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Abstract

Robust object tracking requires knowledge of tracked ob-
jects’ appearance, motion and their evolution over time. Al-
though motion provides distinctive and complementary in-
formation especially for fast moving objects, most of the re-
cent tracking architectures primarily focus on the objects’
appearance information. In this paper, we propose a two-
stream deep neural network tracker that uses both spatial
and temporal features. Our architecture is developed over
ATOM tracker and contains two backbones: (i) 2D-CNN
network to capture appearance features and (ii) 3D-CNN
network to capture motion features. The features returned
by the two networks are then fused with attention based Fea-
ture Aggregation Module (FAM). Since the whole architec-
ture is unified, it can be trained end-to-end. The experimen-
tal results show that the proposed tracker TRAT (TRack-
ing by ATtention) achieves state-of-the-art performance on
most of the benchmarks and it significantly outperforms the
baseline ATOM tracker. The source code and models are
available at https://github.com/Hasan4825/TRAT.

1. Introduction
The visual object tracking is an important computer vi-

sion task, and the goal is to track a target object in the subse-
quent frames of a video where the target object is identified
in the first frame. It is widely used in many domains includ-
ing surveillance, video and activity analysis, and robotics.
However, it is a challenging task since there are numer-
ous factors such as significant deformation and appearance
variations of the target object, illumination changes, back-
ground clutter, occlusion, etc. that can make the track-
ing of the target extremely difficult. The main difficulty
arises from the fact that the tracker must learn an appear-
ance model of the target object at the initial frame just by
using bounding box information. Then, it must have the
adaptability to generalize to all variations of the target ob-
ject appearances in the subsequent frames.

Object tracking requires the incorporation of spatial and
temporal features captured within video frames. The spa-
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Figure 1. Visual comparison of the TRAT with state-of-the-art
trackers. ATOM [11] and DiMP50 [3] trackers are based on only
the appearance information coming from 2D-CNN features. Con-
sequently, they fail to track fast moving objects. Our approach
TRAT employs 3D-CNN and 2D-CNN backbones to simultane-
ously extract appearance and motion information and provide ac-
curate bounding box predictions for slow and fast moving objects.

tial part carries information about the scenes and object ap-
pearances in individual video frames, whereas the temporal
part contains the motion information of the tracked objects
across the video frames. So far, the majority of the track-
ers that employ deep neural network architectures only used
spatial features coming from video frames for tracking. On
the other hand, spatio-temporal features have been widely
used for both activity recognition and detection in video
frames [51, 65, 48, 35, 31]. However, capturing spatio-
temporal features is not very straightforward in tracking set-
tings as in activity recognition since we do not have access
to all video frames during online tracking. Instead, we have
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only access to the previous frames of the current frame, and
many tracking videos do not include any motion for long
time periods. As a result, special attention must be given
to combine spatial and temporal information during online
tracking. In fact, temporal information is mostly useful
when the object appearance changes significantly between
consecutive frames because of object speed, shape defor-
mation, illumination variations, and out-of-plane rotations.
Motion information also helps when there are similar ob-
jects in the vicinity of the tracked object. Fig. 1 illustrates
several examples where the motion information is critical.

In this paper we propose a novel two-stream deep neural
network tracker that uses both spatial and temporal features.
We use an attention based Feature Aggregation Module
(FAM) to fuse the information coming from two-channels
effectively. Proposed FAM makes use of local channel cor-
relations for efficiency and a more discriminative pooling
strategy to improve the tracking performance.

1.1. Related Work

The most recent state-of-the-art tracking methods can
be roughly divided into three categories: CNN (Convo-
lutional Neural Network) based trackers, correlation filter
based trackers and Siamese network based trackers. CNN
based trackers [47, 44, 59, 41, 58, 61, 27] usually use shal-
low neural networks since it has been shown in many stud-
ies that the last layers of large CNNs are more effective in
capturing semantics. Small networks are also necessary for
speed issues since updating parameters of large networks
is slow and it cannot be accomplished in real-time for on-
line visual tracking. There are also methods using larger
networks, but they usually update either the last classifier
stage or a few last layers of the network during online learn-
ing due to the computational efficiency. One of the earliest
deep neural network learning tracker [61] used a stacked de-
noising auto-encoder to learn generic image features from
a large dataset as auxiliary data and then transferred the
learned features to the online tracking task. Hong et al.
[27] used CNNs and SVM classifier to learn target-specific
saliency maps. Li et al. [41] introduced an online learn-
ing method based on a CNN using multiple image cues.
Wang et al. [59] pre-trained a large CNN offline and trans-
ferred the learned features to the online tracking as in [61].
Nam and Han [47] introduced the Multi-Domain Network
(MDNet) for object tracking. Beside some online training
tricks such as long-term and short-term update strategies,
the main novelty of the paper was to show how to trans-
fer rich and effective features for tracking. A fast version of
MDNet tracker, called Real-Time MDNet, [32] used Fast R-
CNN [20] approach to accelerate the slow feature extraction
stage of the MDNet method. Cevikalp et al. [7] proposed
a deep neural network tracker using ranking loss which en-
forces the network to return better bounding boxes framing

