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Abstract

Recently, artificial neural networks have been gaining momentum in the field
of gravitational wave astronomy, for example in surrogate modelling of com-
putationally expensive waveform models for binary black hole inspiral and
merger. Surrogate modelling yields fast and accurate approximations of
gravitational waves and neural networks have been used in the final step
of interpolating the coefficients of the surrogate model for arbitrary wave-
forms outside the training sample. We investigate the existence of underly-
ing structures in the empirical interpolation coefficients using autoencoders.
We demonstrate that when the coefficient space is compressed to only two
dimensions, a spiral structure appears, wherein the spiral angle is linearly
related to the mass ratio. Based on this finding, we design a spiral module
with learnable parameters, that is used as the first layer in a neural network,
which learns to map the input space to the coefficients. The spiral mod-
ule is evaluated on multiple neural network architectures and consistently
achieves better speed-accuracy trade-off than baseline models. A thorough
experimental study is conducted and the final result is a surrogate model
which can evaluate millions of input parameters in a single forward pass in
under 1ms on a desktop GPU, while the mismatch between the correspond-
ing generated waveforms and the ground-truth waveforms is better than the
compared baseline methods. We anticipate the existence of analogous un-
derlying structures and corresponding computational gains also in the case
of spinning black hole binaries.
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1. Introduction

The first direct detection of gravitational waves (GW) from a binary black
hole (BBH) merger in 2015 [I], initiated the era of Gravitational Wave As-
tronomy. The Advanced LIGO [2] and Advanced Virgo [3] laser interferomet-
ric detectors, with arms spanning a few kilometers, can observe stellar-mass
and intermediate-mass binary black hole mergers, as well as binary mergers in
which one or two components are neutron stars. With consecutive sensitivity
improvements, the number of detections has increased from just 3 during the
first observing run (O1) [4], to 11 at the end of the second observing run (02)
(comprising the first Gravitational-Wave Transient Catalog (GWTC-1) [5])
and to a total 50 events at the end of the first half of the third observing run
(03a) (comprising GWTC-2 [6]). Furthermore, the international network of
GW detectors is expanding with the addition of the KAGRA detector [7]
(which already participated in O3) and LIGO-India [§] (expected to join in
a few years from today). This development is expected to bolster detection
rates and sky-localization accuracies, even more so as the instruments are
expected to be upgraded beyond their initial design sensitivity [9].

These discoveries were also enabled by tremendous efforts in modelling
of GW sources and data analysis (see e.g. [10] 111, 12} 13|, 14} 15, 16}, 17, 18|
19, 20, 21, 22, 23, 4, 25, 26, 27, 28, 29, B30, 31]). For non-eccentric BBH
mergers, the parameter space A is seven-dimensional, comprising the mass
ratio and the three spin components for each black hole. The numerical-
relativity-calibrated effective-one-body (EOB) GW model for binary black
hole coalescence SEOBNRv4 [32] only uses three parameters, assuming spins
aligned with the orbital angular momentum. In the EOBNRv2 [33] model,
the black holes are non-spinning and thus only the mass ratio parameterizes
the waveform generation routine.

Waveform generation specifically is of particular importance, as balanc-
ing the trade-off between computational speed and waveform faithfulness is
a challenging task, with a lot of room for improvements. Towards this end,
surrogate modelling [34] can be deployed, wherein the goal is to build a fast
surrogate model, which can approximate the waveforms generated from a



computationally slower GW model, within a given tolerance. The surro-
gate model proposed in [34] for the EOBNRv2 model consists of three steps:
First, given a training set of waveforms, a reduced-order-modeling (ROM)
basis is obtained (using a greedy algorithm [35]), such that the training set
can be reconstructed by multiplying this basis with corresponding coefficients
to within a preset error. Second, given the reduced basis, further compres-
sion along the time axis is performed, referred to as Empirical Interpolation
Method (EIM) [36], B7]. Finally, an interpolation method is used, to obtain
fits of the EIM basis coefficients for arbitrary waveforms, which are outside
the training set. In practice, such a surrogate model can run significantly
faster than required for the generation of the original waveforms.

