
Applicable Artificial Intelligence for Brain Disease: A Survey 

 

Chenxi Huang1, Jian Wang2, Shui-Hua Wang2, Yu-Dong Zhang2,3,*, 

 

1 School of Informatics, Xiamen University, Xiamen, 361005, China 

2 School of Computing and Mathematical Sciences, University of Leicester, Leicester, LE1 7RH, UK 

3 Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 

21589, Saudi Arabia 

Email: Chenxi Huang (supermonkeyxi@xmu.edu.cn), Jian Wang (jw830@le.ac.uk), Shui-Hua Wang (shuihuawang@ieee.org), 

Yu-Dong Zhang (yudongzhang@ieee.org) 

Correspondence should be addressed to Yu-Dong Zhang. 

 

Abstract 

 

Brain diseases threaten hundreds of thousands of people over the world. Medical imaging 

techniques such as MRI and CT are employed for various brain disease studies. As artificial intelligence 

succeeded in image analysis, scientists employed artificial intelligence, especially deep learning 

technologies, to assist brain disease studies. The AI applications for brain disease studies can be divided 

into two categories. The first category is preprocessing, including denoising, registration, skull-stripping, 

intensity normalization, and data augmentation. The second category is the clinical application that 

contains lesion segmentation, disease detection, grade classification, and outcome prediction. In this 

survey, we reviewed over one hundred representative papers on how to apply AI to brain disease studies. 

We first introduced AI-based preprocessing for brain disease studies. Second, we reviewed the influential 

works of AI-based brain disease studies. At last, we also discussed three development trends in the future. 

We hope this survey will inspire both expert-level researchers and entry-level beginners. 
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1. Introduction 

 

Brain diseases are humans' most commonly seen and dangerous illnesses [1]. According to the 

World Health Statistics 2020 published by WHO, over ten million people have died of brain diseases 

yearly since 2016. Brain diseases have become one of the biggest threats to people worldwide. Various 

brain diseases include cerebral vascular accidents (CVAs), brain tumors, sleep disorders, multiple 

sclerosis, and dementia. These brain diseases are caused for different reasons and occur in different brain 

structures. For example, CVA, also known as stroke, is caused by vessel blockage or rupture inside the 

brain. When a hemorrhage stroke occurs within the brain, it is called intracranial hemorrhage. It is called 

a subarachnoid hemorrhage when it occurs between the inner and outer layers of the tissue covering the 

brain. In this circumstance, when a brain disease attacks, we want to know where it occurs, which brain 

disease it belongs to, how bad it is, and even what outcome it will be. In order to figure out these questions, 

scientists have presented numerous methods for lesion segmentation, detection-based diagnosis, grade 
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or subtypes classification, and outcome prediction. These are the mainstreams of applying computer-

aided technologies to brain disease studies. 

Due to brain structure being complex and easily misguided, doctors and scientists usually adopt 

medical imaging techniques to examine the brain condition. Magnetic resonance imaging (MRI), 

computed tomography (CT), magnetic resonance angiography (MRA), and computed tomography 

angiography (CTA) are the four most commonly applied medical imaging techniques. These medical 

imaging modalities can be utilized to illustrate the inner structure of brains and delineate the three-

dimensional model for clinical and research purposes [2]. However, we cannot ignore that these imaging 

techniques usually come with noise, unbalanced sample distribution, irrelative tissue background, and 

non-standardized intensity distribution. These factors will interfere with further brain image analysis, 

such as segmentation, detection, and classification [3]. Thus, quantities of preprocessing methods are put 

forward to relieve these negative factors. For example, denoising preprocessing methods aim to reduce 

the noise from original medical images. In this way, these denoising preprocessing methods enhance the 

image quality. Skull-stripping preprocessing methods are used to remove non-brain tissue from brain 

MRI images. It would enable the subsequent analysis tasks like segmentation to acquire a higher 

segmentation accuracy. Nowadays, brain image preprocessing has become an essential field in the studies 

of brain diseases. 

Artificial intelligence [4-7] has been broadly applied in many fields, including face recognition, 

translation, transportation, and medical image analysis. Scientists have proposed many approaches [8-

11] for lesion segmentation, illness detection, and survival prediction based on medical imaging 

techniques such as MRI, CT, and X-rays using artificial intelligence, especially the deep learning model. 

One of the most applicable deep learning models is the convolutional neural network (CNN). A CNN 

includes convolution layers that equip the CNN with a strong ability to extract deep features from input 

images [12]. A fully convolutional network (FCN) is another typical deep learning model [13]. It differs 

from a CNN in that an FCN contains upsampling layer, which makes it suitable for three-dimensional 

extraction and segmentation. A generative adversarial network (GAN) is also a representative deep 

learning model applied widely in various fields [14]. U-Net has become one of the most popular methods 

for medical image segmentation due to its unique architecture [15]. 

Further, the 3D U-Net was proposed to enhance the original U-Net’s capacity for three-dimensional 

structure segmentation, such as cerebral vessels and brain tumors [16]. As new advanced deep learning 

models sprang out, scientists became more interested in developing AI methods for brain disease studies. 

We adopted artificial intelligence and brain disease as keywords and counted each year how many papers 

were published according to search results at Google Scholar. As shown in Figure 1, the trend of 

published papers for AI-based brain disease studies has risen during the past ten years. This trend can be 

considered as side evidence of the superiority of artificial intelligence over traditional methods in the 

field of brain disease study. In general, deep learning-based methods often have higher accuracy and 

better results than traditional methods [17-20]. For brain disease research, it means that deep learning-

based methods can help physicians to determine conditions and cut lesions more accurately and 

efficiently. Another major advantage of AI is its potential for data exploitation. As more and more training 

data becomes available, researchers can continually improve the performance of deep learning-based 

models, even surpassing the ability of humans to accomplish the same tasks. This is a huge advantage 

that traditional methods do not offer and is where the significance of AI-based methods for brain disease 

study is built on. 

 



 

Figure 1 The trend of AI studies for brain disease 

 

Artificial intelligence is applied to the studies of brain diseases generally in two directions [21-26]. 

The first one is preprocessing [27-29]. Preprocessing is an indispensable part of constructing an approach 

to analyzing brain images [30-32]. Moreover, artificial intelligence itself is a commonly-used method for 

developing state-of-the-art preprocessing approaches [33-35]. Scientists have adopted advanced deep 

learning models to propose more effective preprocessing technologies [36]. Thus, in this article, we will 

first review artificial intelligence applications of brain image preprocessing. The other direction is 

designing novel methods of brain image analysis to assist with the clinical diagnosis, treatment, and 

assessment. These methods vary from lesion segmentation to outcome prediction [37-39]. Therefore, 

after introducing applicable artificial intelligence in preprocessing, we will investigate several 

commonly-seen brain diseases and survey their intelligence-based methods. In order to make it more 

clear, we offered Figure 2 to show how AI can be applied to brain disease studies in these two directions. 

Finally, we will discuss AI’s future in brain disease studies. 
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Figure 2 How AI can be applied in brain disease studies 

 

Overall, we categorized the reviewed papers into two main aspects, preprocessing and analysis of 

brain images. In the aspect of brain image preprocessing, we surveyed over thirty articles covering the 

topics of denoising, registration, skull-stripping, intensity normalization, and data augmentation. In the 

aspect of brain image analysis, we reviewed over one hundred papers containing the most commonly 

seen brain diseases, including ischemic strokes, transient ischemic attack, intracranial hemorrhage, 

intracranial aneurysm, subarachnoid hemorrhage, arteriovenous malformation, moyamoya disease, 

Alzheimer’s disease, and multiple sclerosis. In addition to investigating a large number of recent and 

comprehensive papers in the field of deep learning-assisted diagnosis of brain diseases, our contribution 

is to sort out the general process and framework for the application of deep learning in brain diseases. 

We provided detailed descriptions, including formulas and images, and summarised the state of 

development for a number of fundamental and key domain technical models. We also presented an 

outlook on potentially promising deep learning technologies and discussed scenarios for their use in the 

field of brain diseases. We hope that this survey paper will benefit both scientists and clinicians. 

 

2. Brain image preprocessing 

 

Medical imaging technologies are the most effective way to examine a patient’s condition. 

Clinicians usually rely on medical imaging technologies to assist in diagnosing various brain diseases. 

The most commonly applied medical imaging technologies in brain disease diagnosis include magnetic 

resonance imaging (MRI), computed tomography (CT), magnetic resonance angiography (MRA), 

computed tomography angiography (CTA), and digital subtraction angiography (DSA). These imaging 

modalities have their own characteristics and the type of brain disease for which they are suitable. CT, 

which uses precisely collimated X-ray beams, gamma rays, and ultrasound to scan around the body one 

section after another, has a fast rate of scanning and provides clear images. MRI is another commonly 

used tomographic imaging technique that uses the phenomenon of magnetic resonance to obtain 

electromagnetic signals from the body and to reconstruct information about body parts. CTA is a non-

invasive vascular imaging technique that uses multi-layer spiral CT to scan the target vessel in rapid 

succession at multiple levels during peak contrast filling after intravenous injection of contrast material. 



