d) Visualization features of contributing scores.
Different colors indicate the proportion of contribution in the feature learning
process, where blue indicates higher contribution scores and red indicates
lower contribution scores.

any dilation rate hdr, its size can be calculated as

pdr = p+(p−1)(hdr−1), (6)

qdr = q+(q−1)(hdr−1), (7)

where pdr and qdr refer to the height and width of a kernel of
dilated convolution, respectively. There are only no more than
p×q nonzero values in a pdr×qdr area.

However, without a brilliantly designed dilated convolution
structure [61], multiple cascaded dilated convolutional layers
result in a griding effect while hurting the continuity of the
kernel due to the checkerboard processing method. Based
on this observation, a deformable convolution operation is
combined with dilated convolution to adaptively adjust the
sampling location of the grid kernel. Therefore, the new unit
called the ASP unit is promoted, which can directly choose
the grid location in an adaptive way to search for the most
relevant pixels in a local area and achieve a larger receptive
field, fewer parameters, and more spatial information.

Specifically, given one location (x,y) of the grid ℜ′ and its
value ℜ′(x,y) which corresponds to two values ∆x, ∆y in the
offset field. In this way, the adaptive spatial unit is generated
to fuse the information of similar neighboring pixels, which
can be obtained by

ℜ
′
new (x,y) = Yk(ℜ′(x,y)+(∆x,∆y)) = ℜ

′ (x′,y′
)
, (8)

where x′ and y′ refer to fractional locations and can be
represented as x′ = min(max(0,x + ∆x), p − 1), and y′ =
min(max(0,y+∆y),q−1). The value of ℜ′(x′,y′) is calculated
according to the values of the surrounding integer locations via
bilinear interpolation.

Finally, the adaptive spatial feature u(x,y) of location (x,y)
can be extracted as follows

u(x,y) =
Len(ℜ′)

∑
i=1

wi ·ℜ′new (xi,yi) ·∆mi, (9)

where wi represents the corresponding weight of the kernel.
∆mi refers to the weight of the ith sampling pixel, and if
the sample pixel does not meet the sampling rules, ∆mitends
toward zero [57]. Len(·) represents the length of the vector ℜ′.
We provide a visual explanation of the proposed ASPConv
module via gradient guided back-propagation in Fig. III-A.
Focusing on the framed area, we can draw the conclusion
that the proposed method can always adjust the shapes of
the region of interest in adaptive rules according to the real
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Fig. 6. Illustration of the process of the ASPCaps module, which vividly
describes the transfer process from previous features u to posterior features
v.

objects. We also package the ASP unit into a simple and
easy-to-use network layer that can replace the traditional
convolutional layer and can be placed anywhere.

B. ASPCaps

To create a deep and robust capsulenet with fewer pa-
rameters, there are some considerations: 1) Some robust
capsule layers should be staked. 2) Location connections
and shared routing matrices should be added to a dynamic
routing algorithm. 3) More adaptive spatial information should
be learned through the location connection. Based on these
considerations, we develop a novel deep capsulenet named
ASPCNet with a special ASP unit. Specifically, an ASP-
based conv-capsule named ASPCaps is introduced during the
dynamic routing process to replace the general conventional
convolution layer. The detailed description is shown below.

After the ASPConvs module operation, the relatively high-
level features u can be obtained as the input features to transfer
into the primarycaps layer. The ASPCaps operation has the
ability to explore the relationship among capsules. Fig. 6
shows an illustration of the ASPCaps operation. Here, we
divide the previous layer feature u into multiple capsules,
where u = {ui, i = 1, . . . , I}. Supporting the posterior layer
feature v with j capsules, the detailed transmission process
is described in the following. For each capsule during the
dynamic routing process, all the capsules in their receptive
fields make a prediction through the transform matrix. Here,
given a pixel at location (x,y), u(x+p)(y+q)

i represents the output
of the capsule, which is the i-th capsule in the last capsule
layer at position (x+ p,y+q), and Wpq

i j represents the shared
transform matrix between the ith capsule of layer u and the
jth capsule of layer v, which possesses adaptive rotation rules
based on ASPConv. I is the number of capsules in the last
capsule layer.

u(x+p)(y+q)
j|i = Wpq

i j u(x+p)(y+q)
i , (10)

where u(x+p)(y+q)
j|i denotes the jth prediction feature in the high

feature layer. As all the “prediction vectors” u j|i are obtained,
the weighted sum of all capsules of (x+ p)(y+q) can serve
as the input of the capsule.
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Fig. 7. Network architecture of the proposed ASPCNet model.

sxy
j = ∑

i
∑
p

∑
q

cpq
i j u(x+p)(y+q)

j|i , (11)

where sxy
j is the input vector of capsule j and cpq

i j denotes
the coupling coefficients, which are obtained by the softmax
function and updated by the dynamic routing algorithm as
follows

cpq
i j =

exp
(

bpq
i j

)
∑

J
j=1 bpq

i j
, (12)

where J is the total number of capsules of posterior layer
v. bpq

i j is initialized to 0 before the training begins and is
determined by the dynamic routing algorithm. In the dynamic
routing algorithm, the coefficient bpq

i j is iteratively refined
by measuring the agreement between the “prediction vector”
u(x+p)(y+q)

j|i and vx
j. If agreement is reached to a great extent,

capsule u(x+p)(y+q)
j|i make a good prediction for capsule vxy

j .
Then, the coefficient bpq

i j is significantly increased. In our
network, the agreement is quantified as the inner product
between two vectors u(x+p)(y+q)

j|i and vxy
j . This agreement is

added to bpq
i j as follows

bpq
i j ← bpq

i j +u(x+p)(y+q)
j|i vxy

j . (13)

Finally, the input vector is squashed by a nonlinear function
(i.e., the squash function) to generate the output of the capsule.
The detailed equations are listed below

vxy
j = Squash

(
sxy

j

)
. (14)

C. Architecture of the ASPCNet

In the following, we describe the whole framework of HSIC
based on ASPCNet, which is shown in Fig. II-B. The whole
architecture can be divided into several steps: 1) Dimension
reduction by using PCA. 2) Primary feature extraction by using
ASPConvs modules. 3) Hierarchical structure extraction by
using ASPCaps modules. 4) Image patch-based classification.
Here, the proposed ASPCNet consists of four blocks: ASP-
Conv 1, ASPConv 2, ASPCaps 1, and ASPCaps 2, which are
shown in Fig. 7. For details on the configuration of these hyper
parameters, we refer the reader to the APPENDIX section.