the target object. For the same purpose, both [11, 3] used
novel deep neural tracking architectures that utilize IoU-Net
[30] whose goal is to estimate and increase the Intersection
over Union (IoU) overlap between the target an estimated
bounding box to improve the accuracy.

Correlation filter (CF) based trackers learn a correlation
filter to localize the target object in consecutive frames by
solving a ridge regression problem efficiently in the Fourier
frequency domain. The learned filter is applied to a region
of interest in the next frame, and the maximum correla-
tion filter response determines the object location in the new
frame. Then, the filter is updated by using this new object
location. CF based trackers are extremely fast compared to
the deep neural network based trackers owing to the fact that
the problem is solved efficiently in the frequency domain.
Bolme et al. [5] introduced a very fast CF based method us-
ing the minimum output of squared error (MOSSE) for vi-
sual tracking. Kernelized correlation filters using circulant
matrices and multi-channel features have been proposed in
[26]. Danelljan et al. [14] introduced a formulation us-
ing continuous convolutional operators, which paved the
way for efficiently integrating multi-resolution deep feature
maps into the convolution filter based trackers. In [12], this
method has been improved by the introduction of factor-
ized convolutional operators. Initially, CF trackers used
gray levels or hand-crafted features such as histogram of
oriented gradients (HOGs) [26], color names [15] or color
histograms [1]. On the other hand, CF trackers proposed
in [44, 13] utilized CNN features extracted from pre-trained
CNNs. The most recent studies introduced methods to learn
both deep CNN features and correlation filters simultane-
ously [55, 62, 22]. The best performing tracker [22] of
the VOT2017 [36] challenge uses this methodology. ROI
Pooled Correlation Filter (RPCF) method [52] used a re-
gion of interest (ROI) based pooling operation in the cor-
relation filters algorithm. Wang et al. [60] integrated for-
ward tracking and backward verification steps, which are
based on forward-backward trajectory analysis, into the un-
supervised training phase. Xu et al. [67] proposed a feature
compression in both spatial and channel dimensions by us-
ing group channel feature selection method to learn correla-
tion filters. [10] used adaptive spatially regularized correla-
tion filters model to estimate the object location and scale.
Saribas et al. [50] and Huang et al. [29] achieved high ac-
curacy and speed on tracking of objects in aerial videos by
using correlation filters.

The trackers that are based on Siamese networks on the
other hand are built based on distance (or similarity) metric
learning for visual object tracking [53, 2, 56, 23]. Initially,
these methods [53, 2] are trained on larger datasets such as
ILSVRC15 [49] and the learned metric (i.e., matching func-
tion) is simply evaluated online during tracking, and these
methods did not have the ability to update the previously
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learned distance function during tracking. Later, Guo et al.
[23] and Wang et al. [56] proposed methods that update the
learned distance function online during tracking. One of the
main challenges in Siamese-based trackers is how to adapt
aspect ratio changes. To address this problem, Siamese Re-
gion Proposal Network (SiamRPN) [40] used region pro-
posal networks. SiamRPN++ [39] proposed a layer-wise
feature aggregation structure to improve performance and
reduce the model size. To solve the data imbalance problem
of RPN, Fan and Ling [17] have used hard negative sam-
pling process and cascaded RPN instead of one-stage RPN.
Gradient-Guided network (GradNet) method [42] used a
novel gradient-guided network to avoid overfitting and in-
crease adaptation ability. SiamMask [64] utilized a multi
task learning approach to solve both object tracking and ob-
ject segmentation simultaneously. Wang et al. [57] used
a two-stage series-parallel matching for tracking where the
coarse matching (CM) and fine matching (FM) stages en-
hance the robustness performance and discrimination power
of Siamese networks. Choi et al. [9] presented a novel
meta-learner network by adding target aware feature space
to improve tracking accuracy.