Further improvements in the computational speed for generating wave-
forms with a surrogate model were demonstrated in [38], who used artificial
neural networks (ANNs) in the third step, in place of traditional interpo-
lation methods. This is an important development, since surrogate-model-
parameter fitting with machine-learning (ML) methods has clear computa-
tional advantages over traditional methods, especially as the number of phys-
ical parameters on which the waveforms depend increases beyond a few (see
[39] for a comparison of various interpolation methods for waveform model-
ing). More generally, ML has emerged as a robust approach for solving a
range of problems in GW astronomy, with a rapid increase in use, see e.g.
[40] for a recent review.

ANNSs pose several advantages over traditional interpolation methods for
this task. First, the dimensionality of the input space does not pose as much
of a challenge, so long as the training set is sufficiently large and the input
space is densely sampled [38]. Second, by leveraging high processing power
GPUs, ANNs are able to process hundreds of thousands or even millions of
input samples in a single forward pass, depending on the specific architecture.
This can lead to extraordinarily large speedups in comparison to traditional
interpolation approaches, which are already much faster than evaluating fidu-
cial models [34]. Finally, as universal approximators [41], ANNs are capable
of modelling complex relationships, if they have sufficient depth and width.

In this work, we focus on non-spinning EOBNRv2 waveforms and thus
work with a 1-dimensional input space, consisting of only the mass ratios
between the two BBH components. First, we utilize Autoencoders [42], to
investigate the existence of any underlying structure in the coefficients to be
fitted. We find that by compressing the coefficient space into only 2 dimen-
sions, a spiral structure appears, wherein the spiral angle is linearly related



to the mass ratio. Based on this finding, we design a spiral module with
learnable parameters, to be used as the first layer in a neural network, which
learns to map the input space to the coefficients. As this structure occurs
naturally in a fully unsupervised scenario, we hypothesize, and experimen-
tally show, that the addition of the spiral module leads to faster convergence
of the network, as well as to waveform generation that is more faithful to the
fiducial waveforms than baseline networks without the module. As a demon-
stration, we construct a surrogate model for the EOBNRv2 model, which is
valid in mass ratios in the interval from 1 to 8 and which can generate up
to 1.6 million coefficients in a single forward pass on a desktop GPU, with a
worst-case mismatch of 4.33 x 1077 (several orders of magnitude lower than
the mismatches reported in [32]). The existence of the underlying structure,
points towards the possible existence of an analogous (higher-dimensional)
underlying structure also in the case of spinning BBH mergers, with corre-
sponding anticipated computational improvements.

The remainder of this paper is structured as follows: Section [2| discusses
previous related works on surrogate modelling for GW waveforms, as well
as autoencoders and representation-driven neural networks. In Section [3]
an introduction into surrogate modelling is given first, before moving on to
autoencoders and finally to the spiral module. Section [4]is an experimental
study into the benefits of the proposed method under various conditions.
Finally, Section [5| concludes this study and summarizes its findings.

2. Related Work

A comprehensive framework for surrogate modelling of GW models was
given in [34]. Although the method described is model-agnostic, an effective-
one-body (EOB) waveform family was used as an example, namely the EOB-
NRv2 [33] model, where the input space is 1-dimensional and specifically only
the mass ratio is used to generate waveforms. A training set of waveforms is
generated first, in a predetermined input space for which the resulting sur-
rogate is valid. Given a sufficiently large training set, the surrogate model
should be able to generalize and approximate waveforms outside of the train-
ing set. A wvalidation or test set is generated to showcase the surrogate’s
ability to generalize.