After learning the deep ASPCNet features v, we use a fully
connected capsule layer to obtain digital capsule v′, which is
of size T×16. Then, the Euclidean norm (i.e., ‖`2‖) is used to
obtain the probability vector v′′ for each test patch with size
T × 1, where each value is mapped to [0, 1]. Once the deep
network is well-trained, for a test patch Ytest ∈ Rm×m×d , the
class label of its center pixel can be determined based on the
maximum probability

Class
(
Ytest)= argmax

t=1,2,...,T
v′′t . (15)

Here, we use the margin loss [46] as the loss function in
this paper, since it can increase the probability of true classes
compared with that of the traditional cross-entropy loss. For
each capsule j in the last capsule layer, its loss function L j
can be calculated as follows

L j =Tj ·max
(
0,n+−

∥∥v j
∥∥)2

+λ (1−Tj) ·max
(
0,
∥∥v j

∥∥−n−
)2
,

(16)

where Tj = 1 when class j is actually present and equals to 0
otherwise. We set n+ = 0.9 and n− = 0.1 as the lower bound
and the upper bound for the correct class and the wrong class
[46] , respectively. λ is a hyper-parameter that controls the
effect of gradient backpropagation in the initial phase during
training. The total loss of the model is the sum of the loss of
all the output capsules of the last layer.

IV. EXPERIMENTS RESULTS AND ANALYSIS

In this section, three experiments are performed on the
Salinas, University of Pavia, and Houston datasets. The details
of these three datasets are described as follows:

A. Datasets

1) Salinas: The first dataset is the Salinas image dataset,
which was acquired by AVIRIS over the Salinas Valley
in southern California. The images have 224 bands and
512×217 pixels with a spatial resolution of 3.7 m. Ac-
cording to the reference classification map shown in Fig. 8,
there are 16 different classes labeled with different colors.

2) University of Pavia: The second dataset is called the
University of Pavia dataset and was photographed by a
Reflective Optics System Imaging Spectrometer (ROSIS-
3) in the range of 0.46-0.86 µm over the University of
Pavia. The scenes contain 115 bands and 610×340 pixels
with a spatial resolution of 1.3 m per pixel. After 12 fairly
noisy bands are removed, the experiments are performed
using only 103 bands. Fig. 9(a-c) shows a false color
composite of the University of Pavia image, the reference
classification map, and the color labels, and there are 9
different classes.

3) Houston: The last image set, namely the Houston images,
was captured by an ITRES-CASI 1500 sensor, and shows
the University of Houston campus and its neighboring field.
The images contain 349×1905 pixels at a spatial resolution
of 2.5 m per pixel and 144 bands in the range of 0.38-1.05
µm. Fig. 10 shows the false-color composite of the Indian
Pines image and the corresponding reference data with 15
different classes.
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Fig. 8. The Salinas dataset. (a) Three-band color composite of the Salinas
image. (b) and (c) the corresponding reference data.
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Fig. 9. The University of Pavia dataset. (a) Three-band color composite of
the University of Pavia image. (b) and (c) the corresponding reference data.

B. Compared Methods

In this subsection, we compare the proposed method to
other methods, i.e., a SVM [6], extreme learning machine
(ELM) [62], EPF [21], deep convolution neural network
(DeepCNN), CapsuleNet [47], deformable convolution neural
network (DHCNet) [58], and spectral-spatial fully convolu-
tional network (SSFCN) [42]. The implementation details of
each method included in the experiments are summarized as
follows.

1) SVM: Classification is performed with the original spec-
tral features via an SVM classifier with an RBF kernel [6].
This algorithm is implemented using the LIBSVM library
[6] and the parameters of the RBF-SVM are chosen using
five-fold cross-validation.

2) ELM: Original spectral classification is performed with
ELM [62]. This is a simple machine learning algorithm
with only one hidden layer and one output layer and the
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Fig. 10. The Houston dataset. (a) Three-band color composite of the Houston
image. (b) and (c) the corresponding reference data.

TABLE I
THE STRUCTURE OF THE DEEPCNN METHOD. d REPRESENTS THE IMAGE

DIMENSION, AND T IS THE TOTAL CLASS OF HSIS. THE STRIDE OF
CONVOLUTION LAYER AND MAXPOOLING LAYER ARE SET TO 1 AND 2,

RESPECTIVELY.

Layer Name Input Shape Kernel Size Output Shape
Input Layer (27, 27, d) - (27, 27, d)
Conv Layer (27, 27, d) (3×3×d, 32) (27, 27, 32)
Conv Layer (27, 27, 32) (3×3×32, 32) (27, 27, 32)
Conv Layer (27, 27, 32) (3×3×32, 64) (27, 27, 64)
Conv Layer (27, 27, 64) (3×3×64, 64) (27, 27, 64)
Maxpooling (27, 27, 64) (2×2) (14, 14, 64)
Conv Layer (14, 14, 64) (3×3×64, 128) (14, 14, 128)
Conv Layer (14, 14, 128) (3×3×128, 128) (14, 14, 128)
Conv Layer (14, 14, 128) (3×3×128, 256) (14, 14, 256)
Conv Layer (14, 14, 256) (3×3×256, 256) (14, 14, 256)
Maxpooling (14, 14, 256) (2×2) (7, 7, 256)
FC Layers (12544) - (1280)
FC Layers (1280) - (128)
FC Layers (128) - (T )

default parameters of the ELM in [62] are adopted.
3) EPF: This is a spectral-spatial classification method with

the first 20 principal components determined via guided
filter-based EPF. We use the default parameters of a
filtering size r and blur degree ε to 3 and 0.2, respectively
[21], in the implementations.