CTA is a safe, convenient, rapid, qualitative, and localized method for the diagnosis of cerebrovascular 

lesions, such as cerebral aneurysms and cerebrovascular malformations. MRA is based on saturation, 

inflow enhancement, and flow dephasing effects and can detect areas of stenosis and occlusion, as well 

as vascular disease (aneurysms, arteriovenous malformations, etc.) MRA includes direct MRA and 

enhanced MRA (CE-MRA), both of which have their advantages. Direct MRA is a simple, non-invasive, 

and low-cost method that has become an indispensable clinical test as it does not use contrast, and CE-

MRA is more reliable than direct MRA in showing the lumen of the blood vessels, with significantly 

fewer artefacts and a more realistic reflection of the degree of stenosis. DSA is an angiographic method 

of imaging assisted by an electronic computer, which is accomplished by applying a computer 

programme for two imaging sessions. The first image is taken before the contrast is injected, and the 

computer converts the image into a digital signal for storage. After the contrast medium is injected, the 

image is imaged again and converted to a digital signal. The two digital times are subtracted to eliminate 

the same signal, and a contrast-only image of the blood vessels is obtained. This image is clearer and 

more visual than the conventional cerebral angiography used in the past, and some of the finer vascular 

structures can be visualized. 

In most cases, scientists need to employ preprocessing technologies to brain medical images due to 

two reasons. The first reason is to improve image quality. The second reason is that preprocessing 

technologies enable researchers to apply medical images more easily and conveniently in subsequent 

studies, such as lesion segmentation, disease detection and classification, and outcome prediction [40]. 

Therefore, brain image preprocessing technologies can be divided into two categories. The first category 

is individual image preprocessing, like denoising. The second category is processing progress upon a 

group of images, which aims at mitigating the negative influence on later image analysis, consisting of 

registration, skull-stripping, intensity normalization, and data augmentation. In general, the first category 

is applied to enhance the quality of an individual image, while the second category is deployed to improve 

the quality of an entire image dataset. As we can see in Figure 3, brain image preprocessing is very 

important to imaging-based brain disease studies. Moreover, brain image preprocessing itself is an 

essential field of artificial intelligence application. Thus, in this chapter, we presented a brief review of 

state-of-the-art brain image preprocessing approaches as follows. We hoped the content would enable 

readers to understand how to actually perform brain disease studies. 

 

 

Figure 3 The pipeline of AI-based brain image classification 

 

2.1. Denoising 

 

Image denoising is a technology of a long history. Although massive traditional methods were 



already put forward [41-44], in recent years, scientists have tended to apply artificial intelligence to 

develop denoising methods. In 2017, Benou, et al. [45] presented an integrated approach for contrast-

enhanced brain MRI denoising. They adopted autoencoders (AEs) to extract the noise features and 

imitate the curve prototypes. They also raised an automated model to generate realistic training sets due 

to lacking ground-truth data. Their approach was efficient on a stroke dataset and a brain tumor dataset, 

which indicated that deep neural networks had the potential to build denoising approaches for brain MRI 

images. In 2018, Jiang, et al. [46] introduced the famous DnCNN model into the field of MRI image 

denoising. They applied residual learning and batch normalization in their approach to accelerate the 

training and improve performance (shown in Figure 4). Their deep learning-based denoising model 

adopted a noisy observation as the input, which could be written as 

 𝑦 = 𝑥 + 𝑟 . ⑴. 

In this formula, 𝑥 indicates the clean image. The denoising model was to train a residual mapping 

 𝑅(𝑦) ≈ 𝑟 . ⑵. 

Therefore, the latent clean image could be obtained by 

 𝑥 = 𝑦 − 𝑅(𝑦) , ⑶. 

and the loss function in this training process was defined as 

 

𝑙𝑜𝑠𝑠(𝜃) =
1

2𝑁
∑‖𝑅(𝑦𝑖 ; 𝜃) − (𝑦𝑖 − 𝑥𝑖)‖2

𝑁

𝑖=1

 . ⑷. 

The experimental results showed that their approach outperformed other state-of-the-art denoising 

methods. In 2019, Chauhan, et al. [47] proposed a deep learning-based method for brin MRI denoising. 

They developed the approach by combining the convolutional autoencoders with several fuzzy logic 

filters. It was demonstrated that their approach acquired state-of-the-art performance in the comparison 

experiments. At the same time, we could not ignore that researchers were still digging into the potential 

of traditional denoising methods. Mzoughi, et al. [48] proposed a human MRI denoising method using 

bilateral filters combined with automatic contrast stretching. They claimed that this method was superior 

to state-of-the-art methods. Rai, et al. [49] proposed an integrated method for MRI image denoising. 

They applied the wavelet transform combined with independent component analysis to obtain better 

experimental results than classic denoising methods. Back to deep learning-based denoising development, 

Hong, et al. [50] proposed an attention mechanism-based convolutional neural network for MRI 

denoising. They also applied the feature fusion technique by combining the local features with the global 

ones to boost the network’s capacity. It was demonstrated through the experiment results that their deep 

learning-based method attained an outstanding performance. Tripathi, et al. [51] proposed a CNN-based 

approach for MRI image denoising. The encoder-decoder architecture was adopted in their approach to 

preserve the prominent features. By employing the residual learning strategy, their approach achieved 

promising results in the experiments. Finally, we provided Table 1 to summarize this section. 

 

Figure 4 The network structure of DnCNN 



 

Table 1 Methods for denoising 

Authors Year Modality Method Characteristics 

Weickert [41] 1998 MRI Anisotropic diffusion Representing classic 

traditional methods 

Diaz, et al. [42] 2011 MRI The non-local means 

algorithm 

Outperforming than 

other conventional 

methods 

Agarwal, et al. [43] 2017 MRI Wavelet transform Convincing 

performance 

Benou, et al. [45] 2017 MRI Autoencoders Automatically 

generating realistic 

training sets 

Saladi, et al. [44] 2017 MRI The spatial adaptive non-

local means algorithm 

Outstanding 

performance 

Jiang, et al. [46] 2018 MRI DnCNN Residual learning and 

batch normalization 

Chauhan, et al. [47] 2019 MRI Autoencoders Combined with fuzzy 

logic filters 

Mzoughi, et al. [48] 2019 MRI Bilateral filters Combined with 

contrast-enhancement 

technique 

Rai, et al. [49] 2019 MRI Wavelet transform Combined with 

independent component 

analysis 

Hong, et al. [50] 2020 MRI An attention-based CNN Combined with the 

feature fusion technique 

Tripathi, et al. [51] 2020 MRI The encoder-decoder 

networks 

Residual learning 

 

2.2. Registration 

 

As we know, in most cases, scientists need to communicate brain imaging results regarding 

anatomical regions. The brain images require registration to construct the corresponding structure-based 

relationship among different brains before subsequent analysis [52-54]. In this circumstance, scientists 

developed various registration methods. Apart from classic traditional registration methods [55-57], deep 

learning-based methods were put forward in these years as well. In 2018, Fan, et al. [54] presented a 

study on using adversarial similarity networks for MRI image registration. Their model consisted of a 

registration network and a discrimination network. The feedback of the discrimination network trained 

the registration network. This adversarial training approach was claimed to outperform state-of-the-art 

methods. In 2019, Xu, et al. [58] proposed a semi-supervised learning approach for MRI segmentation 

and registration. Their approach jointly learns segmentation and registration. In this way, both 

segmentation and registration were enhanced owing to each other’s assistance. The experimental results 

suggested their approach’s efficiency. In 2020, Zhu, et al. [59] proposed a three-dimensional end-to-end 



cascaded network structure for brain MRI registration. The architecture contained one subnetwork for 

acquiring affine alignment and the other subnetwork for deformable non-rigid registration. Their 

approach was demonstrated to be effective through the experimental results. In 2021, Liu, et al. [60] 

proposed a multi-step context-aware inpainting framework for brain MRI registration. They also applied 

a feature-level patch-match refinement module. The framework was proved effective through the 

experiments. In the end, we provided Table 2 as the summary of this section. 