The proposed framework in [34] consists of three steps. First, given the
training set, a linear decomposition problem is solved, resulting to the gen-
eration of a reduced basis and corresponding reduced basis coefficients. A



greedy algorithm was proposed for this decomposition which iteratively se-
lects waveforms from the training set to add to the basis. Second, the reduced
basis is further reduced with regard to its time dimension. Specifically, time
nodes are selected with the Empirical Interpolation Method, which can be
used to reconstruct the entirety of the reduced basis. This process results in
a modified basis and empirical interpolation coefficients. The final step is to
fit the coefficients to the input space, so that the model can be evaluated at
arbitrary points in the same interval as the training input space. Since the
input space is 1-dimensional, traditional interpolation methods can be used
with high accuracy, and it was shown that the resulting surrogate models
were significantly faster than the baseline EOBNRv2 generator, while gener-
ating waveforms with low mismatches to the ground truth waveforms. Other
interpolation methods were compared against each other in [39].

In [43], the waveforms are decomposed into their real and imaginary parts
and two surrogate models are created, while the input space for their model is
4-dimensional. ANNs were used to fit the reduced basis coefficients, skipping
the empirical interpolation step altogether. Recently, in [38], the waveforms
were decomposed into their amplitude and phase signals and two surrogate
models are created. The GW model used is the SEOBNRv4 model [41],
whose input space is 3-dimensional. Various neural network architectures
are investigated for the fitting task and the corresponding mismatches with
the ground truth waveforms are reported.

We focus our work on the EOBNRv2 model used in [34], whose input
space is 1-dimensional, and do not decompose the complex waveforms. A
complex reduced basis is found, upon which the empirical interpolant is built
and thus the final empirical interpolation coefficients are complex. Further-
more, we first investigate the underlying relationship between the input space
and the coefficients by utilising Autoencoders [42], 44] and by modelling the
hidden representation which emerges and has a spiral structure with regard
to the mass ratio. We then construct neural network architectures instructed
by this finding, by designing a spiral module with learnable parameters. To
the best of our knowledge, this is the first work to explore the underlying
structure of the empirical interpolation coefficients and apply the knowledge
gained to a neural network architecture with a novel module, inspired by
the uncovered, physical properties of the coefficients themselves. As demon-
strated in Section [4 the added spiral module leads to surrogate waveforms
with better mismatches to the ground truth waveforms, while being faster
than equivalent architectures, which do not use the module.



3. Background & Proposed Method

3.1. Gravitational wave surrogate models

Let h(t; A) = hy(t; X) — ihy«(t; X) denote a complex gravitational wave
strain [45], as given by a fiducial model, where ¢ denotes time and A de-
notes the intrinsic parameters. The intrinsic parameters are in general 7-
dimensional (mass ratio and two spins with arbitrary orientation) for inspi-
raling black holes in general relativity, on non-eccentric orbits, but can be
simplified under certain restrictions to only include, for example, the mass
ratio and two spins aligned with the orbital plane.

The aim of surrogate modelling is to build an approximation of the
signal, denoted as hg(t; X), such that hs(t;A) =~ h(t; ) within a thresh-
old of error tolerance. If only the dominant, quadrupole (I = m = 2)
mode [45] of gravitational-wave emission is considered, then the target is
hs(t; X) = hao(t; X). The first step towards the creation of such a surrogate
model is to generate a large set of waveforms and subsequently find a Re-
duced Basis for this set, using for example a greedy algorithm [34] or Singular
Value Decomposition [46]. Following [34], for non-spinning Effective-One-
Body (EOB) waveforms of the EOBNRv2 fiducial model [33], the parameter
space is one-dimensional and each waveform is parameterized only by the
mass ratio q.