4) DeepCNN: Spatial classification is performed via a 3D-
CNN method with the first 20 principal components. The
architecture is shown in Table I. For each pixel, a patch
size of 27×27 is extracted as the input of the network.
This algorithm is trained using the Adam optimizer with
a learning rate of 5e-4.

5) CapsuleNet: The original capsule network-based HSIC
method with the original spectral information [47]. The
architecture adopts the Adam optimizer with a learning
rate equal to 0.001, 100 training epochs, and a patch size
of 15×15.
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TABLE II
THE STRUCTURE OF THE PROPOSED ASPCNET METHOD. d REPRESENTS
IMAGE DIMENSION, AND T IS THE TOTAL CLASS OF HSI. THE STRIDE OF

CONVOLUTION LAYERS ARE DESCRIBED IN APPENDICES A.

Layer Name Input Shape Kernel Size Output Shape
Input Layer (27, 27, d) - (27, 27, d)
ASP Layer 1 (27, 27, d) (3×3×d, 128) (27, 27, 128)
Conv Layer (27, 27, 128) (1×1×128, 128) (14, 14, 128)
ASP Layer 2 (14, 14, 128) (3×3×128, 256) (14, 14, 256)
Conv Layer (14, 14, 256) (1×1×256, 256) (7, 7, 256)
BN Layer (7, 7, 256) - (7, 7, 256)
ConvertToCaps (7, 7, 256) - (7, 7, 256, 1)
ASPCaps Layer 1 (7, 7, 256, 1) (3×3×256, 32, 4) (7, 7, 32, 4)
ASPCaps Layer 2 (7, 7, 32, 4) (3×3×128, 32, 4) (7, 7, 32, 4)
FlattenCaps (7, 7, 32, 4) - (1568, 4)
DigitalCaps (1568, 4) (T , 1568, 16, 4) (T , 16)
CapsToScalars (T , 16) - (T , 1)

TABLE III
NUMBERS OF TRAINING AND TESTING SAMPLES IN SALINAS DATASET.

Class Name Total Training Testing
Brocoli green weeds 1 2009 40 1969
Brocoli green weeds 2 3726 76 3650

Fallow 1976 38 1938
Fallow rough plow 1394 26 1368

Fallow smooth 2678 52 2626
Stubble 3959 79 3880
Celery 3579 70 3509

Grapes untrained 11271 225 11046
Soil vinyard develop 6203 124 6079
Corn senesced weeds 3278 21 3257
Lettuce romaine 4wk 1068 21 1047
Lettuce romaine 5wk 1927 38 1889
Lettuce romaine 6wk 916 18 898
Lettuce romaine 7wk 1070 20 1050

Vinyard untrained 7268 140 7128
Vinyard treils 1807 36 1771

Total 54129 1024 53105

6) DHCNet: This is a deformable convolution neural network
for HSIC with the first 3 principal components. According
to the implementations [58], the patch size, the momentum
of the batch normalization layer, and the training epoch
are set to 29×29, 0.9, and 1500, respectively.

7) SSFCN: This is a spectral-spatial FCN with conditional
random fields. The detailed architecture and default pa-
rameters of the network follow the implementations in
[42]. The network is trained with a learning rate of 5e-4
using the Adam optimizer.

8) ASPCNet: This is the proposed spectral-spatial ASPC
neural network. The detailed architecture of the network
is shown in Table II. We set the batch size and training
epoch to 96 and 200, respectively. The momentum of the
batch normalization layer is set to 0.9. The network is
trained using the Adam optimizer with a learning rate of
5e-4, beta 1 of 0.9, beta 2 of 0.999, and epsilon of 1e-8.

All of the methods are carried out on a desktop computer
with a Windows 10 OS, an Intel i9-10900F 2.8-GHz processor
with 64 GB of RAM, and a single NVIDIA GTX2080Ti GPU.
DeepCNN, CapsuleNet, DHCNet, SSFCN, and ASPCNet are
constructed by using the Keras framework, CUDA 10, and
Python 3.6.5 as the programming language. The SVM, ELM,
and EPF methods are carried out in MATLAB R2020a without
GPU acceleration.

TABLE IV
NUMBERS OF TRAINING AND TESTING SAMPLES IN UNIVERSITY OF

PAVIA DATASET.

Class Name Total Training Testing
Asphalt 6631 200 6431

Meadows 18649 200 18449
Gravel 2099 200 1899
Trees 3064 200 2864

Metal sheets 1345 200 1145
Bare soil 5029 200 4829
Bitumen 1330 200 1130

Self-Blocking Bricks 3682 200 3482
Shadows 947 200 747

Total 42776 1800 40976

TABLE V
NUMBERS OF TRAINING AND TESTING SAMPLES IN HOUSTON DATASET.

Class Name Total Training Testing
Grass-healthy 1251 160 1091
Grass-stressed 1254 160 1094
Grass-synthetic 697 80 617

Tree 1244 160 1084
Soil 1242 160 1082

Water 325 80 245
Residential 1268 160 1108
Commercial 1244 160 1084

Road 1252 160 1092
Highway 1227 160 1067
Railway 1235 160 1075

Parking Lot-1 1233 160 1073
Parking Lot-2 469 80 389
Tennis Court 428 80 348

Running Track 660 80 580
Total 15029 2000 13029

C. Quantitative Metrics

To effectively evaluate the classification performance of
different methods, three objective indexes, i.e., the overall
accuracy (OA), average accuracy (AA), and Kappa coefficient
(Kappa) are adopted in the experiments. Specifically, the
OA value represents the percentage of all test pixels that
are correctly classified. the AA value measures the mean
of all class accuracies. Taking the uncertainty factors of the
classification into consideration, the Kappa value is proposed,
which represents the percentage of correctly classified pixels
corrected by the degree of agreement.