 

Table 2 Methods for registration 

Authors Year Modality Method Characteristics 

Mang, et al. [55] 2008 MRI Parametric registration Less time-consuming 

Klein, et al. [56] 2009 MRI Non-linear registration Performance nearly not 

affected by subject 

selection 

Dadar, et al. [57] 2018 MRI The revised BestLinReg 

registration 

State-of-the-art 

performance 

Fan, et al. [54] 2018 MRI Adversarial similarity 

networks 

No need for ground-

truth deformations and 

specific similarity 

metrics 

Xu, et al. [58] 2019 MRI The DeepAtlas model Deep CNN architecture 

with joint learning for 

segmentation and 

registration 

Zhu, et al. [59] 2020 MRI The cascaded FCN No need for 

independent rigid 

alignment 

Liu, et al. [60] 2021 MRI A multi-step context-

aware inpainting 

framework 

Usage of a feature-level 

patch-match refinement 

module 

 

2.3. Skull-stripping 

 

The brain is considered the most complex anatomical structure in the human body. Skull-stripping 

enables researchers to precisely extract the brain tissue and delineate its region from medical images. In 

this way, nonbrain tissue, such as skulls, muscles, fats, and eyes, could be removed, which is beneficial 

to performing subsequent analysis, including segmentation, detection, and prediction [61-63]. Therefore, 

scientists regard skull-stripping as one of the most important preprocessing steps for brain image analysis. 

In 2006, Fennema‐Notestine, et al. [64] presented a study comparing four popular traditional skull-

stripping methods, including the brain extraction tool (BET), the 3dIntracranial, a hybrid watershed 

algorithm (HWA), and the brain surface extractor (BSE). They suggested that each method had its 

strength and defect through sufficient experiments, so researchers should choose the proper skull-

stripping method based on the actual situation. In 2011, Speier, et al. [65] proposed a modified ROBEX 

method for brain MRI skull-stripping and reported obtaining better results than popular methods such as 

BET, BSE, and HWA. In 2016, Kleesiek, et al. [66] proposed a deep learning-based method for brain 



MRI skull-stripping using a three-dimensional convolutional neural network architecture. The 

experimental results showed that their method achieved competitive performance among state-of-the-art 

methods. In 2019, Hwang, et al. [67] applied the 3D-UNet to establish an approach for MRI brain 

extraction and claimed to achieve better performance than mainstream methods. Finally, we summarized 

this section by giving Table 3. 

 

Table 3 Methods for skull-stripping 

Authors Year Modality Method Characteristics 

Fennema ‐

Notestine, et al. [64] 

2006 MRI BET, 3dIntracranial, 

HWA, BSE 

Comparison study 

Speier, et al. [65] 2011 MRI A modified ROBEX 

method 

Outperforming popular 

methods 

Kleesiek, et al. [66] 2016 MRI FCN 3D convolutional neural 

network structure 

Hwang, et al. [67] 2019 MRI 3D-UNet Outstanding 

performance 

 

2.4. Intensity normalization 

 

Due to most brain image analysis methods like segmentation and detection assuming that the image 

intensity was distributed in a standardized range, scientists usually employ intensity normalization before 

performing the subsequent medical analysis. The process of intensity normalization plays a significant 

role in brain MRI image analysis as other methods like histogram matching can not ensure the same 

correspondence between intensity and brain tissue. Take Z-score intensity normalization as an example. 

We utilized 𝐼(𝑥) to represent a brain MRI image and 𝐵 to describe the corresponding brain mask. Then 

we achieve the mean 𝜇𝑍𝑆  and standard deviation 𝜎𝑍𝑆  of brain mask intensity. And the Z-score 

normalized image could be recorded as 

 
𝐼𝑧−𝑠𝑐𝑜𝑟𝑒(𝑥) =

𝐼(𝑥) − 𝜇𝑍𝑆

𝜎𝑍𝑆

 . ⑸. 

If we skip intensity normalization in the study, it will affect the results of segmentation or detection and 

prevent them from acquiring the best performance. Thus, intensity normalization is recognized as one of 

the most vital preprocessing steps. Back in 1999, Nyúl, et al. [68] proposed a two-stage method for 

intensity normalization. Their study revealed that similar intensity might indicate similar tissue when 

sharing the same MR protocol and body region. Shah, et al. [69] tested Nyúl’s method via numerous 

experiments and demonstrated its effectiveness in the clinic. In 2010, Tustison, et al. [70] proposed the 

famous N4ITK method, which has been considered a baseline in later studies. In 2015, Sun, et al. [71] 

proposed a histogram-based method for intensity normalization on brain MRI images and claimed to 

achieve satisfying performance. In 2019, Simkó, et al. [72] proposed artificial neural network 

architecture for MRI intensity normalization and reported better performance than N4ITK. In the end, 

we provided Table 4 to summarize this section. 

 

Table 4 Methods for intensity normalization 

Authors Year Modality Method Characteristics 

Nyúl, et al. [68] 1999 MRI A two-stage method Correspondence of 



intensity and body 

tissue 

Shah, et al. [69] 2011 MRI A two-stage method Convincing 

performance 

Tustison, et al. [70] 2010 MRI N4ITK State-of-the-art 

performance 

Sun, et al. [71] 2015 MRI A histogram-based 

method 

Outstanding 

performance 

Simkó, et al. [72] 2019 MRI ANN Promising performance 

 

2.5. Data augmentation 

 

Since deep learning was widely applied in studies of brain image analysis, lacking training data has 

been a general problem bothering researchers. If training data is insufficient, the deep learning-based 

model cannot reach its best ability, including segmentation, classification, detection, and prediction. Data 

augmentation applies approaches like affine transformation to multiply more training samples based on 

the given dataset. Through data augmentation, the quantity of image samples is enlarged, and overfitting 

is suppressed. In this circumstance, data augmentation became one of the essential preprocessing 

technologies. It attracted scientists’ interest in developing more powerful data augmentation methods 

recently. In 2018, Shin, et al. [73] proposed a deep learning-based data augmentation method applying 

the generative adversarial network (GAN). They employed the GAN for brain image synthesis and used 

synthetic images to supplement the training data. Their method achieved promising performance 

according to the experimental results. In 2019, Afzal, et al. [74] presented a data augmentation 

framework based on transfer learning and successfully applied this framework to Alzheimer’s disease 

detection. Mok, et al. [75] proposed another GAN-based data augmentation method and reached state-

of-the-art performance. Sajjad, et al. [76] also proposed a deep learning-based data augmentation method 

for brain tumor grading and obtained satisfying experimental results. Zhao, et al. [77] proposed a data 

augmentation method based on learned transformations. In 2020, Han, et al. [78] proposed a novel data 

augmentation method using the progressive growth of generative adversarial network (PGGAN) and 

obtained better experimental results than conventional GAN-based methods. Li, et al. [79] put forward 

a new framework for brain-tumor-image data augmentation called TumorGAN. They employed a 

regional perceptual loss and a regional L1 to improve the framework’s performance. Furthermore, this 

framework was efficient according to their experimental results. Safdar, et al. [80] presented a research 

of comparing several popular data augmentation techniques. According to their study results, rotation 

attained the best performance improvement. At last, we provided Table 5 to summarize this section. 

 

Table 5 Methods for data augmentation 

Authors Year Modality Method Characteristics 

Shin, et al. [73] 2018 MRI GAN Using synthetic images 

to expand training data 

Afzal, et al. [74] 2019 MRI Transfer learning Relieving the 

unbalanced data 

distribution 

Mok, et al. [75] 2019 MRI GAN Using a coarse-to-fine 



generator 

Sajjad, et al. [76] 2019 MRI GAN Convincing 

performance 

Zhao, et al. [77] 2019 MRI Transformation-based 

method 

State-of-the-art 

performance 

Han, et al. [78] 2020 MRI PGGAN Outstanding 

performance 

Li, et al. [79] 2020 MRI TumorGAN Adopting a regional 

perceptual loss 

Safdar, et al. [80] 2020 MRI Rotation-based method Outstanding 

performance 

 

3. Brain diseases 

 

There are many kinds of brain diseases, among which cerebrovascular disease is a very common 

category. Cerebrovascular diseases usually referred to as cerebral vascular accidents (CVA), are also 

called strokes in many cases. As one of the most dangerous diseases, stroke kills thousands of lives every 

year, threatening people’s health worldwide. A stroke attack occurs when the cerebral artery encounters 

blockage or rupture, leading to brain tissue death due to a lack of blood supply. Generally, strokes can be 

divided into two types: ischemic stroke and hemorrhagic stroke. Most strokes are ischemic strokes 

because of brain artery blockage, while some hemorrhagic strokes still exist due to brain artery rupture. 

Transient ischemic attacks (TIAs) belong to one type of ischemic stroke. Hemorrhagic strokes consist of 

intracranial hemorrhage, intracranial aneurysm, subarachnoid hemorrhage (SAH), arteriovenous 

malformation (AVM), and moyamoya disease. In addition to cerebrovascular disease, Alzheimer’s 

disease and multiple sclerosis are common brain diseases of great research value. 