Thus, a training set of N waveforms is created!| {h;(t; ¢;)}, where ¢ =
% is the mass ratio of the binary system and limited to a predetermined
interval, such as 1 < ¢ < 2 for example, for which the surrogate model
will be valid. The greedy algorithm chooses a set of m < N waveforms (and
their corresponding ¢ values), which constitute the reduced basis {e; }*, after
orthonormalization. The basis is built iteratively such that it reconstructs
the training set to within a predetermined tolerance as a linear combination
of the basis and projection coefficients {c¢;(¢)}7:

m

h(t; q) ~ ci(q)ei(t). (1)

i=1

The reconstruction error is measured using the inner product between the
reconstructed and the training set waveforms, as per [34], where the inner

"'Waveforms were generated using the PyCBC package [47].



product is given by the complex scalar product:

tmaz
(sa) b)) = [ k(@) )
where the star notation denotes complex conjugation. The norm of a wave-
form is then given by [|h(;;q)|| = /(h(;q),h(-;q)), and waveforms are as-
sumed to be normalized such that ||A(+;¢)|| = 1 throughout this paper. The
overlap integral of a waveform h(t; q) and its corresponding surrogate model
prediction h(t; q) is given by:

O(h(7Q>7hs<7Q)) = Re<h(7Q>7hs<7Q)> <3>
=1 L ln0) — bl 8

and finally, the mismatch between these two waveforms is computed as:

M(h(-;9), hs(59)) =1 = O(h(+;9), hs(+5 9)) (5)
=1- Re<h(';Q>7hs<'; q)> (6>

The mismatch between real waveforms and surrogate predictions will be used
throughout this paper as a measure of the surrogate’s performance.

After the greedy algorithm has converged and the reduced basis has been
computed, the second step to surrogate modelling is to recast the problem as
one of interpolation in time. Specifically, given a reduced basis {e;(¢)}",, the
Empirical Interpolation Method (EIM) aims to find a set of points in time,
or empirical nodes, {T;}™, such that if the values of the fiducial waveforms
are known only at these points, the entirety of the fiducial waveform may be
recovered with high accuracy for arbitrary ¢q. The result of the EIM method is
a new basis that is obtained by imposing on the reduced basis the constraint
that the coefficient values are equal to the values of the fiducial waveforms
themselves at the empirical time nodes:

a;(q) = MTj; q), (7)

for all ¢ in the training set. The goal is to fit a model to the coefficients
given the corresponding ¢ values present in the training set, such that the
surrogate model can approximate any waveform in the range in which it
has been trained. Note that using the EOBNRv2 waveform family allows
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for the generation of a large training set of N waveforms, leading to dense
sampling of empirical interpolation coefficients. Thus, the problem is once
again recast as an interpolation problem from input space ¢ to the empirical
interpolation coefficients a(q) = {a;}},. The set of N waveforms have been
aligned at the peak of their amplitudes and cropped them to the length of
the shortest waveform [38] 34], such that they have a common duration, i.e.,
time dimension. Finally, the coefficients to be fitted are equal to the values
of the training set of waveforms at the empirical time nodes, leading to a
dataset D of pairs of ¢ values and coefficients a(q):

D = {(a:,a(g:) }iis- (8)

3.2. Autoencoders

Autoencoders (AE) are a class of unsupervised neural networks which are
trained to reconstruct their input, by first mapping it onto an intermediate
representation, typically of lower dimension [48], naturally offered for repre-
sentation learning tasks. In general, an AE consists of an encoding part which
maps the input to an intermediate representation, and a decoding part which
reconstructs the input and typically has an architecture that is symmetrical
to the encoder. The encoder and decoder can consist of multiple layers, each
of which is accompanied by learnable parameters, such as the weights and
biases of fully connected layers. Let x € R” denote a D-dimensional input
vector. Then an autoencoder can be formally defined by its two parts as:

x = f(g9(x)), (9)

where ¢(-), f(-) are the encoding and decoding functions respectively, and
x € RP is the network’s output, which is trained to approximate the input.
The encoding and decoding functions can have symmetrical or asymmetrical
architectures, and typically consist of multiple layers of, for example, fully
connected layers, convolutional layers and even recurrent modules. A useful
operation for the decoder in particular is that of transposed convolution,
or that of fractionally-strided convolution, used in practice to increase the
spatial dimension of feature maps.

Although they are not limited in this scope, typically, AEs are used for
dimensionality reduction. In this case, let y € R%, d < D, denote the output
of the encoder, i.e., y = g(x), then y may be regarded as a compressed version
of x. An AE of this form can be trained by minimizing the Mean Square
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Figure 1: Single hidden layer architecture of a fully connected Autoencoder.