D. Analysis of the influences of different parameters

In this subsection, a detailed analysis of the influence of
three parameters (i.e., the number of dimensions d, patch
size m×m and dilation rate hdr) on the image classification
performance is conducted on three real datasets.

1) Analysis of the influence of the number of dimensions:
first, we analyze the influence of the number of dimensions
(the principal components) of HSI under different settings.
Fig. 11 shows the influence of parameter d on three different
datasets, i.e., the Salinas, University of Pavia, and Houston
datasets. As seen in Fig. 11(a), for the Salinas dataset, the
classification performance of the ASPCNet method increases
first and then decreases slightly when d > 15 as parameter
d increases because the first several components include
most of the spatial information. With an increasing number
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Fig. 11. The effects of the number of dimension d based on the proposed method for three real datasets: (a) Salinas, (b) University of Pavia, (c) Houston.
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Fig. 12. The effects of the patch size m×m based on the proposed method for three real datasets: (a) Salinas, (b) University of Pavia, (c) Houston.
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Fig. 13. The effects of the dilation rate hdr based on the proposed method for three real datasets: (a) Salinas, (b) University of Pavia, (c) Houston.

of components, there is much extra even noisy information
among the HSI bands, and this situation is even worse for
a complex dataset such as the University of Pavia (see Fig.
11(b)). In addition, a similar phenomenon can be seen on the
Houston datasets in Fig. 11(c). Therefore, d = 15 is set as the
default parameter among all datasets.

2) Analysis of the influence of the patch size: second,
we discuss the influence of the patch size m of OA under
different settings. Experiments are conducted on the three
datasets. For instance, Fig. 12(a) denotes different patch sizes
on the Salinas dataset, showing the OA values versus different
settings of patch size m varying from 19×19 to 35×35 with
an interval of 2. As seen, as the parameter m increases, the OA
increases first and declines later. Experimental results indicate
that it can extract more local spatial features at first. As m
increases (e.g., 35×35), it may introduce extra information as
interference. The same conclusion is reached for the other two
datasets. Therefore, in consideration of the trade-off between

classification performance and the number of parameters, a
patch size of 27×27 is adopted as the default parameter.

3) Analysis of the influence of the dilation rate: the third
experiment is conducted on the three datasets to evaluate
the classification performance under different dilation rate
settings. In general, a CNN uses a pooling operation to
increase the receptive field. Unfortunately, some materials may
”disappear” after several pooling layers. Dilated convolutions
can avoid this problem in an elegant way, in which the dilation
rate hdr exerts control. Here, Fig. 13 shows the influence of
the dilation rate hdr on the three different datasets. As we
can see from Fig. 13(a), as the dilation rate hdr increases, OA
increases first when hdr < 4 and then decreases when hdr > 4
on the Salinas dataset. For the University of Pavia and Houston
datasets, shown in Fig. 13(b) and (c), the proposed ASPCNet
can obtain the highest accuracies when hdr equals 3. Therefore,
for the Salinas, University of Pavia and Houston datasets, the
default parameters are set as hdr = 4, hdr = 3, and hdr = 3,
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Fig. 14. The effects of the training epoch based on the proposed method for three real datasets. (a) Salinas, (b) University of Pavia, (c) Houston.

TABLE VI
CLASSIFICATION ACCURACIES (%) ON SALINAS DATASET AMONG DIFFERENT METHODS. NUMBER IN PARENTHESIS INDICATES THE STANDARD

VARIANCE OF THE REPEATED EXPERIMENTS. THE BEST AND SECOND RESULTS ARE SHOWN IN RED AND BLUE COLORS, RESPECTIVELY.

Classes SVM ELM EPF DeepCNN CapsuleNet DHCNet SSFCN ASPCNet

CA

1 99.94(0.08) 99.95(0.10) 100.00(0.0) 99.08(0.95) 99.90(1.35) 95.99(2.89) 99.81(0.39) 99.96(0.06)
2 99.07(0.41) 99.24(0.34) 99.94(0.12) 99.69(0.61) 99.95(0.46) 98.76(0.89) 100.00(0.0) 99.99(0.01)
3 93.54(1.02) 97.16(0.33) 95.99(0.77) 99.87(0.12) 99.48(0.27) 99.55(0.41) 100.00(0.0) 100.00(0.0)
4 97.36(1.19) 99.13(0.53) 98.17(0.38) 95.54(4.69) 98.10(0.60) 98.51(1.59) 99.53(0.51) 98.51(1.11)
5 98.29(0.71) 98.58(0.48) 99.91(0.06) 98.83(1.34) 99.89(1.04) 99.86(0.17) 99.22(0.55) 99.08(0.93)
6 99.91(0.13) 99.98(0.01) 99.98(0.02) 99.12(1.14) 99.82(0.27) 99.59(0.75) 100.00(0.0) 99.98(0.18)
7 99.16(0.75) 99.73(0.13) 99.91(0.12) 99.77(0.36) 99.00(0.64) 99.56(0.52) 99.86(0.07) 100.00(0.0)
8 76.53(1.39) 79.72(0.77) 80.67(2.04) 99.27(0.55) 99.77(1.07) 98.86(0.93) 98.23(0.82) 99.89(0.19)
9 99.02(0.23) 98.70(0.24) 99.33(0.03) 100.00(0.0) 99.11(0.33) 99.94(0.11) 100.00(0.0) 100.00(0.0)