Trackers Using Spatio-Temporal Features: Regarding
trackers using both spatial and temporal features, [21]
showed that a correlation filter tracker using deep motion
(optical flow) features combined with deep RGB features
outperforms the same tracker using appearance (deep RGB
features) information alone. Teng et al. [54] proposed a
deep neural network that includes temporal and spatial net-
works, where the temporal network collects key historical
temporal samples by solving a sparse optimization prob-
lem. The output of the temporal network is fed to the spatial
network that further refines the localization of tracked tar-
get. A Graph Convolutional Tracking (GCT) method built
based on Siamese framework, which uses spatio-temporal
features, has been given in [18]. Zhang et al. [69] learned
a spatio-temporal context model between the tracked target
and its local surrounding background and used it for robust
tracking of the targets. The method which is the most re-
lated to our proposed method is the FlowTrack introduced
in [71]. FlowTrack also uses both spatial and temporal in-
formation for better tracking of the object. However, there
are significant differences between the FlowTrack and our
tracker TRAT. FlowTrack is a CF based tracker by making
use of several 2D-CNNs to extract RGB and optical flow
modality features, and an attention module to fuse them. In
contrast, we use a 3D-CNN backbone to extract temporal
features in addition to the 2D-CNN backbone which extract
spatial features. The feature maps coming from these two
backbones are fused with an effective and discriminative at-
tention based feature aggregation module using local chan-
nel correlations. The reason to include 3D-CNN backbone
in our tracker is that 3D convolutional kernels inherently

Figure 2. The architecture of the proposed two-stream tracker. It
uses both spatial and temporal features through 2D-CNN and 3D-
CNNs. The feature maps of the two-networks are fused by using
a feature aggregation module shown with dashed line rectangle.

captures pixel movements (i.e., motion information) on con-
secutive frames. Although 3D-CNNs are considered com-
putationally heavy, they are much more efficient compared
to optical flow calculation. To the best of our knowledge,
TRAT is the first architecture, which employs 3D-CNNs to
capture motion information for the task of object tracking.

2. Method
We propose a two-stream deep neural network tracker

for visual object tracking, which is illustrated in Fig. 2. Our
tracker TRAT is developed over ATOM tracker architecture
in a way that it uses a two-stream network including both
3D-CNN and 2D-CNN architectures rather than using 2D-
CNN alone. In addition, we propose an efficient feature ag-
gregation module (FAM) to aggregate the feature maps of
3D-CNN and 2D-CNN backbones to track the target object
more successfully. Therefore, the proposed tracker mainly
includes 3 important components as seen in the figure: 3D-
CNN, 2D-CNN, and feature aggregation module (FAM). In
the following, we will first briefly describe ATOM (Accu-
rate Tracking by Overlap Maximization) tracker and explain
each proposed components in details. Next, we give the im-
plementation details at the end of this section.

2.1. ATOM

ATOM tracker includes two components designed exclu-
sively for target estimation and classification. Target esti-
mation module is learned offline and it predicts the Inter-
section over Union (IoU) ratio between the target and es-
timated bounding box. Target classification module uses
a discriminative correlation filter (DCF) to return an initial
bounding box candidate which will be used in target estima-
tion module. Then, 10 object bounding box proposals are
generated by adding uniform random noise to this initial
position. The target estimation module estimates the IoU
ratios of these boxes and the final prediction is obtained by
taking the mean of the 3 bounding boxes with the highest
IoU ratios.
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Target classification module of the ATOM consists of a
2-layer fully convolutional neural network defined as,

f(x;w) = Φ2(w2 ∗ Φ1(w1 ∗ x)), (1)

where x is the backbone feature map, w = {w1, w2} are
the parameters of the network, Φ1,Φ2 are activation func-
tions. The module uses the following discriminative corre-
lation filter objective function given as,

L(w) =

m∑
j=1

γj ‖f(xj ;w)− yj)‖2 +
∑
k

λk ‖wk‖2 . (2)

Here, yj represents the classification confidences for fea-
ture maps xj . The impact of training samples is adjusted by
using the weight γj , and λk is the weight for regularization.

Instead of using only spatial features x coming from 2D-
CNN as in ATOM, TRAT makes use of spatio-temporal fea-
tures extracted by 3D-CNN and 2D-CNN, which are fused
by attention based FAM.

2.2. 3D-CNN

Tracking methods using spatial (appearance) informa-
tion alone struggle in situations where the object appear-
ance changes significantly between consecutive frames be-
cause of shape deformation, out-of-plane rotations, illumi-
nation variations, and background distractors with similar
appearances to the tracked object. In such cases, motion in-
formation provides rich complementary information and it
may help to disambiguate the target object from the back-
ground. Most studies used optical-flow features for mo-
tion information. However, in addition to the computa-
tional complexity spent for extracting optical-flow features,
many tracking videos lack motion for long time periods. As
a result, optical-flow features will be completely zero for
many video sequences which limits its use for tracking. On
the other hand, 3D-CNNs can capture motion information
by applying convolution operation in both space and time
dimensions. Moreover,3D-CNNs can also provide infor-
mation when the object is stationary. Therefore, 3D-CNN
backbone is selected to be used as motion capturing unit in
TRAT architecture.