Artificial intelligence has been broadly utilized in various studies of cerebral vascular accidents in 

recent years. Scientists have been applying deep learning technologies for segmentation from kinds of 

medical imaging methods, including magnetic resonance imaging (MRI), magnetic resonance 

angiography (MRA), computerized tomography (CT), and computerized tomography angiography 

(CTA). Compared to traditional methods, deep learning-based methods usually attain higher accuracy 

and achieve better performance in varieties of brain disease studies. For example, deep neural networks 

are adopted to segment the brain vessel structure on MRA images and the stroke lesion on CTA images. 

Scientists utilize convolutional neural networks to detect strokes based on MRI images and classify 

strokes into ischemic strokes and hemorrhagic strokes. In addition to segmentation, detection, and 

classification tasks, researchers also employ artificial intelligence to predict lesion progress and 

prognosis, which is beneficial to treatment planning and outcome management. Except for analyzing 

medical images, artificial intelligence can also predict the stroke onset using the text data such as case 

reports, medical service data, and health behavior data. This chapter will survey the artificial intelligence-

based studies for several most commonly seen cerebrovascular diseases, including ischemic stroke, TIA, 

intracranial hemorrhage, intracranial aneurysm, SAH, AVM, and moyamoya disease. 

 

3.1. Brain vessel segmentation 

 

As we know, doctors and scientists must segment brain vessels accurately in the head of further 



research, such as detecting and predicting cerebrovascular diseases. Brain vessel segmentation is the 

cornerstone of imaging-based cerebrovascular disease research. Thus, we cannot skip the brain vessel 

segmentation technologies when introducing cerebrovascular disease research. This section will review 

the methods and applications of cerebrovascular segmentation. Some of them are traditional methods, 

while most advanced approaches nowadays are based on deep learning. At the end of this section, we 

gave a summary by providing Table 6. 

In 2006, Hassouna, et al. [81] proposed a cerebrovascular segmentation approach based on 

stochastic methods. Their approach adopted a time-of-light magnetic resonance angiography (TOF-MRA) 

dataset using a Markov random field (MRF) model and the maximum pseudo-likelihood estimator 

(MPLE) algorithm to extract blood-vessel voxels from background noise ones. The experimental results 

showed that their approach could segment cerebral vessels down to 3 voxel diameters. In 2013, Babin, 

et al. [82] put forward a method for cerebrovascular segmentation based on line-shaped profiles. It was 

demonstrated that their method could segment large blood vessel tree structures and delineate fine 

structures of cerebral vessel networks. In 2015, Wang, et al. [83] raised a threshold segmentation method 

for automatically segmenting brain vessels on brain magnetic resonance angiography (MRA) images. 

The experimental results proved its capacity to segment brain vessels accurately. These three methods 

above are representative of traditional methods for cerebrovascular segmentation. In recent years, 

scientists tended to develop deep learning-based methods for brain vessel segmentation. Compared with 

traditional methods, deep learning-based methods usually could achieve a better precision and robustness 

of segmentation. In 2017, Phellan, et al. [84] applied deep convolutional neural networks to segment 

cerebral vessels on TOF-MRA images. The experimental result showed their method acquired an average 

Dice coefficient ranging from 0.764 to 0.786, which indicated that deep learning-based methods could 

obtain high performance in cerebrovascular segmentation as well. 

In 2018, Zhao, et al. [85] proposed a semi-supervised learning method for cerebrovascular 

segmentation based on a hierarchical convolutional neural network architecture. They applied the 

centerlines and estimated radii to produce the tube-level labels of brain vessels from MRA images. The 

experimental results showed that this method achieved a sensitivity of 94.69% and an accuracy of 97.85%. 

In 2019, Livne, et al. [86] applied the U-Net architecture (shown in Figure 5) to develop a deep learning-

based segmentation method for brain vessels and reported to assure a Dice value of 0.88, which is better 

than traditional graph-cuts methods. Sanchesa, et al. [87] proposed a novel approach for cerebrovascular 

segmentation on MRA images. They combined the advantages of the three-dimensional U-Net structure 

with the Inception modules to develop their segmentation model. The experimental results proved that 

this model could attain state-of-the-art performance. In 2020, Fan, et al. [88] developed a hybrid deep 

learning-based approach for cerebral vessel segmentation on TOF-MRA images. Their training dataset 

was labelled by a hidden Markov random field (HMRF) model rather than hand-crafted annotations. 

Their hybrid approach achieved a Dice value of 0.79 due to it united the strengths of deep convolutional 

neural networks and HHRF. Hilbert, et al. [89] proposed the BRAVE-NET for cerebrovascular 

segmentation based on a three-dimensional U-Net architecture. They applied the three-dimensional U-

Net as the backbone and integrated the multiscaling context path into it. Their multiscale three-

dimensional convolutional neural network model obtained a Dice coefficient of 0.931, more accurate 

than the comparison groups. Meng, et al. [90] proposed a novel multiscale model for brain vessel 

segmentation on MRA images. They developed an encoder-decoder structure based on U-Net. They also 

designed a multiscale module for brain vessels with different diameters and improved the skip 

connections and the dense blocks to enhance high-level feature extraction. Their model obtained an F1 



score of 0.8813, an accuracy of 0.9784, a sensitivity of 0.8775, and a specificity of 0.9886, which was 

superior to the state-of-the-art methods. Ni, et al. [91] proposed an attention mechanism-based 

convolutional neural network architecture for brain vessel segmentation. They applied a multi-channel 

attention mechanism to aggregate the low-level features and the high-level ones. And they also adopted 

the Atrous Spatial Pyramid Pooling (ASPP) to boost multiscale feature extraction. The experimental 

results suggested that this approach reached a Dice coefficient of 0.965, which is more outstanding than 

other state-of-the-art methods. Tatsat, et al. [92] proposed a new CNN-based architecture called 

DeepMedic (shown in Figure 6) for cerebrovascular segmentation. They employed the multi-resolution 

inputs to expand the perception field, improving the segmentation precision of tiny vessels. Their model 

achieved a Dice value of 0.94 and a Connectivity-Area-Length (CAL) of 0.84, outperforming the baseline 

methods like U-Net. Tetteh, et al. [93] proposed their deep learning-based model called DeepVesselNet 

for brain vessel segmentation. Compared to ordinary deep learning-based methods, they presented three 

innovations. First, they developed two-dimensional orthogonal cross-hair filters with three-dimensional 

context information in order to relieve computing pressure. Second, they employed a false-positive rate 

correction embedded cross-entropy loss function for class balancing. Third, they applied a computational 

angiogenesis model which could imitate vascular tree growth to construct a synthetic dataset. Then they 

utilized this synthetic dataset for transfer learning to improve the performance. The experimental results 

showed that their model acquired promising performance, especially in the segmentation of voxel-sized 

vessel structures. 

 

 

Figure 5 The illustration of U-Net architecture [15] 

 

Lately, Wang, et al. [94] proposed a novel approach called the JointVesselNet for brain vessel 

segmentation. The JointVesselNet embedded the maximum intensity projection (MIP) image 

composition into MRA images, improving the morphology extraction capacity of slender vessels. Their 

approach, combined with two-dimensional projection, showed convincing performance compared with 

the state-of-the-art methods. Zhang, et al. [95] presented a data-driven deep learning-based approach for 

brain vessel segmentation on TOF-MRA images. They put forward a semi-supervised mixture probability 

model to produce a large number of labelled points from the sparse annotations, simulating the intensity 

distribution of brain vessels. Then they applied a Clean-Mechanism model to correct the mislabeled 



points. Finally, a dilated dense convolutional neural network (DD-CNN) was employed based on the 

corrected labelled points and reported to achieve high segmentation performance in the completeness 

and sensitivity for thin vessels, obtaining an average Dice coefficient of 93.20%. Zhang, et al. [96] 

proposed a scheme for brain vessel segmentation based on a reverse edge attention network. Before 

segmentation, their scheme adopted a Retinex model for noise modelling and enhanced the vessel regions 

by noise reduction. The experimental results proved the efficiency of their proposed scheme. Guo, et al. 

[97] improved the ordinary U-Net model with focal loss function, presenting a new approach for 

cerebrovascular segmentation. They divided normalized MRA images into three groups: the axial-

direction slices, the coronal-direction slices, and the sagittal-direction slices. Then they applied three 

single U-Net models to be trained on these three groups respectively. Moreover, they introduced the focal 

loss function to relieve the unbalancing distribution of positive and negative samples. At last, they applied 

the voting feature fusion and the connected domain analysis to combine the output probabilities of three 

single U-Nets. The experimental results showed that their approach outperformed than a single U-Net, 

which indicated their approach could effectively elevate the cerebrovascular segmentation performance 

of the U-Net architecture. Kossen, et al. [98] proposed a novel method for cerebrovascular segmentation 

with the anonymization potential based on a generative adversarial network (GAN) architecture. They 

applied the GAN to generate anonymous labels on MRA patches and then utilized a U-Net for cerebral 

vessel segmentation with the labels produced by the GAN. The experimental results showed that among 

three different GANs, the Wasserstein-Gan with gradient penalty and spectral normalization (WGAN-

GP-SN) acquired the best segmentation performance on the real testing data. Their study also suggested 

that the synthetic patches generated by GANs and real data could be applied in transfer learning, which 

would be beneficial to the circumstances of data scarcity and anonymization analysis. 