10 94.42(1.56) 98.56(0.52) 98.20(1.03) 83.32(10.8) 87.50(2.30) 97.45(3.63) 97.65(1.66) 99.06(0.34)
11 90.66(3.72) 93.96(1.35) 96.73(1.45) 94.96(3.25) 98.57(3.48) 99.58(0.36) 99.92(0.15) 99.68(0.32)
12 95.30(0.78) 94.94(0.75) 99.09(0.33) 97.49(2.68) 99.41(0.65) 99.93(0.09) 99.98(0.03) 99.96(0.18)
13 95.91(1.27) 94.33(3.13) 98.73(1.37) 97.57(2.84) 97.66(1.08) 99.60(0.55) 99.91(0.08) 97.43(2.97)
14 95.33(0.80) 96.94(1.63) 98.63(0.88) 97.77(1.03) 98.38(1.66) 99.73(0.30) 99.20(0.53) 99.43(0.82)
15 74.65(2.73) 79.07(1.30) 89.73(2.26) 99.78(0.21) 97.95(0.97) 99.56(0.30) 98.38(0.47) 99.10(1.08)
16 98.31(0.38) 99.61(0.18) 99.98(0.04) 99.77(0.32) 97.63(1.35) 98.05(1.31) 99.63(0.20) 100.00(0.0)

OA 90.04(0.67) 91.96(0.15) 93.71(0.69) 98.20(0.57) 98.48(0.47) 99.10(0.17) 99.17(0.14) 99.68(0.16)
AA 94.21(0.51) 95.60(0.19) 97.25(0.27) 97.61(0.58) 98.30(0.36) 99.03(0.22) 99.36(0.09) 99.50(0.21)

Kappa 88.89(0.75) 91.02(0.17) 92.98(0.77) 98.00(0.63) 98.31(0.52) 99.00(0.19) 99.08(0.15) 99.53(0.18)

respectively.
Finally, we analyze the impact of the training epoch on the

accuracies and losses of training and testing. From Fig. 14, it
can be found that the proposed ASPCNet method can quickly
converge with little oscillation. For example, it can always
reach the maximum training accuracies when the epoch ∈ [25,
30]. Therefore, if we want to improve the training efficiency
in practical engineering applications, we can use the “early-
stopping” operation; that is, when the training accuracies reach
the local maximum and there are no better training accuracies
in the subsequent training epochs, the training processing is
automatically stopped.

E. Classification Results

In this section, the proposed method named ASPCNet is
compared with different well-known classification methods,
including traditional machine learning-based methods such
as SVM [6], ELM [62], and EPF [21] and state-of-the-
art (SOTA) deep learning-based methods such as DeepCNN,
CapsuleNet [47], DHCNet [58], and SSFCN [42], on the
Salinas, University of Pavia and Houston datasets. To evaluate
the aforementioned three quantitative metrics, i.e., OA, AA
and the Kappa, each experiment is repeated approximately 20
times for each classification method.

The first experiment is conducted on the Salinas dataset.
Here, 2% of the labeled image patches are randomly chosen as
the training patches to train the parameters of the network and
the rest of the patches are viewed as test patches, as seen in Ta-
ble III. The classification performance and the corresponding
classification maps obtained by the nine methods are exhibited
in Table VI and Fig. 15. The numbers in parentheses indicate
the standard variances, and the best and second best results are
highlighted in red and blue, respectively. The SVM classifier
obtains the worst classification accuracy on the Salinas dataset,
which indicates that only using spectral information is not
enough for complex HSIs. By taking the spatial information
of HSI into consideration, traditional machine learning-based
methods such as EPF can achieve better results with 93.71%.
Furthermore, image patch-based classifiers such as DeepCNN
and CapsuleNet, which both obtain greater than 98% classi-
fication accuracies, indicate that image patch-based classifiers
truly play an important role in HSIC. As seen from Fig. 15(e)-
(f), there are some misclassified samples in the CapsuleNet
and DHCNet results, especially for the grapes untrained class,
the Brocoli green weeds 2 class, and the Vinyard untrained
class, which demonstrates that there is still improvement space.
Moreover, the SSFCN is a more efficient method that can avoid
patch extraction and was a new SOTA in 2020. By contrast,
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Fig. 15. Classification maps obtained by nine methods on the Salinas dataset: (a) SVM (90.04%), (b) ELM (91.96%), (c) EPF (93.71%), (d) DeepCNN
(98.20%), (e) CapsuleNet (98.48%), (f) DHCNet (99.10%), (g) SSFCN (99.17%), and (h) ASPCNet (99.68%).

TABLE VII
CLASSIFICATION ACCURACIES (%) ON UNIVERSITY OF PAVIA DATASET AMONG DIFFERENT METHODS. NUMBER IN PARENTHESIS INDICATES THE

STANDARD VARIANCE OF THE REPEATED EXPERIMENTS. THE BEST AND SECOND RESULTS ARE SHOWN IN RED AND BLUE COLORS, RESPECTIVELY.

Classes SVM ELM EPF DeepCNN CapsuleNet DHCNet SSFCN ASPCNet

CA

1 97.15(0.22) 97.46(0.44) 98.46(0.32) 97.16(2.00) 97.20(1.21) 98.66(0.73) 98.54(0.99) 99.97(0.04)
2 97.67(0.29) 96.96(0.28) 99.52(0.15) 98.87(0.47) 98.91(0.77) 99.09(0.25) 99.75(0.32) 99.75(0.26)
3 77.89(1.35) 69.34(1.55) 96.16(2.07) 99.25(1.31) 98.05(0.83) 99.49(0.69) 98.85(1.28) 99.84(0.18)
4 87.88(3.28) 91.14(0.54) 98.79(1.46) 92.86(3.75) 98.87(0.43) 99.28(0.29) 97.81(0.70) 98.14(0.63)
5 97.61(0.97) 99.41(0.19) 99.53(0.60) 99.55(0.49) 99.74(0.20) 99.88(0.17) 99.23(0.20) 100.00(0.0)
6 79.82(3.44) 77.44(1.31) 95.59(2.04) 99.79(0.40) 99.66(0.26) 99.97(0.03) 99.69(0.04) 100.00(0.0)
7 66.69(3.64) 63.11(2.04) 92.97(8.57) 99.98(0.04) 98.55(0.57) 99.98(0.04) 99.77(0.08) 100.00(0.0)
8 86.76(0.87) 81.31(1.17) 93.60(0.64) 97.85(0.82) 98.64(0.40) 99.59(0.24) 98.03(0.72) 99.73(0.28)
9 99.84(0.10) 99.97(0.05) 98.95(0.95) 98.15(0.91) 100.00(0.0) 98.90(0.49) 99.23(0.72) 98.76(0.52)