In our 3D-CNN, we use 3D-ResNet architecture. Dur-
ing tracking, we give a sequence of cropped ROIs (Region
of Interests) to the network as input. The ROIs are cropped
from a sequence of consecutive frames in time order and
the size of ROIs is determined at the beginning by using the
given target ground-truth location in the first frame. Given a
cropped ROIs with size h×w, the size of the 3D-CNN input
is (c× f × h× w), where c = 3, f is the number of con-
secutive frames, which is set to 4 in our experiments. Af-
ter convolution operations, 3D-CNN outputs a feature map

X3D ∈ IRc
′
×f

′
×h

′
×w

′

, where c
′

is the number of output

channels, f
′

= 1, h
′

= h
d , and w

′
= w

d . d refers to the
applied downsampling rate. The depth dimension of the re-
sulting feature map is reduced to 1 such that output volume
is squeezed to

(
c
′ × h′ × w′

)
in order to match the output

feature map of 2D-CNN.

2.3. 2D-CNN

To exploit spatial (appearance) information for track-
ing, we use a 2D-CNN, which employs ResNet [25] ar-
chitecture. In contrast to 3D-CNN, 2D-CNN takes a sin-
gle ROI image cropped from the most recent frame, and
its size is also h × w. The 2D-CNN outputs a feature map

X2D ∈ IRc
′′
×h

′
×w

′

, where c
′′

is the number of output chan-
nels, and h

′
= h

d , w
′

= w
d as in 3D-CNN output. Since, h

′

and w
′

are common for both 3D-CNN and 2D-CNNs, the
feature maps of these two networks can be concatenated di-
rectly. The resulting stacked features include both appear-
ance and motion information and they are passed to the sub-
sequent FAM as input.

2.4. Feature Aggregation Module (FAM)

The fusion of feature maps coming from 2D-CNN and
3D-CNN backbones should be handled properly in order
to achieve superior performance compared to single back-
bones alone. To this end, we use an effective channel fu-
sion and attention mechanism to aggregate the feature maps.
The proposed module is a variant of the Efficient Channel
Attention (ECA) module [63] which can be simply imple-
mented via 1D convolution. As opposed to other channel
attention modules that use correlations among all channels,
ECA captures only local cross-channel interactions by con-
sidering local neighborhoods of each channel. This makes
the method both efficient and effective since ECA can be
implemented by fast 1D convolutions of size k, where ker-
nel size k represents the coverage of local cross-channel in-
teractions.

However, ECA loses discriminative details since it em-
ploys global average pooling (GAP) at the beginning, which
represents an entire channel with the average sum of the
values in the channel. Still, not all values in a feature chan-
nel contribute equally to the localization of the tracked ob-
ject and some features are more discriminative than the oth-
ers. Therefore, we replace the GAP in ECA module with
a more discriminative pooling strategy that uses weighted
sum of the values in each channel, which is called as adap-
tive weighted pooling (AWP) in [6, 19]. AWP learns to give
higher weights to more discriminative features during pool-
ing and this largely increases the detection performance as
reported in [19]. This is somewhat similar to spatial at-
tention since more discriminative features are more heavily
weighted during summation.

The proposed attention based feature aggregation mod-
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Figure 3. The architecture of the proposed feature aggregation module.

ule is given in Fig. 3. We use the same architectures for
both 3D-CNN and 2D-CNN, therefore the outputs of these
networks have same channel size (c

′
= c

′′
). As a result,

X2D ∈ IRc
′
×h

′
×w

′

and X3D ∈ IRc
′
×h

′
×w

′

. To fuse feature
maps, we utilized two fusion methods where the first one
simply concatenates feature channels whereas the second
one adds the feature channels as described below.
Concatenation fusion. As given in Fig. 3, our concate-
nation fusion strategy contains concatenation operation and
convolution operation with 1 × 1 kernel size. The concate-
nation operation stacks two feature maps along channels to

produce XCat = f cat(X2D,X3D) ∈ IR2c
′
×h

′
×w

′

. Then,
we feed the stacked feature maps into 2D convolutional
layer to return to original size by reducing the channel size

by half XS ∈ IRc
′
×h

′
×w

′

.
Sum fusion. The sum operation simply computes the sum
of the two feature maps at the same spatial locations to pro-

duce XS = fsum(X2D,X3D) ∈ IRc
′
×h

′
×w

′

.
After fusion operation, we employ adaptive weighted

pooling (AWP) to downscale feature map, XS . To this end,
we first feed XS into convolution layer and apply amplified
sigmoid function to the convolved feature map for comput-
ing W (XS). In order to obtain new weighted feature map