Error (MSE) between the network’s input and output, which corresponds to
the reconstruction error:

N
1 .
L= NZHXz‘—XiH%, (10)
=1

over all training samples, with respect to the network’s parameters. As
data labels are not taken into consideration, an AE trained using the object
described here is fully unsupervised. Figure[l| presents a typical architecture
for an AE consisting of L fully connected layers. The input and output layer
consist of the same number of neurons D. Multiple non-linear layers lead to
the intermediate representation. The decoder then tries to reconstruct the
input via multiple non-linear layers.

Due to their ability to extract semantically meaningful representations
without the use of labels, AEs have been widely studied for a variety of tasks,
including clustering [49, 44], classification [42] [50], and image retrieval [51],

52].

Given an EIM coefficient dataset of mass ratio and coefficients pairs
D = {(q:,a;)}Y,, created as described in Section [3.1] training an autoencoder
with the coefficients a; = a(g;) as its input can implicitly aid in uncovering
the hidden relationship between each ¢; and the corresponding coefficients.
The process is unsupervised as the mass ratios are unknown to the autoen-
coder. Because the pairing of each ¢; to the corresponding coefficients a; is



known beforehand though, it is possible to use the resulting hidden repre-
sentation to model the relationship between all ¢; and a;. As an example, by
setting the intermediate representation dimension to d = 1, the autoencoder
will learn one-dimensional representations y; for each a;, associated with the
corresponding ¢;. The goal is then to find a mapping from ¢; to y;.

Although this is possible for higher dimensional latent representations as
well, in our experiments we set d = 2 for simplicity, in which case a spiral
pattern emerges, when visualizing the hidden representation as a function
of q. This finding is depicted in Figure [5| and discussed in more detail in
Section On this spiral manifold, the mass ratio ¢ and the spiral angle
appear to be related in a linear manner, as consecutive angles correspond to
consecutive mass ratio values.

3.3. End-to-end Neural Regression with Learnable Spiral

Based on the aforementioned observations, we design and propose the use
of a neural spiral module, which first transforms the input ¢ into angles 6:

0=w-q+0, (11)
and subsequently maps € into a spiral structure of the form:

Sg = (a4 [ -0)-cosb,

sy = (a+[-0)-sinb, (12)

where w, b, @ and (8 are learnable parameters, as the output is differentiable
with respect to each of them. Specifically, the partial derivatives are trivially
obtained as follows:

05,

o cos 6,

e (13)
S 0 - cosf

ap ’

(and similarly for s,). Finally, the errors can be back-propagated to the
linear transformation layer, as both s, and s, are differentiable with respect
to 6:

Os. =f-cost — (a+ 3 -0)sinb,
; o
6—93” =p-sinf+ (a+ f-0)cosb.

10
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Figure 2: Toy examples of spirals that can be learned with the spiral module in (s, sy)
coordinates, given an input ¢ in the range 1 < ¢ < 2. The spirals are achieved with the
following parameter values: (a) w = —=3m, b=3, a =1, 8 =3/m, (b) w = —67, b = 6,
a=1,08=6/m (c)w=-3mb=3, a=1,=1/3r, (d) w= —6m,b=06, a =1,
B =1/6m.

We hypothesize, and experimentally show in Section [4] that the addi-
tion of this module to a typical neural network helps the convergence of the
training process to smaller errors. Figure [2| shows some examples of spirals
that can be learned with the spiral module, given an input ¢ in the range
1 < ¢ < 2. The module can handle various orientations, as well as the degree
of coiling. The resulting spiral is then fed to the multiple, subsequent fully-
connected layers, each followed by a non-linear activation function, before a
final linear layer. An example of this architecture with two hidden layers is
shown in Figure
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Figure 3: Fully connected neural network with two hidden layers and the proposed spiral
module.