OA 88.24(0.72) 89.70(0.37) 97.91(0.39) 98.26(0.46) 98.70(0.56) 99.25(0.16) 99.28(0.24) 99.58(0.13)
AA 87.92(0.79) 86.24(0.37) 97.06(0.95) 98.16(0.61) 98.85(0.35) 99.23(0.10) 99.14(0.25) 99.55(0.09)

Kappa 88.37(0.91) 86.34(0.48) 97.19(0.53) 97.66(0.61) 98.25(0.75) 98.99(0.21) 99.23(0.33) 99.44(0.13)

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 16. Classification maps obtained by nine methods on the University of Pavia dataset: (a) SVM (88.24%), (b) ELM (89.70%), (c) EPF (97.91%), (d)
DeepCNN (98.26%), (e) CapsuleNet (98.70%), (f) DHCNet (99.25%), (g) SSFCN (99.28%), and (h) ASPCNet (99.58%).

the proposed ASPCNet uses a new framework by developing
the adaptive spatial unit into the original capsulenet, which can
better adapt to the complex spatial characteristics of the HSI.
In addition, ASPCNet can obtain the highest classification
accuracies in terms of OA, AA, and Kappa with a smaller
variance.

The second experiment is performed on the University
of Pavia dataset. First, 200 samples per class are selected
randomly as the training samples and the rest are used as
test samples (see Table IV). Table VII shows the classification
performance of the different methods, and Fig. 16 displays
the corresponding classification maps. As seen, there are three

classes that can be classified 100% correctly by the proposed
ASPCNet, and ASPCNet achieves the highest accuracies on
seven classes, which shows the outstanding performance of
ASPCNet. Moreover, as we can see from Fig. 16, ASPCNet
provides more homogeneous classification maps with clear
object edges, even for the University of Pavia dataset, with
complex structures.

Then, similar conclusions can be observed on the Houston
dataset, for which training samples are shown in Table V
and the classification results and maps are displayed in Table
VIII and Fig. 17, respectively. The classification results of
ASPCNet are consistently better than those of the compared
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TABLE VIII
CLASSIFICATION ACCURACIES (%) ON HOUSTON DATASET AMONG DIFFERENT METHODS. NUMBER IN PARENTHESIS INDICATES THE STANDARD

VARIANCE OF THE REPEATED EXPERIMENTS. THE BEST AND SECOND RESULTS ARE SHOWN IN RED AND BLUE COLORS, RESPECTIVELY.

Classes SVM ELM EPF DeepCNN CapsuleNet DHCNet SSFCN ASPCNet

CA

1 96.15(0.69) 97.70(1.03) 98.15(1.10) 97.92(0.75) 98.11(1.39) 99.62(0.23) 99.82(0.18) 100.00(0.0)
2 97.81(0.27) 98.25(0.75) 98.30(0.67) 98.27(0.77) 98.32(1.51) 99.69(0.20) 99.63(0.18) 99.95(0.05)
3 99.65(0.60) 100.00(0.0) 100.00(0.0) 100.00(0.0) 97.86(1.14) 99.50(0.52) 99.11(0.57) 99.53(1.31)
4 98.47(0.80) 99.07(0.65) 98.83(0.96) 99.55(0.23) 95.02(2.10) 97.64(2.07) 99.16(0.65) 99.26(0.65)
5 96.33(1.38) 98.09(0.78) 97.64(2.09) 97.29(1.38) 99.82(0.37) 99.41(0.11) 100.00(0.0) 99.45(0.55)
6 99.25(0.60) 100.00(0.0) 100.00(0.0) 100.00(0.0) 96.98(2.70) 99.26(0.49) 99.37(0.61) 99.38(0.21)
7 91.58(1.91) 93.75(1.53) 93.97(2.56) 94.70(1.12) 97.24(1.61) 98.57(1.13) 98.47(1.35) 99.55(0.27)
8 89.26(3.30) 96.15(0.39) 97.67(1.65) 96.41(0.28) 97.90(0.57) 96.07(1.58) 95.20(1.85) 98.84(0.24)
9 88.32(2.19) 87.75(2.22) 96.18(1.94) 91.46(6.08) 95.70(2.54) 99.45(0.43) 99.45(0.55) 99.45(0.46)

10 92.07(1.80) 86.60(1.58) 97.02(1.35) 92.19(4.95) 100.00(0.0) 99.24(0.70) 100.00(0.0) 100.00(0.0)
11 88.04(1.47) 89.26(0.75) 95.05(1.24) 92.19(2.48) 100.00(0.0) 99.16(0.83) 99.49(0.51) 100.00(0.0)
12 88.00(1.62) 87.98(1.89) 88.48(3.13) 89.93(2.10) 99.74(0.15) 99.26(0.20) 99.77(0.23) 98.27(1.35)
13 74.25(6.36) 90.47(3.55) 80.96(4.37) 87.01(3.26) 100.00(0.0) 98.87(0.82) 98.71(0.51) 97.04(2.44)
14 96.56(0.43) 95.72(1.80) 99.03(1.37) 96.83(2.60) 100.00(0.0) 99.74(0.99) 100.00(0.0) 100.00(0.0)
15 99.09(0.62) 99.86(0.20) 100.00(0.0) 99.96(0.08) 99.07(0.78) 99.53(0.14) 100.00(0.0) 100.00(0.0)

OA 93.01(0.54) 94.08(0.19) 96.22(0.33) 95.35(1.09) 98.28(0.45) 99.02(0.23) 99.16(0.12) 99.39(0.03)
AA 92.99(0.71) 94.71(0.28) 96.09(0.41) 95.58(0.79) 98.38(0.47) 99.01(0.20) 99.22(0.03) 99.31(0.08)

Kappa 92.43(0.59) 93.60(0.21) 95.91(0.35) 94.97(1.18) 98.14(0.49) 99.04(0.24) 99.10(0.13) 99.34(0.03)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 17. Classification maps obtained by nine methods on the Houston dataset: (a) SVM (93.01%), (b) ELM (94.08%), (c) EPF (96.22%), (d) DeepCNN
(95.35%), (e) CapsuleNet (98.28%), (f) DHCNet (99.02%), (g) SSFCN (99.16%), and (h) ASPCNet (99.39%).

spectral-spatial classification methods, and the experimental
results from the three real datasets indicate the robustness of
the proposed ASPCNet method.