 

Figure 6 The architecture of DeepMedic 

 

Table 6 Methods for brain vessel segmentation 

Authors Year Modality Method Characteristics 

Hassouna, et al. [81] 2006 TOF-MRA MRF Applying the maximum 

pseudo-likelihood 

estimator algorithm 

Babin, et al. [82] 2013 TOF-MRA The line-shaped algorithm Outstanding 

performance 

Wang, et al. [83] 2015 TOF-MRA The threshold 

segmentation algorithm 

High accuracy 

Phellan, et al. [84] 2017 TOF-MRA CNN Promising performance 

Zhao, et al. [85] 2018 TOF-MRA A hierarchy CNN High sensitivity 

Livne, et al. [86] 2019 TOF-MRA U-Net Higher performance 



than traditional methods 

Sanchesa, et al. [87] 2019 TOF-MRA U-Net Combined with the 

Inception modules 

Fan, et al. [88] 2020 TOF-MRA CNN Applying a hidden MRF 

model for labelling 

Hilbert, et al. [89] 2020 TOF-MRA BRAVE-NET Combined with the 

multiscaling context 

path 

Meng, et al. [90] 2020 TOF-MRA Encoder-decoder U-Net architecture 

Ni, et al. [91] 2020 TOF-MRA CNN Multi-channel attention 

mechanism 

Tatsat, et al. [92] 2020 TOF-MRA DeepMedic Better than U-Net 

Tetteh, et al. [93] 2020 TOF-MRA DeepVesselNet Applying the 2D 

orthogonal cross-hair 

filters 

Wang, et al. [94] 2020 TOF-MRA JointVesselNet Combined with the 

maximum intensity 

projection image 

composition 

Zhang, et al. [95] 2020 TOF-MRA A dilated dense CNN Applying a Clean-

Mechanism model for 

label correction 

Zhang, et al. [96] 2020 TOF-MRA A reverse edge attention 

network 

Applying a Retinex 

model for denoising 

Guo, et al. [97] 2021 TOF-MRA U-Net Combined with a focal 

loss function 

Kossen, et al. [98] 2021 TOF-MRA WGAN-GP-SN Applying the GAN 

architecture 

 

3.2. Ischemic stroke 

 

An ischemic stroke refers to the death of brain tissue due to reduced blood flow to the brain or 

insufficient oxygen supply to the brain. Ischemic strokes are usually caused by blood clots that block the 

arteries in the brain due to atherosclerosis. The stroke symptoms can occur suddenly and may include: 

muscle weakness on one side of the body, paralysis, paresthesia or numbness, language difficulty, 

confusion, vision abnormality, dizziness, and loss of balance or coordination. Artificial intelligence has 

been widely applied in ischemic stroke studies of stroke detection, lesion segmentation, and outcome 

prediction. In 2017, Chin, et al. [99] presented an automatic system for ischemic early detection using 

convolutional neural networks. They applied data augmentation technologies on brain CT images and 

obtained an identification accuracy higher than 90%. In 2018, Nielsen, et al. [100] proposed a deep 

convolutional neural network architecture to predict the final stroke lesion volume based on acute MRI 

images. The experimental results showed that their study attained better performance than traditional 

methods. In 2019, Clèrigues, et al. [101] proposed a deep learning-based approach for stroke lesion 

segmentation on CT perfusion images using the regularized training procedure, symmetric modality, and 



uncertainty filtering. The experimental results proved its efficiency, which meant that doctors could apply 

this approach to assess the lesion size and location without MRI in the clinic. Dourado Jr, et al. [102] 

proposed a transfer learning-based method for stroke classification based on brain CT images. They 

applied convolutional neural networks as the feature extractor and employed various machine learning-

based classifiers, including the Bayesian classifier, multilayer perception, k-nearest neighbor, random 

forest, and support vector machines. Their method achieved 100% accuracy, F1-score, recall, and 

precision on testing data, which demonstrated its effectiveness. Hilbert, et al. [103] proposed a method 

to predict stroke outcome using the ResNet architecture on reperfusion CT images. They applied the 

structured receptive fields and auto-encoders to initialize neural network weights. The experimental 

results suggested that their method acquired promising prediction performance and was capable of 

assisting treatment planning. Ho, et al. [104] developed a deep learning-based method to classify the 

time since stroke (TSS) based on the MR perfusion-weighted images. The experimental results supported 

that their method could help doctors to determine the stroke treatment timing like thrombolysis. Kim, et 

al. [105] proposed a deep learning-based method for cerebral infarction segmentation based on diffusion-

weighted imaging (DWI). They applied the U-Net architecture to be trained on the DWI and apparent 

diffusion coefficient (ADC) data. Their method has been proved effective through the experimental 

results. In 2020, Bacchi, et al. [106] presented an approach for stroke outcome prediction combining 

convolutional neural networks with artificial neural networks on non-contrast CT images. Kumar, et al. 

[107] proposed a novel model named as CSNet for ischemic stroke lesion segmentation on the acute 

perfusion CT data. They introduced the self-similar fractal networks into the U-Net architecture, 

replacing the residual connections with the repetitive generation of self-similar fractals. The experimental 

results indicated that their segmentation model was superior to other state-of-the-art methods. Yu, et al. 

[108] successfully applied the U-Net architecture to predict the infarct lesion on the baseline perfusion 

CT images without further reperfusion data, which made a significant meaning for ischemic stroke 

patients. In the end, we provide Table 7 to summarize this section. 

 

Table 7 Studies of ischemic stroke 

Authors Year Modality Method Characteristics 

Chin, et al. [99] 2017 CT CNN Applying data augmentation 

Nielsen, et al. 

[100] 

2018 MRI CNN Higher performance than traditional methods 

Clèrigues, et al. 

[101] 

2019 CT CNN Applying the regularized training procedure 

Dourado Jr, et al. 

[102] 

2019 CT CNN Transfer learning 

Hilbert, et al. [103] 2019 CT ResNet Applying the structured receptive fields for 

weight initialization 

Ho, et al. [104] 2019 MRI CNN Convincing experimental results 

Kim, et al. [105] 2019 DWI U-Net Multimodality 

Bacchi, et al. [106] 2020 CT CNN Promising results 

Kumar, et al. [107] 2020 CT CSNet Combined with the self-similar fractal networks 

Yu, et al. [108] 2020 CT U-Net No need for reperfusion CT 

 



3.3. Transient ischemic attack 

 

A transient ischemic attack (TIA) is a brain disorder that usually lasts less than an hour and is caused 

by a temporary blockage of blood supply to the brain. The aetiology and symptoms of TIA are similar to 

those of ischemic stroke. TIA differs from ischemic stroke in that symptoms usually resolve within an 

hour without permanent brain damage. A TIA can be a red flag for an impending ischemic stroke. People 

who have had TIAs are more likely to have ischemic strokes than those who have not had TIAs. The risk 

of ischemic stroke is highest in the first 24 to 48 hours after a TIA. Detection of TIA and identification 

of its cause will be beneficial in preventing ischemic strokes. However, TIA symptoms disappear shortly 

and completely, leading to few or no brain cells death—at least not enough to cause any changes that can 

be detected by brain imaging or a neurologic examination. Thus, scientists tend to apply artificial 

intelligence to combine medical imaging data with medical records, wearable device data, or weather 

reports, presenting integrated data-driven TIA detection and prediction methods. In 2017, Chantamit-o-

pas, et al. [109] proposed a deep learning-based method to predict TIA in heart disease patients. They 

built their prediction model based on the atrial fibrillation symptoms from heart disease datasets. Their 

method’s efficiency was proved through the experimental results. In 2018, Haridas, et al. [110] proposed 

an artificial intelligence approach for TIA prediction based on the medical institute records. They applied 

principle component analysis to abandon the unrelated data dimensions, accelerating the modelling. The 

experimental results showed that their approach obtained convincing performance. In 2019, Bacchi, et 

al. [111] presented an intelligent method to predict a transient ischemic attack based on a public TIA 

dataset. They extracted useful information, including the symptom description, past medical history, the 

medication list, CT or MRI reports, and the ABCD2 score, to establish the prediction model using 

recurrent neural networks (RNNs) and convolutional neural networks (CNNs). The experimental results 

suggested that their study was potential. In 2020, Zhang, et al. [112] proposed a contactless approach to 

detect TIA in the indoor environment. They employed a microwave sensing platform to collect 

monitoring data and then performed the support vector machine (SVM) and the random forest (RF) to 

build the recognition model. The RF-based model attained an accuracy of 98.7%, which showed better 

performance than the SVM-based model. In 2021, Katsuki, et al. [113] presented a study to demonstrate 

that a TIA could be predicted through meteorological and calendar factors using deep neural networks. 