X̃S ∈ IRc
′
×h

′
×w

′

, we use the following formulation,

X̃S = W (XS)�XS , (3)

where � represents Hadamard product (i.e., element-wise
product). This operation acts like a spatial attention mech-
anism since the more discriminative locations related to the

tracked object are weighted more heavily compared to other
regions in the background. This largely improves the track-
ing performance as demonstrated in the experiments. Then,
we applied a global average pooling on X̃S to obtain dis-

criminative pooling weights XAWP = g(X̃S) ∈ IRc
′
×1×1

by using,

g(X̃S) =
1

h× w

h∑
i=1

w∑
j=1

X̃S(i, j). (4)

Finally, we apply 1D convolution and sigmoid opera-
tions to XAWP to get our channel attention map WC ∈
IRc

′
×1×1,

WC = σ(Conv1Dk(XAWP )), (5)

where k = 5 is the kernel size of 1D convolution and σ(.) is
the Sigmoid function. At the end, the fused feature map XS

is multiplied with the channel attention mapWC to produce

the aggregated feature map XFAM ∈ IRc
′
×h

′
×w

′

,

XFAM = XS ⊗WC . (6)

2.5. Implementation Details

Offline training. For offline training, we use the training
splits of the GOT-10k [28], LaSOT [16] and TrackingNet
[46] datasets. We used ResNet-18 and ResNet-50 back-
bones for both 2D-CNN and 3D-CNN streams. We pre-
trained our 3D-ResNet architecture on Kinetics dataset [24]
using 4 consecutive frames to learn motion information of
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the moving targets. For 2D-ResNet, we initialize network
weights with model pre-trained on ImageNet. Image pixel
values are normalized to lie in the range [0,1]. During of-
fline training, we freeze all the weights of the 3D-CNN
backbone so that it does not lose its ability to generate tem-
poral information due to the training video frames where no
motion occurs. Also we freeze all weights of the 2D-CNN
backbone as in [11].

In a batch, for both train and test branches, we use 64 im-
ages and 64 4-frame clips as input to 2D-CNN and 3D-CNN
backbones, respectively. Our sampling strategy can be de-
fined as follows: we first determine the key frame to extract
spatial features using 2D-CNN, and then we create a corre-
sponding video clip with 4 consecutive frames in time order,
with the key frame being the last frame. Therefore, when
the frame number of key frame is smaller than 4, we apply
same padding to the beginning of the clip in time dimension.
We also apply data augmentations including, color jittering
and image flipping. In order to ensure pixel-wise correspon-
dence, the same data augmentations are applied to the key
frame and clip. We trained FAM and IoU predictor modules
for 50 epochs using Adam [34] optimizer with initial learn-
ing rates of 5 × 10−4 and 10−3, respectively, and using a
factor of 0.2 decay at every 15 epochs. The mean-squared
error is used as loss function.

Online tracking. We employ the online tracking strategy of
the ATOM tracker. During online tracking, our two-stream
network is initialized with offline pre-trained model weights
and all weights of our network except for the target classi-
fication module are frozen. Spatial resolution of 288× 288
is used for input images. While the target estimation mod-
ule receives layer-2 and layer-3 features of both 2D-ResNet
and 3D-ResNet as input, the target classification module
receives only layer-3 features of both 2D-ResNet and 3D-
ResNet as input. Downsampling rates d of the backbones
are 8 and 16 for layer-2 and layer-3, respectively. The tar-
get classification module learns the weights of 2-layer fully
convolutional network w = {w1, w2} using the L2(.) loss
function as given in Eq. (2). While the first layer applies
a 1 × 1 convolutional layer to reduce the channel size of
layer-3 features to 64, the second layer of the classification
module applies a convolutional layer with 4× 4 kernel size.
For the fast minimization of the objective function given in
Eq. (2), we use the Gauss-Newton approach proposed in
ATOM during online learning. In the initial frame, while
the classification module learns both w1 and w2, the net-
work updates just the weights of w2 at every 10th frame.

We utilize data augmentation strategies such as rotation,
blur, dropout, varying degrees of translation, image flip-
ping, and color jittering to construct an initial training set
including 30 samples using given the first frame. During on-
line tracking, the new frame is determined as the key frame
in time order. We use 4 frames to create a video clip with the

key frame being the last frame as in offline training. Also,
we copy the initial frame to complete the video clip when
the key frame number is less than 4.