Last, experiments conducted on three datasets indicate the
effectiveness of the proposed method with a small number of
training samples. Here, the number of the training samples is
40 for each class, which is selected randomly. Table IX shows
the OA, AA, and kappa obtained by different methods of three
datasets. As seen from Table IX, whatever compared with
traditional machine learning-based methods or deep learning-
based methods, the proposed ASPCNet method can always
obtain a better result. More importantly, the proposed method

shows obvious improvements in terms of OA, AA, and kappa
with a smaller variance.

F. Comparison of Different Feature Fusion Steps
To measure the performance of different components of the

proposed ASPCNet, an experiment is performed on the Uni-
versity of Pavia dataset with 40 training samples per class. The
experimental results are shown in Table X. As seen, Dil, Def,
and Dil-Def refer to learning the primary convolution feature
using the dilated convolution, deformable convolution, and
Dil-Def convolution, respectively. Note that Dil-Def and AS-
PConv are different. The Dil-Def convolution means that the
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TABLE IX
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THREE DATASETS WITH 40 TRAINING SAMPLES PER CLASS. NUMBER IN

PARENTHESIS INDICATES THE STANDARD VARIANCE OF THE REPEATED EXPERIMENTS. THE BEST AND SECOND RESULTS ARE SHOWN IN RED AND
BLUE COLORS, RESPECTIVELY.

Datesets Index SVM ELM EPF DeepCNN CapsuleNet DHCNet SSFCN ASPCNet

Salinas
OA 85.86(1.29) 89.89(0.45) 91.25(2.33) 92.24(4.39) 93.00(2.54) 94.09(0.72) 94.64(2.26) 96.97(2.13)
AA 90.68(0.40) 93.59(0.21) 94.72(0.60) 94.29(2.15) 95.61(1.40) 96.26(0.28) 96.55(1.12) 97.73(0.65)

Kappa 84.31(1.42) 88.74(0.50) 90.28(2.56) 91.31(4.96) 92.18(2.85) 93.42(0.81) 94.02(2.52) 96.81(2.35)

University of Pavia
OA 82.14(1.39) 84.50(0.57) 92.88(2.72) 92.67(2.85) 93.22(1.97) 95.29(1.91) 96.73(0.91) 97.84(0.65)
AA 79.99(0.99) 81.50(0.78) 92.39(2.18) 92.36(1.79) 92.42(1.58) 95.30(1.25) 96.66(0.67) 97.40(0.52)

Kappa 77.09(1.67) 79.83(0.66) 90.73(3.48) 90.39(3.67) 91.07(2.53) 95.23(2.49) 94.86(1.20) 97.13(0.86)

Houston
OA 87.47(0.72) 88.71(0.50) 91.79(1.10) 88.98(1.47) 92.96(1.50) 93.57(0.54) 94.38(0.58) 95.42(0.57)
AA 87.27(1.30) 89.54(0.46) 91.34(1.69) 90.90(1.10) 94.11(1.31) 94.60(0.63) 95.27(0.44) 96.03(0.55)

Kappa 86.45(0.77) 87.79(0.53) 91.12(1.19) 88.08(1.59) 92.39(1.62) 93.04(0.59) 93.93(0.62) 95.04(0.61)

TABLE X
CLASSIFICATION ACCURACIES (%) OF DIFFERENT STEPS OF THE

ASPCNET ON THE UNIVERSITY OF PAVIA DATASET WITH 40 TRAINING
SAMPLES PER CLASS.

Indexes ASPCaps-based ASPConvs-based ASPCNetDil Def Dil-Def Caps ConvCaps
OA 91.35 92.88 93.58 94.31 94.99 97.81
AA 88.78 92.33 93.28 95.13 95.45 98.14

Kappa 88.62 90.62 91.53 94.32 95.42 97.13

network conducts dilated convolution first and then deformable
convolution later (two layers totally), whereas ASPConv aims
to integrate the dilation and deformation operations into one
unit (only a single layer). Caps and ConvCaps refer to learning
digitalCaps features using the original capsule network and
conv-capsule network with digital feature extraction.

In the proposed ASPCNet method, we create an ASP unit by
taking advantage of both dilated and deformable convolution
operations, which can simultaneously expand the receptive
field and rotate the sampling location, and effectively avoid
grid effects. Note that we develop the ASP unit into a
traditional capsulenet during the primarycaps and digitalcaps
process. Based on the experimental results observations, the
Dil, Def, and Dil-Def operations lead to lower OAs of 91.35%,
92.88%, and 93.58%, respectively. Especially, the classifica-
tion performance obtained by ASPCNet is better than that of
Dil-Def, which indicates that the ASP unit is not a simple
combination of the Dil and Def operations, like stacking
one to another. By contrast, the ASP unit combines the Dil
and Def operations into a unit, improving the classification
performance by adaptively enlarging the receptive field and
adapting the shapes according to the complex features of HSIs.
Based on the ASPConvs modules, we compare the output
classifier using traditional caps, ConvCaps, and ASPCaps. Ac-
cording to the experimental results, we find that the proposed
ASPCNet can obtain the highest result of the three methods,
approximately 97.81% (traditional caps and ConvCaps can
only obtain 94.31% and 94.99%, respectively). The results
demonstrate that the ASPCaps located in the Caps layer can
help improve classification performance.