4. Experimental Results

4.1. Autoencoder Representation Learning

Following [34], we first consider non-spinning effective-one-body wave-
forms with mass ratios in the range 1 < ¢ < 2. A dataset of N = 1000
waveforms is generated and a surrogate model is built as described in Sec-
tion , with a tolerance of 10719, resulting in a reduced basis of size 11.
The RomPy package [53] was used to build the reduced basis and perform
the empirical interpolation process. The real and imaginary parts of some of
these coefficients along with the corresponding ¢ values are shown in Figure[4]
where their sinusoidal form relative to ¢ is apparent.

Next, a simple, symmetric encoder-decoder AE architecture is used, with
a hidden representation of size d = 2, and two hidden fully-connected layers
of 128 neurons on either side of the hidden layer. The PReLLU non-linearity
[54] was used in every layer. We build our models using the PyTorch Deep
Learning framework [55]. The empirical interpolation coefficients were used
as both the input and output for this network, with the imaginary parts
stacked onto the real parts (D = 2-11 = 22). The AE was trained for
100 epochs with a batch size of 32 and an initial learning rate of 0.001, for
which a multiplicative, multi-step schedule was used with a gamma value of
0.9 and a step size of 15. The resulting hidden representation is shown in
Figure 5, where the colormap indicates the corresponding ¢ values for each
input coefficient. On the spiral manifold, which presents itself in the hidden
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Figure 4: Real (top) and imaginary parts (bottom) of the empirical interpolation coeffi-
cients a;(q) for a surrogate model of EOBNRv2 waveforms that is valid for 1 < ¢ < 2.

layer, the relationship between ¢ and the angle 6 of the spiral appears to be
linear. The final reconstruction MSE is 6.82 x 107°.

To gain insight into the spiral formation that appears, we also perform
Principal Component Analysis (PCA) [56] on the same dataset and set the
number of principal components to 2, i.e, ¢; € RY for i = 1,2. The resulting
representation is shown in Figure [0, where a spiral formation also appears. It
should be noted that the reconstruction MSE in this case is 3.82 x 1072, that
is three orders of magnitude larger than that of the AE described previously.

4.2. Learnable Spiral

Based on the above observations, we introduce a spiral module, which
transforms the input ¢ into angle 6 using Eq. and subsequently into a spi-
ral using Eq. . Several neural network architectures with fully-connected
layers are evaluated with and without the addition of the spiral module in
terms of final waveform mismatch, inference speed as well as their memory
requirements, in terms of the maximum batch size that can be processed in
a single forward pass on an NVIDIA RTX 2080 Ti GPU. All networks are
trained for a total of 2500 epochs, with a batch size of 16 using the Adam
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Figure 5: Hidden representation learned by the AE for the empirical interpolation coeffi-
cients of a surrogate model of EOBNRv2 waveforms that is valid for 1 < g < 2.
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Figure 6: Hidden representation learned by PCA analysis for the empirical interpolation
coefficients of a surrogate model of EOBNRv2 waveforms that is valid for 1 < ¢ < 2.

14



optimizer [57] with an initial learning rate of 0.001 which is reduced by 0.95
every 150 epochs.

To obtain a better surrogate model for 1 < ¢ < 2, a larger training dataset
of N = 10000 waveforms is created with equispaced ¢ values, as well as a
validation and a test set, each with 2000 waveforms with ¢ values sampled
uniformly at random in the same range. We first evaluate a traditional spline
fitted on the empirical interpolation coefficients, which achieves a minimum,
maximum and average mismatch of 1.05 x 10712, 1.26 x 107%, and 1.21 x
10~ respectively. Despite optimizations, the average time needed to produce
10000 waveforms with this method was measured at 0.455s. In contrast,
Table (1| summarizes the worst, median and 95 percentile (p = 95) mismatch
achieved by various neural network architectures, as well as the maximum
batch size, which can be executed in a single forward pass. Note that the
notation S in the ‘network’ column denotes the insertion of the spiral module,
while each number corresponds to the number of neurons per hidden layer.
Note also that because of the somewhat lightweight nature of these neural
networks, the overhead when predicting millions of coefficients compared to
10000 coefficients is negligible. Specifically, generating the maximum number
of coefficients per architecture takes less than 1ms after optimizations.