Okuno, et al. [114] proposed a method for TIA prediction using autoencoder neural networks based on a 

combination of the clinical and imaging data. We provide a summary at the end of this section, as shown 

in Table 8. 

 

Table 8 Studies of transient ischemic attack 

Authors Year Modality Method Characteristics 

Chantamit-o-pas, 

et al. [109] 

2017 The heart disease 

datasets  

CNN Based on records of the atrial 

fibrillation symptoms 

Haridas, et al. 

[110] 

2018 The medical institute 

records 

CNN Applying PCA to abandon the 

unrelated data dimensions 

Bacchi, et al. 

[111] 

2019 A TIA dataset RNN and 

CNN 

Abundant data dimensions 

Zhang, et al. [112] 2020 The microwave sensing 

data 

Random 

forest 

Applying contactless 

microwave sensing data 

Katsuki, et al. 2021 The meteorological and DNN Adopting the meteorological 



[113] calendar data and calendar factors 

Okuno, et al. 

[114] 

2021 The clinical and 

imaging data 

Auto-

encoder 

Combination of the clinical and 

imaging data 

 

3.4. Intracranial hemorrhage 

 

An intracranial hemorrhage refers to the bleeding inside the brain. Chronic hypertension is a 

common cause of intracranial hemorrhage. The intracranial hemorrhage accounts for about 10% of all 

strokes, but the mortality rate of the intracranial hemorrhage is much higher than that of ischemic stroke. 

Intracranial hemorrhage diagnosis mainly relies on medical imaging examinations. Since artificial 

intelligence has been widely applied in medical image analysis, many deep learning-based methods for 

intracranial hemorrhage studies have been proposed in recent years. The deep learning-based methods 

for examing intracranial hemorrhage are close to those for ischemic stroke. Both apply a deep neural 

network’s capacity to detect and segment the lesion area in brain images. In 2018, Arbabshirani, et al. 

[115] proposed an automated method for intracranial hemorrhage identification using a 7-layer 

convolutional neural network with brain CT scans. The experimental results showed that their method 

could recognize the intracranial hemorrhage effectively, even for subtle intracerebral bleeding. Kamal, 

et al. [116] adopted a three-dimensional convolutional neural network to extract features from the cross-

sectional brain CT images, proposing an automatic approach for intracranial hemorrhage identification. 

Kuo, et al. [117] proposed an active learning-based method for intracranial hemorrhage detection and 

segmentation on brain CT images using a cost-sensitive system. Their method was reported to achieve 

state-of-the-art performance. Further, they improved this method to an expert level based on fully 

convolutional neural networks next year [118]. Majumdar, et al. [119] proposed an automatic deep 

learning-based method for intracranial hemorrhage detection without burdensome hand-tuned processes. 

In 2019, Cho, et al. [120] proposed a cascaded deep learning-based approach for intracranial hemorrhage 

identification and segmentation. They applied a cascade model that consisted of 2 CNNs and 2 FCNs 

and claimed to achieve high performance in both sensitivity and specificity. Lee, et al. [121] proposed 

an interpretable deep learning-based method for intracranial hemorrhage detection and subtypes 

classification. They applied an attention map and retrieved a prediction basis from training data to 

provide the model’s interpretability. The experimental results showed that their method acquired 

satisfying performance. Ye, et al. [122] presented a method for intracranial hemorrhage detection using 

non-contrast brain CT images. They developed a three-dimensional joint convolutional and recurrent 

neural network which was demonstrated to obtain promising experimental results. In 2020, Anupama, et 

al. [123] proposed an approach to detect intracranial hemorrhage using a GrabCut-based segmentation 

synergic deep learning model (GC-SDL). Hssayeni, et al. [124] presented their study in intracranial 

hemorrhage segmentation using the U-Net architecture on CT images. Mansour, et al. [125] proposed an 

integrated scheme for intracranial hemorrhage diagnosis on brain CT images. They applied Kapur’s 

thresholding with an elephant heard optimization algorithm (KT-EHO) to segment the intracranial 

hemorrhage region. Then they employed an Inception neural network to extract features and a multilayer 

perception for classification. Their research was suggested to obtain promising performance. At the end 

of this section, we provide Table 9 to summarize the AI studies of intracranial hemorrhage. 

 

Table 9 Studies of intracranial hemorrhage 

Authors Year Modality Method Characteristics 



Arbabshirani, et al. 

[115] 

2018 CT 7-layer CNN Effective for subtle intracranial 

hemorrhage 

Kamal, et al. [116] 2018 CT 3D-CNN Promising performance, AUC of 0.87 

Kuo, et al. [117] 2018 CT Cost-sensitive 

active learning 

State-of-the-art performance 

Majumdar, et al. 

[119] 

2018 CT CNN End-to-end method, the high 

specificity of 98% 

Kuo, et al. [118] 2019 CT FCN Expert-level performance 

Cho, et al. [120] 2019 CT Cascaded deep 

learning model 

The cascade model consisted of 2 

CNNs and 2 FCNs 

Lee, et al. [121] 2019 CT FCN Interpretability due to an attention 

map and the prediction basis 

Ye, et al. [122] 2019 CT A 3D joint CNN-

RNN 

Precise diagnosis of intracranial 

hemorrhage subtypes 

Anupama, et al. 

[123] 

2020 CT A GC-SDL model GrabCut-based segmentation 

Hssayeni, et al. 

[124] 

2020 CT U-Net Efficient segmentation performance 

Mansour, et al. 

[125] 

2021 CT Inception Outstanding performance 

 

3.5. Intracranial aneurysm 

 

An intracranial aneurysm refers to a dilation that occurs in the artery of the brain. Clinicians usually 

apply computed tomography angiography (CTA) or magnetic resonance angiography (MRA) to examine 

the intracranial aneurysm. Lately, scientists have presented a lot of artificial intelligence approaches to 

analyze medical images of the intracranial aneurysm. In 2018, Ueda, et al. [126] reported that their deep 

learning-based method could improve the detection sensitivity of early intracranial aneurysms on TOF-

MRA images. In 2019, Duan, et al. [127] proposed a two-stage convolutional neural network architecture 

for automated detection of intracranial aneurysms. The experimental results demonstrated that the CNN 

architecture could detect intracranial aneurysms effectively on the two-dimensional digital subtraction 

angiography (2D-DSA) images. Park, et al. [128] proposed a deep learning-based approach called the 

HeadXNet model to detect intracranial aneurysms on CTA images. They employed the three-dimensional 

convolutional neural network architecture and achieved outstanding experimental results. Sichtermann, 

et al. [129] presented a retrospective study in which they put forward a CNN-based method for 

intracranial aneurysm detection and obtained competitive experimental results. In 2020, Faron, et al. 

[130] proposed a similar approach for intracranial aneurysm detection on the three-dimensional TOF-

MRA images. Jin, et al. [131] proposed an automatic method for intracranial aneurysm segmentation and 

detection using the U-Net architecture on the two-dimensional DSA images. Joo, et al. [132] proposed 

an automated method for recognizing intracranial aneurysms based on the three-dimensional ResNet 

architecture from the extracted TOF-MRA images. Podgorsak, et al. [133] presented a CNN-based 

method for intracranial aneurysm automatic detection in a retrospective study. Shi, et al. [134] presented 

their study of applying a U-Net architecture to detect intracranial aneurysms with several improvements. 

They replaced the convolution blocks in the original U-Net with the residual blocks. They adopted the 



dilated convolutions in the top of encoders and inserted a dual attention module between the encoder and 

the decoder. The experimental results demonstrated that these architecture improvements were efficient 

and satisfying performance. Yang, et al. [135] demonstrated that deep learning-based methods could 

apply CTA images to build an automatic intracranial aneurysm detection system. Yang, et al. [136] built 

a public three-dimensional intracranial aneurysm dataset for testing various intracranial aneurysm 

detection and segmentation methods. Zeng, et al. [137] proposed a deep learning-based method to detect 

intracranial aneurysms automatically on DSA images. They introduced a spatial information fusion (SIF) 

algorithm to transform the processed data into two-dimensional image sequences from the three-

dimensional vessel model. Their method proved its effectiveness through the experimental results and 

was superior to other intracranial aneurysm detection methods for it costed fewer computation than those 

did. To summarize this section, we provide Table 10 as follows. 