G. Computing Times of Different Methods

The time consumption (in seconds) of the training processes
of the proposed ASPCNet and the other compared methods

TABLE XI
COMPUTATIONAL TIME (IN SECONDS) OF DIFFERENT METHODS, AND

TRAINING SAMPLES ARE SHOWN IN TABLE III,IV AND V.

Methods Datasets
Salinas University of Pavia Houston

SVM 120.81 109.81 230.46
ELM 4.2 3.34 6.15
EPF 123.55 107.13 238.55

DeepCNN 133.51 210.18 323.98
CapsuleNet 158.54 237.89 381.25

DHCNet 215.52 261.34 270.69
SSFCN 350.41 389.45 623.5

ASPCNet 183.61 241.92 313.81

on the three typical hyperspectral datasets are reported in
Table XI. The experimental environments are described at
the end of Section IV-B. The traditional machine learning
methods (SVM, ELM, and EPF) and some related deep learn-
ing methods (DeepCNN, CapsuleNet, DHCNet, and SSFCN)
are compared with the proposed ASPCNet. As observed, the
proposed ASPCNet method requires more computational time
than all the traditional machine learning methods, and the
proposed method’s main computational cost is due to the
dynamic routing algorithm in capsulenet. When compared with
DHCNet and SSFCN, the ASPCNet method needs less time
on the same benchmark. To make the network more efficient
and better able to be transformed for other application fields,
searching for a lightweight neural network will be a focus of
our future research.

V. CONCLUSIONS

In this paper, we develop an adaptive spatial pattern capsule
network (ASPCNet) for image classification, in which a unique
convolutional unit called the ASP unit is used to extract
features. On the research basis of the conv-capsulenet, the
ASP units are introduced twice into the capsulenet during
the classification process. Initially, instead of using a shallow
convolutional layer, the proposed ASPCNet uses ASPConvs
to extract the relatively high-level features before they are
fed into primaycaps, making it easier to transfer hierarchi-
cal relationships between low-level and high-level capsules.
Furthermore, considering the fixed sampling location of the
convolutional kernels, ASPCaps is further introduced to this
model, making full use of contextual information adaptively
and meeting the requirements of HSIC tasks of complex
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structures. In addition, the experimental results on three real
HSIs demonstrate the superiority of the proposed ASPCNet
over several compared methods in terms of the visual qualities
of the classification map and quantitative metrics.

APPENDIX A
PROOF OF THE SECTION III-C PART

A. Hyperparameters for ASPConvs 1, 2

Each block consists of three layers of an ASP layer, a
convolution layer, and a rectified linear unit (ReLU) activation
function. In Block ASPConv 1, for the ASP layer, the kernel
contains 3×3 nonzero weights, 128 filters, stride = 1, and
padding = same. For the convolution layer, there are 128 filter
kernels of size 1×1, stride = 2, and padding = same. After the
convolution operation, ReLU activation functions are followed.
As a practice, a padding operation is conducted to ensure
that the feature maps remain the same size before and after
convolutions. In ASPConv 2, for the ASP layer, the kernel
contains 3×3 nonzero weights, 256 filters, stride = 1, and
padding = same. For the convolution layer, the kernel contains
1×1 nonzero weights, 256 filters, stride = 2, and padding =
same. After the convolution operation, the ReLU activation
functions and batch normalization (BN) layers are followed.

B. Hyperparameters for ASPCaps 1, 2

There are two ASPC blocks. For ASPCaps 1, the kernel
contains 3×3 nonzero weights, 32×4 filters, stride = 1, and
padding = same. After the ASPC operation, ReLU activation
functions are followed. For ASPCaps 2, the kernel contains
3×3 nonzero weights, 32×4 filters, stride = 1, and padding =
same.
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[55] X. Li, M. Ding, and A. Pižurica, “Group convolutional neural networks
for hyperspectral image classification,” in IEEE Int. Conf. Image Pro-
cess. (ICIP), 2019, pp. 639–643.

[56] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017.

[57] X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets v2: More
deformable, better results,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019.

[58] J. Zhu, L. Fang, and P. Ghamisi, “Deformable convolutional neural
networks for hyperspectral image classification,” IEEE Geosci. Remote
Sens. Lett., vol. 15, no. 8, pp. 1254–1258, 2018.

[59] C. Xiang, L. Zhang, Y. Tang, W. Zou, and C. Xu, “Ms-capsnet: A novel
multi-scale capsule network,” IEEE Signal Proce. Lett., vol. 25, no. 12,
pp. 1850–1854, 2018.

[60] C. Xiang, Z. Wang, S. Tian, J. Liao, W. Zou, and C. Xu, “Matrix capsule
convolutional projection for deep feature learning,” IEEE Signal Proce.
Lett., 2020.

[61] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell,
“Understanding convolution for semantic segmentation,” in Proc. Winter
Conf. Appl. Comput. Vis. (WACV). IEEE, 2018, pp. 1451–1460.

[62] R. Moreno, F. Corona, A. Lendasse, M. Graña, and L. S. Galvão,
“Extreme learning machines for soybean classification in remote sensing
hyperspectral images,” Neurocomputing, vol. 128, pp. 207–216, 2014.


	I Introduction
	II Related Works
	II-A CNN
	II-B DCNN
	II-C CapsuleNet

	III The Proposed Approach 
	III-A ASPConvs
	III-B ASPCaps
	III-C Architecture of the ASPCNet

	IV Experiments results and analysis
	IV-A Datasets
	IV-B Compared Methods
	IV-C Quantitative Metrics
	IV-D Analysis of the influences of different parameters
	IV-D1 Analysis of the influence of the number of dimensions
	IV-D2 Analysis of the influence of the patch size
	IV-D3 Analysis of the influence of the dilation rate

	IV-E Classification Results
	IV-F Comparison of Different Feature Fusion Steps
	IV-G Computing Times of Different Methods

	V Conclusions
	Appendix A: Proof of the Section III-C Part
	A-A Hyperparameters for ASPConvs 1, 2
	A-B Hyperparameters for ASPCaps 1, 2

	References