The addition of the spiral module consistently improves the mismatch
achieved. In the case of only one hidden layer, the baseline network with 128
neurons generates waveforms with very poor mismatch (1.03 x 10~! median
mismatch), whereas with the addition of the spiral module even with as few as
only 32 hidden neurons, the median mismatch decreases by about 6 orders of
magnitude. The best median and 95" percentile mismatch (9.41 x 1072 and
3.48 x 107®) is achieved by the S§-32-64-128-64 network, which can generate
up to 3.4 million coefficients in a single forward pass on the aforementioned

GPU.

4.2.1. Extension to larger mass ratios

We finally build a large training dataset of N = 56000 waveforms for
1 < ¢ < 8, with equispaced ¢ values in this range (corresponding to 8000
values of ¢ per unit interval). A validation and a test set each consisting
of 14000 waveforms are created as well, with ¢ values drawn uniformly at
random in the interval 1 < ¢ < 8 (2000 waveforms per unit interval for each
set). Figure [8 shows the real and imaginary parts of the first ten coefficients
of the EIM basis, {a;(¢)};2,. In spite of some amplitude modulation, each
coefficient has a near sinusoidal dependence with ¢ (except near ¢ = 1, where

15



network max M median M p =95 M max batch size

128 3.76 x 1071 1.03x 107! 320 x 107! 6.1m
S-128 1.65x 107 8.80x107* 1.32x107° 6.1m
S5-64 154 x107% 236 x 1077 1.72x 107° 9m
5-32 148 x 107 348 x 1077 1.65 x 10°° 11.6m
32-64 6.86 x 107° 4.92x 1077 6.13 x 107° 7.3m

S-32-64 1.69x107% 2.93x107® 1.35x 1077 7.3m
32-64-128 120 x107° 4.79x107% 6.98 x 1077 4.2m
8-32-64-128  1.05x 1077 3.80x 1077 7.44x 1077 4.2m
32-64-128-64  1.02x 107% 447 x107% 1.12x 1077 3.4m
8-32-64-128-64  1.60 x 1077 9.41 x 107° 3.48 x 1078 3.4m

Table 1: Comparison of various neural network architectures with and without the addition
of the spiral module (S) for 1 < ¢ < 2. M is the mismatch defined in Eq (5). The last
column reports the maximum batch size (in millions) that can be processed in a single
forward pass on an NVIDIA RTX 2080 Ti GPU .

dq/daj = 0 for all j).

Several neural network architectures were trained and evaluated on this
dataset. All networks were trained for a total of 5000 epochs, with a batch
size of 32 using the Adam optimizer [57] with an initial learning rate of
0.001, which was reduced by 0.9 every 30 epochs. The results are summa-
rized in Table [2] in terms of the mismatch and of the maximum batch size
that can be used during inference, i.e., the maximum number of coefficients
that can be generated in a single forward pass. Note that again, these net-
works are relatively lightweight and the overhead of generating millions of
coefficients versus a hundred thousand coefficients is negligible (specifically,
a few microseconds). The training and validation loss per epoch for the
32 — 64 — 128 — 64 network and the corresponding architecture with the ad-
dition of the spiral is shown in Figure[7] The addition of the spiral leads the
network to smaller mean squared errors overall. Note also that no overfitting
occurs, which can be attributed to the dense sampling of the input space as
well as the high sampling rate used during the generation of the training and
validation waveforms. Similar loss curves were observed for the rest of the
architectures used as well.