3. Experiments
The proposed tracker is implemented by using PyTorch.

On Tesla V100 GPU, TRAT runs at 21 fps and 28 fps
using backbones of ResNet-18 and ResNet-50, respec-
tively. We evaluate TRAT on eight different benchmark
datasets, including the OTB-100 [66], UAV123 [45], NfS
[33], VOT2018 [37], VOT2019 [38], TrackingNet [46], La-
SOT [16] and GOT-10k [28].

On the OTB-100 [66], UAV123 [45] and NfS [33]
datasets, we report the results in one-pass evaluation (OPE)
protocol with both precision and success plots, by using
OTB evaluation toolkit. Tracking algorithms are ranked
based on the area-under-curve (AUC) scores obtained from
the precision and success plots. On the VOT2018 [37]
and VOT2019 [38] datasets, we use VOT challenge proto-
col which uses reset-based methodology in which a tracker
is re-initialized whenever the tracking fails. The accuracy
is measured in terms of expected average overlap (EAO),
which quantitatively reflects both bounding box overlap ra-
tio (accuracy-A) and re-initialization times (robustness-R).
We report the AUC scores as well as precision (Pre) and
normalized precision (Prenorm) scores on the TrackingNet
[46] and LaSOT [16] datasets. Finally, to evaluate results
on the GOT-10k [28] dataset, we calculate average overlap
(AO) and success rates (SR) at overlap thresholds set to 0.5
and 0.75.

To ensure the reliability of the results, we run the pro-
posed tracker 5 times on the OTB-100, UAV123, NfS, La-
SOT, 3 times on the GOT-10k, 1 time on the TrackingNet,
15 times on both VOT2018 and VOT2019 datasets then we
report the averages of these results.

3.1. Ablation Studies

We conduct an ablation study on the OTB-100 [66], NfS
[33], and UAV123 [45] datasets, to show the impact of in-
dividual components of the proposed tracker TRAT. Table 1
shows the results of the used components on these datasets.
Impact of Backbone. We take ATOM tracker as baseline to
analyze the impact of using ResNet-18 and ResNet-50 as its
backbone. As expected, usage of the ResNet-50 backbone
improves AUC scores by about 0.7-1% and precision scores
by about 0.1-0.6%.

We also explore the applicability of 3D-CNNs for ob-
ject tracking problem. Therefore, we experiment using only
3D-CNN backbone. Although the architecture with 3D-
CNN performs inferior compared to the architecture with
2D-CNN backbone, it still outperforms some of the re-
cent trackers such as ECO, MDNet and UPDT on AUC
and precision metrics for NfS dataset, where the motion
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Table 1. Ablation study on the OTB-100, NfS and UAV123 datasets. (The red fonts indicate the best result.)
OTB-100 NfS UAV123

Res-18 Res-50 2D-CNN 3D-CNN Sum F. Cat F. Attn AWP AUC Pre AUC Pre AUC Pre
X X 66.3 87.3 58.5 69.5 64.2 84.3

X X 67.2 87.4 59.6 70.2 64.9 84.9
X X 60.9 79.8 55.3 65.2 57.3 78.2

X X 61.5 81.1 56.4 65.8 58.9 79.8
X X X X 67.9 87.5 61.3 72.4 64.3 84.1
X X X X 67.8 87.4 61.5 72.7 65.2 85.2
X X X X X 68.4 88.3 62.6 73.1 65.8 86.2
X X X X X X 68.6 88.7 62.8 73.6 66.2 86.8

of the tracked objects is significant. However, we will
see in the next ablation study that 3D-CNN backbone pro-
duces complementary features to 2D-CNN features. As
expected, deeper 3D-CNN backbone again achieves better
performance.
Impact of Fusion Strategies. We conduct experiments for
both sum fusion and concatenation fusion in order to ex-
plore the impact of feature aggregation. As given in Table
1, fusion of 2D-CNN and 3D-CNN features improves both
AUC and precision scores on the all datasets. Concatena-
tion fusion strategy has more improvements than sum fusion
strategy on the NfS and UAV123 datasets. On the OTB-
100 dataset, both fusion approaches obtain similar results.
Therefore, we have used concatenation fusion for the rest of
the ablation studies.
Impact of Chanel Attention. After aggregating the fea-
ture maps using concatenation fusion, we have applied the
channel attention module to weight the importance of ag-
gregated channels. For this analysis, we have used global
average pooling instead of AWP. Channel attention mod-
ule improves AUC scores by about 0.6-1.0% and precision
scores by about 0.4-1.0%.
Impact of AWP. Finally, we have investigated the impact
of the AWP component. It improves AUC scores by about
0.2-0.4% and precision scores by around 0.4-0.6%. To com-
pare with other state-of-the-art trackers, we utilize this final
tracker, which is called TRAT.