 

Table 10 Studies of intracranial aneurysm 

Authors Year Modality Method Characteristics 

Ueda, et al. [126] 2018 TOF-

MRA 

ResNet-18 The high sensitivity of 

detection 

Duan, et al. [127] 2019 2D-DSA CNN A two-stage cascaded 

approach 

Park, et al. [128] 2019 CTA The HeadXNet model FCN-based method 

Sichtermann, et al. 

[129] 

2019 TOF-

MRA 

The DeepMedic model An 11-layer CNN 

architecture 

Faron, et al. [130] 2020 TOF-

MRA 

The DeepMedic model Convincing performance 

Jin, et al. [131] 2020 2D-DSA U-Net Promising results 

Joo, et al. [132] 2020 TOF-

MRA 

A deep leaning-based 

method 

3D ResNet architecture 

Podgorsak, et al. 

[133] 

2020 2D-DSA CNN Outstanding performance 

Shi, et al. [134] 2020 CTA DAResUNet Improvements for U-Net 

Yang, et al. [135] 2020 CTA CNN The performance is potential 

Yang, et al. [136] 2020 TOF-

MRA 

Deep learning-based 

methods 

Establishing an open-access 

dataset 

Zeng, et al. [137] 2020 2D-DSA A 2D-CNN method Little computational cost 

 

3.6. Subarachnoid hemorrhage 

 

A subarachnoid hemorrhage (SAH) refers to the bleeding in the space between the inner and middle 

layers of the brain covering tissues. A ruptured intracranial aneurysm is the most commonly seen cause 

of a subarachnoid hemorrhage. A subarachnoid hemorrhage is a hazardous disease. Patients would suffer 

from a sudden severe headache, usually followed by unconsciousness or even death. Lately, scientists 

have attempted to develop methods to detect subarachnoid hemorrhage and predict the outcome using 

artificial intelligence technologies. In 2019, Sales Barros, et al. [138] proposed a CNN-based method to 

segment subarachnoid hemorrhage on brain CT images. The experimental results showed that the 

convolutional neural network architecture could effectively be employed for SAH segmentation and 



detection. Ramos, et al. [139] demonstrated that artificial intelligence could use the SAH CT images to 

predict delayed cerebral ischemia. They applied an auto-encoder to extract features from CT images and 

adopted logistic regression as the predictor. In 2020, Shahzad, et al. [140] proposed a deep learning-

based method for SAH segmentation and detection using a three-dimensional convolutional neural 

network architecture called the DeepMedic. They performed the experiments on brain CT images and 

attained satisfying results. In 2021, Dengler, et al. [141] proposed an approach to predict the SAH 

outcome based on CT images and the clinical records using machine learning methods, including a 

support vector machine (SVM), the CatBoost tree boosting algorithm, a Naïve Bayes classifier, and the 

multilayer perceptions (MLPs). Their approach was reported to achieve promising performance through 

the experimental results. Pennig, et al. [142] proposed an approach for SAH diagnosis on CTA images 

using ensemble learning technology via three separate DeepMedic models. Nishi, et al. [143] proposed 

a deep learning-based method for the SAH diagnosis that could enable non-specialists to recognize the 

SAH accurately. At the end of this section, Table 11 was given as a summary. 

 

Table 11 Studies of subarachnoid hemorrhage 

Authors Year Modality Method Characteristics 

Sales Barros, 

et al. [138] 

2019 CT CNN Promising experimental results 

Ramos, et al. 

[139] 

2019 CT and 

clinical 

records 

An integrated AI 

model 

Applying an auto-encoder as the feature 

extractor and a logistic regression 

model as the predictor 

Shahzad, et 

al. [140] 

2020 CT The DeepMedic 

model 

A 3D-CNN architecture 

Dengler, et 

al. [141] 

2021 CT and 

clinical 

records 

Machine 

learning-based 

methods 

Promising experimental results 

Pennig, et al. 

[142] 

2021 CTA The DeepMedic 

model 

Ensemble learning 

Nishi, et al. 

[143] 

2021 CT Deep learning Outstanding performance 

 

3.7. Arteriovenous malformation 

 

An arteriovenous malformation (AVM) is a mass of dilated blood vessels directly connected to an 

artery and vein, bypassing the capillaries that ought to connect an artery and vein under normal 

circumstances. AVM could lead to seizures or headaches as a rare cerebrovascular disease, especially in 

young adult patients. AVM may not cause an intracerebral hemorrhage. Clinicians usually adopt medical 

imaging methods such as CT, MRI, CTA, and MRA to assist the AVM diagnosis. In recent years, artificial 

intelligence technologies have been introduced into AVM diagnosis. Scientists put forward several 

applicable deep learning-based approaches for automatic segmentation or detection of an arteriovenous 

malformation. In 2019, Wang, et al. [144] proposed a three-dimensional supervised method to segment 

the AVM on CT simulation images automatically. They applied a 3D V-Net architecture with a compound 

loss function, including logistic and Dice losses. The experimental results suggested that their approach 

could automatically segment the AVM volume and obtain a satisfying delineating accuracy. In 2020, 



Yabo, et al. [145] presented an automatic segmentation model for the AVM. They first proposed a fast 

region proposal network to build the bounding box for the AVM lesion. Then they employed the V-Net 

architecture to predict the final labels. It was demonstrated that their approach could delineate the 

automatic contours very close to the ground truth contours. In 2021, Shi, et al. [146] proposed a deep 

learning-based approach to first extract vascular features from DSA videos and second apply these 

features in the AVM detection. They adopted the Fast-RCNN architecture and claimed that their approach 

showed a competitive performance in the experiments. In the end, we provide Table 12 as the summary 

of this section. 

 

Table 12 Methods of arteriovenous malformation 

Authors Year Modality Method Characteristics 

Wang, et al. 

[144] 

2019 CT A 3D V-Net 

model 

3D supervision mechanism 

Yabo, et al. 

[145] 

2020 CT A 3D V-Net 

model 

The bounding box trained by a fast region 

proposal network 

Shi, et al. 

[146] 

2021 DSA Faster-RCNN Two-stage scheme 

 

3.8. Moyamoya Disease 

 

As a rare and progressive cerebrovascular disease, the moyamoya disease was caused by the 

blockage of cerebral arteries located at the base of the brain, also named the basal ganglia. The moyamoya 

disease mainly occurs in children. Patients of moyamoya disease will first suffer a stroke or a transient 

ischemic attack, followed by muscular weakness or paralysis influencing one side of the body. 

Researchers have tended to apply artificial intelligence to develop detection methods for the moyamoya 

disease. In 2019, Kim, et al. [147] proposed a deep learning-based approach for moyamoya disease 

detection in plain skull radiography. They adopted an 8-layer convolutional neural network to recognize 

moyamoya disease and claimed to achieve promising experimental results. In 2020, Akiyama, et al. [148] 

proposed a method for moyamoya disease diagnosis on MRI images. They employed the VGG-16 with 

fine-tuning to differentiate the patients with moyamoya disease from the patients with atherosclerotic 

disease and healthy people. The experimental results proved deep learning’s efficiency in MRI-based 

moyamoya disease detection. In 2021, Hu, et al. [149] proposed a spatiotemporal feature-based approach 

to detect moyamoya disease using the DSA data. They first applied a three-dimensional convolutional 

neural network to extract spatial features from each frame of DSA. Then they obtained the long-term 

spatiotemporal features from DSA sequences using the BiConvGRU. Finally, they performed feature 

fusion for further classification. According to the experimental results, their approach acquired state-of-

the-art performance among several advanced moyamoya disease detection methods. Lei, et al. [150] also 

proposed a deep learning method for moyamoya disease detection and hemorrhagic risk prediction using 

the DSA data. They employed ResNet-152 as the backbone and reported to attain outstanding 

performance. To end this section, Table 13 was given as a summary. 

 

Table 13 Studies of moyamoya disease 

Authors Year Modality Method Characteristics 

Kim, et al. [147] 2019 Radiography CNN Promising experimental results 



Akiyama, et al. 

[148] 

2020 MRI VGG-16 Effective performance 

Hu, et al. [149] 2021 DSA FCN with 

BiConvGRU 

Spatiotemporal feature learned and 

feature fusion 

Lei, et al. [150] 2021 DSA ResNet-152 Outstanding performance 

 

3.9. Alzheimer’s disease 

 

As a neurodegenerative disease, Alzheimer’s disease mostly occurs in elderly people. It is reported 

that around 70 percent of cases of dementia were caused by Alzheimer’s disease. Patients with 

Alzheimer’s disease are likely to have health problems including cognition disorder, language problems, 

motivation loss, spatial disorientation, and sleep disorder. In 2014, Liu, et al. [151] proposed a deep 

learning framework for Alzheimer’s disease early diagnosis. They adopted auto-encoders and softmax 

layer to build the network architecture and achieved outstanding performance. In 2018, Aderghal, et al. 