The maximum batch sizes are also shown in Figure[9] as a function of the
corresponding 95" percentile (p = 95) mismatches, for the baseline model
and for the model that includes the spiral module. As with the 1 < ¢ < 2
case, the mismatch achieved is consistently better with the addition of the
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Figure 7: Training and validation loss per epoch for the 32-64-128-64 network and the
corresponding architecture with the addition of the spiral.

spiral module. Note the case of 7.3m batch size (32-64 network) in particular,
where the inclusion of the spiral module achieves a median mismatch of
1.12 x 10~° and a worst case mismatch of 4.39 x 1073, whereas the respective
baseline model achieves a median mismatch of 5.85 x 1073 and a worst case
mismatch of 4.43x 107!, about two orders of magnitude worse. Note also that
the most lightweight network converges to an undesirable local minimum,
whereas the addition of the spiral leads the network to smaller losses and
better mismatches.

5. Conclusions

Recently, artificial neural networks have been gaining momentum in the
field of gravitational wave astronomy, and specifically in surrogate modelling
of fiducial waveform models. Surrogate modelling yields fast and accurate
approximations of gravitational waves and neural networks have been used
to interpolate the parameter space to the surrogate coefficients with great
success [38]. Our present work focused on non-spinning Effective-One-Body
waveforms of the EOBNRv2 model and we investigated the existence of un-
derlying structures in the empirical interpolation coefficients using autoen-
coders. Subsequently, the spiral structure that was observed in the latent
representation uncovered by the AE, inspired the design of a learnable spiral
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Figure 8: Real (top) and imaginary parts (bottom) of the empirical interpolation coeffi-
cients a;(q) for a surrogate model of EOBNRv2 waveforms that is valid for 1 < ¢ < 8.

network max M median M p=95 M max batch size
16-64 436 x 1071 1.44 x 107! 3.47 x 107! 8m
S-16-64 1.33 x 1073 9.14 x 1075 2.25 x 1074 8m
32-64 443 x 107! 5.85x 1073 2.84 x 107! 7.3m
S-32-64 439 x 1073 1.12x107® 2.56 x 10~° 7.3m
32-32-64 1.48 x 1073 4.97 x 107° 1.87 x 1073 6.1m
S-32-32-64 2.99 x 1075 9.04 x 1077 1.99 x 1076 6.1m
32-64-128 0.34 x 107 8.00 x 107% 5.83 x 10~° 4.2m
S-32-64-128 1.80 x 107 1.66 x 107 3.63 x 1077 4.2m
32-64-128-64 779 %1075 1.13x 107% 4.62 x 1079 3.4m
S-32-64-128-64 255 x 1076 4.16 x 10~ 1.07 x 1077 3.4m
64-128-256-128  2.46 x 10~° 1.50 x 10~7 2.23 x 1076 1.9m
S-64-128-256-128 525 x 10~7 1.69 x 10~% 3.93 x 1078 1.9m

Table 2: Comparison of various neural network architectures with and without the addition
of the spiral module (S) for 1 < ¢ < 8. The various columns are as in Table
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Figure 9: 95" percentile mismatch M vs. maximum batch size (in millions) for the
surrogate EOBNRv2 model in the 1 < ¢ < 8 range, where the EIM coefficients were
predicted by different baseline neural networks (blue circles) and by corresponding neural
networks that included the spiral module (orange boxes), see Table |2l From left to right,
the complexity of the neural network decreases, resulting in a larger mismatch, but also in
a larger batch size than can be generated on a particular GPU with a single forward pass.
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module. The spiral module can be added to any neural network architecture,
“informing” the network of the physical structure of the coefficients and re-
sulting to waveforms with better mismatches with respect to the ground truth
waveforms. Thus, more lightweight architectures can be used in conjunction
with the spiral module to generate millions of coefficients in a single batched
forward pass, which can be executed in less than 1ms on a desktop GPU.

The existence of the underlying structure in the case of the 1-parameter
family of non-spinning waveforms points towards the possible existence of an
analogous (higher-dimensional) underlying structure also in the case of spin-
ning BBH mergers, with corresponding anticipated computational improve-
ments. Our initial investigation of spin-aligned waveforms, indeed confirms
this anticipation (in preparation).
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