3.2. State-of-the-art Comparison

Object Tracking Benchmark (OTB-100). The OTB-100
[66] is a well-known single object tracking dataset. This
dataset includes 100 fully annotated video sequences, with
11 various challenging factors. We report results in Table 2
using the OPE protocol. UPDT [4] and SiamRPN++ [39]
trackers achieve the best accuracy and precision scores, re-
spectively. Our proposed method obtains competitive re-
sults on this dataset.

NfS. We evaluate our approach on need for speed dataset
[33] (30 FPS version), which is the first high frame rate
dataset recorded at real-world scenes. It includes 100 fully
annotated videos (380K frames) with fast moving target
objects. The AUC and precision scores of state-of-the-art
trackers are shown in Table 2. TRAT achieves a success
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Figure 4. Precision and success plots of the TRAT and state-of-the-
art trackers on the NfS using one pass evaluation (OPE) protocol.

score of 62.8% which is higher than the previous best re-
sult. In terms of precision, TRAT obtains the best results af-
ter DiMP50 [3] tracker. Moreover, TRAT outperforms our
baseline tracker, ATOM [11], with relative gains of 7.4%
and 5.9% in terms of AUC and precision scores, respec-
tively. These results demonstrate the importance of using
3D-CNN in videos involving a fast-moving target object.
UAV123. The UAV123 [45] includes 123 videos captured
from low-altitude unmanned aerial vehicles. We report
the success and precision scores in Table 2. Our tracker
achieves an AUC score of 66.2% and precision score of
86.2%, which are higher than the previous best perform-
ing trackers DiMP50 [3] with 65.3% and 86.0% in terms of
AUC and precision scores, respectively. TRAT outperforms
ATOM [11] considerably by AUC score of 63.1%→ 66.2%
and precision score of 84.1%→ 86.2%.

Table 2. State-of-the-art comparison on the OTB-100, NfS and
UAV123 datasets. (The red and blue fonts respectively indicate
the best and the second best results.)

OTB-100 NfS UAV123
AUC Precision AUC Precision AUC Precision

UPDT [4] 70.7 - 54.1 - 55.0 -
RankingT [7] 70.1 91.1 - - 53.5 74.6
DaSiam-RPN [70] 65.8 88.0 60.6 75.2 56.9 78.1
MDNet [47] 67.8 90.9 41.5 49.2 56.9 78.1
ECO [12] 69.1 91.0 46.6 - 52.5 74.1
SiamRPN++ [39] 69.6 91.4 - - 61.3 80.7
SiamBAN [8] 69.6 91.0 59.4 - 63.1 83.3
DiMP50 [3] 68.4 89.4 62.0 73.7 65.3 86.0
ATOM [11] 66.3 87.4 58.5 69.5 63.1 84.3
TRAT 68.6 88.7 62.8 73.6 66.2 86.8

TrackingNet. We evaluate our tracker on the large-scale
TrackingNet [46] benchmark using success, precision and
normalized precision metrics. Table 3 shows the results of
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Figure 5. Normalized precision and success plots of the TRAT and
state-of-the-art trackers on the LaSOT.

state-of-the-art trackers on the TrackingNet test split which
contains 511 videos. TRAT ranks second for all metrics and
achieves competitive results compared to the best perform-
ing trackers, SiamRPN++ [39] and SiamAttn [68].

Table 3. State-of-the-art comparison on the TrackingNet dataset.
(The red and blue fonts respectively indicate the best and the sec-
ond best results.)

UPDT [4] DaSiam-RPN [70] D3S [43] SiamAttn [68] SiamRPN++ [39] DiMP50 [3] ATOM [11] TRAT
Pre (%) 55.7 59.1 66.4 - 69.4 68.7 64.8 68.9
Prenorm (%) 70.2 73.3 76.8 81.7 80.0 80.1 77.1 80.3
Success (%) 61.1 63.8 72.8 75.2 73.3 74.0 70.3 74.2

LaSOT. Large scale object tracking [16] dataset consist of
1400 sequences with 3.52 million frames, which have high-
quality dense annotations. We evaluate our tracker on test
split which consist of 280 videos. TRAT achieves the sec-
ond best result on success metric and competitive results
for normalized precision metric. More importantly, TRAT
significantly outperforms ATOM by 7.0% and 5.1% on nor-
malized precision and success metrics, respectively.

Table 4. State-of-the-art comparison on the LaSOT dataset. (The
red and blue fonts respectively indicate the best and the second
best results.)