[152] presented a cross-modal transfer learning approach for Alzheimer’s disease classification. They 

pretrained on a structural MRI dataset and transferred the knowledge to mean diffusivity data. The 

experimental results showed that this approach avoided overfitting effectively and obtained higher 

performance compared to those approaches using only one imaging modality. In 2019, Ding, et al. [153] 

applied the Inception architecture for early detection of Alzheimer’s disease based on PET data and 

attained improved performance. Martinez-Murcia, et al. [154] put forward an approach for Alzheimer’s 

disease diagnosis using deep convolutional auto-encoders. Their model not only obtained a classification 

accuracy of over 80% for Alzheimer's disease diagnosis but also provided reliable visualization results. 

In 2020, Mehmood, et al. [155] proposed a siamese convolutional neural network based on VGG-16 and 

applied improved data augmentation technologies for Alzheimer’s disease early diagnosis. In 2021, 

Murugan, et al. [156] constructed a convolutional neural network architecture named DEMNET for 

Alzheimer’s disease classification and acquired outstanding performance. Wang, et al. [157] designed a 

novel framework combining attention mechanism and VGG to detect Alzheimer’s disease and achieved 

good results. Zhu, et al. [158] proposed a deep learning architecture that applies DenseNet as a feature 

extractor and Schmidt neural network as a classifier for Alzheimer’s disease identification. Finally, these 

AI methods for Alzheimer’s disease study are summarized in Table 14. 

 

Table 14 Methods for Alzheimer’s disease 

Authors Year Modality Method Characteristics 

Liu, et al. [151] 2014 MRI Auto-encoders Minimal domain prior 

knowledge 

Aderghal, et al. 

[152] 

2018 MRI & Diffusion 

Tensor Imaging 

Cross-modal 

transfer learning 

Multimodality 

Ding, et al. [153] 2019 PET InceptionV3 Outstanding performance 

Martinez-Murcia, 

et al. [154] 

2019 MRI Auto-encoders Reliable visualization 

results 

Mehmood, et al. 

[155] 

2020 MRI Siamese CNN Improved data 

augmentation 

Murugan, et al. 

[156] 

2021 MRI DEMNET Outstanding performance 



Wang, et al. [157] 2021 MRI ADVIAN Attention mechanisms 

Zhu, et al. [158] 2022  DSNN Using Schmidt neural 

network as classifier 

 

3.10. Multiple sclerosis 

 

Multiple sclerosis is a severe degenerative disease of the brain or spinal cord that affects the central 

nervous system. It is harmful to the immune cells and causes many symptoms such as sensation, 

movement, balance, and vision degeneration. In 2018, Wang, et al. [159] presented a deep convolutional 

neural network architecture for multiple sclerosis identification. The architecture employed state-of-the-

art deep learning technologies, including batch normalization, dropout, and stochastic pooling, and 

achieved persuasive performance. In 2020, Essa, et al. [160] proposed a two-stage deep learning-based 

approach for multiple sclerosis lesion automatic segmentation. The first stage of this approach is to apply 

two parallel R-CNNs to segment respectively in T2-w and FLAIR brain MRI images. In the second stage, 

they adopted an adaptive neuro-fuzzy inference system (ANFIS) to fuse T2-w and FLAIR segmentation 

results. The experimental results showed that this approach outperformed other advanced competitive 

models. Narayana, et al. [161] put forward a method for multiple sclerosis lesion classification based on 

VGG-16 and acquired competitive performance. In 2021, Alijamaat, et al. [162] proposed an approach 

to identify multiple sclerosis using convolutional neural networks. Their approach applied the Haar 

wavelet transform to highlight lesions and ensure more accurate performance. McKinley, et al. [163] 

trained DeepSCAN to segment multiple sclerosis lesions and obtained outstanding experimental results. 

All these studies were listed in Table 15. 

 

Table 15 Studies for multiple sclerosis 

Authors Year Modality Method Characteristics 

Wang, et al. 

[159] 

2018 MRI CNN Stochastic pooling, dropout, and batch 

normalization 

Essa, et al. [160] 2020 MRI Parallel R-

CNN 

Two-stage approach combined with an 

adaptive neuro-fuzzy inference system 

Narayana, et al. 

[161] 

2020 MRI VGG-16 Competitive performance 

Alijamaat, et al. 

[162] 

2021 MRI CNN Highlight lesions with the Haar wavelet 

transform 

McKinley, et al. 

[163] 

2021 MRI DeepSCAN Outstanding performance 

 

4. Discussion and Conclusion 

 

Studying brain diseases has a significant meaning for human health. Scientists and clinicians cannot 

get rid of medical imaging techniques such as MRI, CT, CTA, and MRA to study brain diseases. Deep 

learning-based methods have become the mainstream of brain image analysis methods recently. In the 

future, we think that there are three development directions. 

The first direction is multimodality. In the past, most approaches for brain disease analysis were 

based on only one kind of imaging modality. Lately, more and more scientists have attempted to propose 



brain disease analysis methods based on more than one modality. For example, they applied medical 

imaging with health records from medical institutions or wearable devices to develop novel approaches 

for brain disease studies [164]. Adopting multimodality in brain disease studies has three reasons. First, 

existing methods have nearly made the best use of a single data modality. If we want to improve the 

performance, we need to break this limitation. Applying multimodality may be a solution for it. Data 

from different modalities could supplement each other and enhance the expected results. Second, the 

human body is an integrated living system. Different organs or parts of the body are not independent. 

They correspond to each other and work together to maintain the body system. It is indicated that different 

brain diseases share some inner relationship between them. If we apply only one modality to construct 

our methods, we discard this inner relationship information that may be a key factor, especially for 

detection and prediction studies. Third, as we always mentioned, deep learning needs large amounts of 

training data to reach its best capacity. However, training data is insufficient in a brain disease study in 

most cases. Applying multimodality means introducing new data sources, which will relieve the pressure 

of data deficiency. Because of these three reasons, we believe that multimodality will be a research 

hotspot in deep learning-based studies of brain diseases. 

The second development direction in the future is interpretability. Although artificial intelligence 

has succeeded in brain disease studies, most existing methods paid their primary attention to performance 

rather than interpretability. Explainable artificial intelligence (XAI) has made huge progress in recent 

years. Many XAI models have been proposed and applied in many AI fields. These XAI models, such as 

DeConvNet [165], LRP [166], Grad-CAM [167], and the meaningful perturbation [168], have attracted 

the interest of some researchers. For example, Sagar, et al. [169] applied LRP to detect Alzheimer’s 

disease on brain MRI images. Petrov, et al. [170] adopted Grad-CAM to visualize three-dimensional 

brain structure. Sutre, et al. [171] proposed a method for brain disease classification based on meaningful 

perturbation. We believe that more and more brain disease studies based on explainable artificial 

intelligence will spring out, and researchers will consider model interpretability in the future. 

 

 

Figure 7 The architecture of GNN 

 

Last but not least, the third direction of brain disease intelligence studies is employing new advanced 

deep learning models. Graph neural networks (shown in Figure 7) [172] and the transformer [173] are 

two broadly-used advanced deep learning models in recent years. Compared to classic deep learning 

models such as CNN, FCN, and GAN, these newly proposed models enable scientists to perform better 

in brain disease studies. Marzullo, et al. [174] proposed an approach for multiple sclerosis classification 

using a graph convolutional neural network. Song, et al. [175] presented a method applying a graph 

convolutional neural network for the classification and staging of Alzheimer’s disease. Ma, et al. [176] 

put forward an attention-guided deep graph neural network for the diagnosis of Alzheimer’s disease. 



They employed an attention-guided random wark (AGRW) module to extract the structural graph 

features. In 2021, Li, et al. [177] raised a graph neural network framework named BrainGNN for the 

analysis of brain MRI images. Nandakumar, et al. [178] applied graph neural networks to localize the 

eloquent cortex in brain tumor patients automatically. As for applying the transformer architecture in 

brain disease studies, Barhoumi, et al. [179] proposed a hybrid model named n-CNN-ViT that combined 

CNN and ViT architectures for intracranial hemorrhage classification. Shang, et al. [180] adopted a 

transformer-based architecture to detect intracranial hemorrhage. Wang, et al. [181] employed the 

transformer to propose a brain tumor segmentation method. Li, et al. [182] combined the advantages of 

transformer and CNN and proposed the Trans-ResNet model for Alzheimer’s disease classification. In 

the end, we hope that more and more newborn deep learning models will emerge and contribute to 

constructing more effective methods for brain disease studies. 
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