DaSiam-RPN [70] SiamBAN [8] SiamAttn [68] SiamRPN++ [39] DiMP50 [3] ATOM [11] TRAT
Prenorm (%) 49.6 59.8 64.8 56.9 64.8 57.6 64.6
Success (%) 41.5 51.4 56.0 49.6 56.8 51.5 56.6

GOT-10k. The GOT-10k dataset [28] is another large-scale
object tracking dataset which contains 10K video sequences
for the training set and 180 videos with an average length of
127 frames for the test set. We evaluate TRAT on the GOT-
10k dataset using the GOT-10k evaluation toolkit. Table 5
shows the state-of-the-art comparison on the GOT-10k test
split. We report the results in terms of success rates (SR)
and average overlap (AO). In terms of SR at overlap thresh-
olds set to 0.5 and 0.75, TRAT obtains the best and second-
best results of 72.0% and 46.7% respectively. Again TRAT
has a comparable AO result to DiMP50 [3]. Compared with
the baseline tracker ATOM [11], TRAT has significant im-
provements of 8.6% on SR0.50, 6.5% on SR0.75, and 5.2%
on AO.

Table 5. State-of-the-art comparison on the GOT-10k dataset. (The
red and blue fonts respectively indicate the best and the second
best results.)

MDNet [47] CCOT [14] ECO [12] SiamMask [64] D3S [43] DiMP50 [3] ATOM [11] TRAT
SR0.50 (%) 30.3 32.8 30.8 58.7 67.6 71.7 63.4 72.0
SR0.75 (%) 9.9 10.7 11.1 36.6 46.2 49.2 40.2 46.7
AO (%) 29.9 32.5 31.6 51.4 59.7 61.1 55.6 60.8

VOT2018-VOT2019. We evaluate trackers on the short-
term challenges of the VOT2018 [37] and VOT 2019 [38]
datasets which consist of 60 fully annotated video se-
quences by rotated bounding boxes. All frames are also
annotated for different challenging factors including mo-
tion change, size change, occlusion, illumination change,
camera motion, and unassigned which did not correspond
to the other attributes. We run our trackers 15 times to
extract results by provided VOT evaluation toolkit. Ta-
ble 6 and Table 7 show the state-of-the-art comparison on
the VOT2018 and VOT2019 datasets, respectively. We re-
port all results using a reset-based methodology which con-
tains accuracy (A), robustness (R) and expected average
overlap (EAO) metrics for both datasets. Our proposed
method TRAT outperforms the state-of-the-art trackers with
0.456 EAO, 0.605 accuracy, and 0.148 robustness scores on
the VOT2018 dataset. Especially in terms of EAO, TRAT
achieves large gains of 5.5%, compared to our baseline
method ATOM [11].

Table 6. State-of-the-art comparison on the VOT2018 dataset.
RankingT [7] SiamBAN [8] DaSiam-RPN [4] SiamRPN++ [39] DiMP50 [3] ATOM [11] TRAT

AUC 0.554 0.597 0.503 0.604 0.597 0.590 0.605
Robustness 0.213 0.178 0.159 0.234 0.153 0.204 0.148
EAO 0.335 0.452 0.389 0.414 0.440 0.401 0.456

On the VOT2019 dataset, TRAT achieves the best accu-
racy score of 0.606. Moreover, in terms of robustness and
EAO, it obtains the second-best scores of 0.302 and 0.381,
respectively.

Table 7. State-of-the-art comparison on the VOT2019 dataset.
RankingT [7] SiamBAN [8] SiamMask [64] SiamRPN++ [39] DiMP50 [3] ATOM [11] TRAT

AUC 0.528 0.602 0.594 0.599 0.594 0.603 0.606
Robustness 0.360 0.327 0.461 0.482 0.278 0.411 0.302
EAO 0.270 0.396 0.287 0.285 0.379 0.292 0.381

4. Conclusion

This paper introduces a two-stream deep neural network
tracker using 2D-CNN and 3D-CNN backbones. The pro-
posed tracker is built based on ATOM tracker architecture,
and the 2D-CNN stream is used to capture appearance in-
formation whereas the 3D-CNN is used for capturing mo-
tion cues. The feature maps coming from these two streams
are fused by using an effective channel fusion and attention
mechanism that considers only local correlations between
feature channels. This significantly decreases the compu-
tational complexity, and allows the network to learn the
feature aggregation parameters during online tracking ef-
ficiently. The proposed tracker, TRAT, is evaluated on most
of the tracking datasets and results show that it achieves
the state-of-the-art accuracies on most of the tested datasets.
Moreover, it significantly outperforms the baseline tracker
ATOM that uses only appearance information alone. This
indicates the importance of motion information in tracking
applications.
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