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Abstract

Any clustering algorithm must synchronously learn to model the clusters and allocate data to those clusters in the absence of
labels. Mixture model-based methods model clusters with pre-defined statistical distributions and allocate data to those clusters
based on the cluster likelihoods. They iteratively refine those distribution parameters and member assignments following the
Expectation-Maximization (EM) algorithm. However, the cluster representability of such hand-designed distributions that employ
a limited amount of parameters is not adequate for most real-world clustering tasks. In this paper, we realize mixture model-
based clustering with a neural network where the final layer neurons, with the aid of an additional transformation, approximate
cluster distribution outputs. The network parameters pose as the parameters of those distributions. The result is an elegant, much-
generalized representation of clusters than a restricted mixture of hand-designed distributions. We train the network end-to-end via
batch-wise EM iterations where the forward pass acts as the E-step and the backward pass acts as the M-step. In image clustering,
the mixture-based EM objective can be used as the clustering objective along with existing representation learning methods. In
particular, we show that when mixture-EM optimization is fused with consistency optimization, it improves the sole consistency
optimization performance in clustering. Our trained networks outperform single-stage deep clustering methods that still depend on
k-means, with unsupervised classification accuracy of 63.8% in STL10, 58% in CIFAR10, 25.9% in CIFAR100, and 98.9% in
MNIST.
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1. Introduction

Clustering identifies similarities among data points and
groups similar data points together. Such automatic data group-
ing is significant when manually annotating classes is over-
whelming, or human understanding is insufficient to annotate
(e.g., non-image data). Usually, with the absence of labels,
clustering algorithms have to learn both the cluster represen-
tations (modeled by parameters) and the member assignment.
Most clustering algorithms do this by iteratively alternating be-
tween two steps: 1) assign samples (soft or hard) to clusters
according to the degree of match to the cluster representations
and, 2) based on the cluster assignments, update current cluster
representations. This iterative nature shares the intuition of the
Expectation-Maximization (EM) [1] algorithm.

Mixture models discover the existence of subpopulations
within a given population. Such sub-populations can be used
cumulatively to describe the properties of the whole popula-
tion. In the clustering context, this can be thought of as dis-
covering underlying homogeneous groups within a dataset and
interpreting the dataset’s properties from the discovered groups.
Mixture models use hand-designed distributions (e.g., Gaussian
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or Bernoulli) with pre-defined parameters (e.g., a probability or
mean and covariance) to represent clusters. A mixture of such
distributions is fitted to the observed data points to maximize
the total likelihood. This likelihood optimization is conducted
via Expectation-Maximization, where the distribution param-
eters and posterior member assignments are iteratively refined,
keeping one constant at a time. However, these statistical distri-
butions contain a limited number of parameters to learn. Thus,
traditional mixture models show poor cluster representations
when directly used to cluster data with high dimensionality or
high complexity. Since the strength of a clustering algorithm
relies on its ability to represent clusters, we look into model-
ing advanced clusters with more freedom in the complexity of
the discovered cluster distributions. Such distributions are not
pre-defined and are adaptive to the dataset.

Neural Networks are universal approximators that can ap-
proximate any measurable function when provided with an ad-
equate amount of learning, a sufficient number of hidden units,
and a deterministic relationship between network inputs and
outputs [2]. Therefore, a NN is an ideal candidate for such
advanced modeling of cluster distributions. If we employ a NN
for such cluster modeling, we can let each final layer neuron
approximate the relevance of a given observation (NN input) to
a particular cluster. We can further transform such relevance to
the respective cluster distribution output/likelihood of the ob-
servation for that particular cluster. Once we have such clus-
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Figure 1: The expected outcome of Mixture-EM optimization on a neural network (NN) for clustering: The NN parameters θ represent the cluster parameters. In
the forward pass, the NN outputs cluster relevance scores which are transformed to cluster distribution outputs/likelihoods. Using these likelihoods, the posterior
probabilities of membership are derived for the existing parameters θ. In the backward pass, the parameters θ get updated from the computed memberships.

ter likelihoods for a batch of observations, we can calculate the
posterior probabilities cluster assignment and formulate the EM
objective as conventional mixture modeling. The EM objec-
tive can then be backpropagated to update the NN parameters.
In this way, the NN parameters learn to represent shared and
cluster-specific cluster parameters, leading to advanced cluster
distributions. To our knowledge, an effort to employ a deep NN
to directly model cluster distributions via their output nodes in
mixture modeling has not been recorded yet.

This paper adopts EM-based mixture modeling as the clus-
tering objective to train a NN end-to-end, where the NN itself
models the cluster distributions. We formulate an EM-based
learning algorithm in batch-wise iterations to learn the cluster
representations and the cluster assignment concurrently. The
contributions of this paper are three-fold. Firstly, we approxi-
mate each cluster distribution for a given batch by the paramet-
ric function of the network from the input to the corresponding
final layer neuron, followed by an additional transformation.
We impose such additional transformation to regulate the trans-
formed final layer neuron to behave as a probability density
function of the input. This prevents a single cluster distribu-
tion from overpowering other distributions to capture all data-
points, leading to the trivial solution of assigning all datapoints
to that dominant cluster. The proposed transformation normal-
izes the output of each final layer neuron over the batch to have
a zero batch-mean and further constraints to the most linear re-
gion of the sigmoid activation. The sigmoid activation maps
its zero batch-mean linear region input to a continuous non-
negative value, the distribution output. Constraining the final-
layer neurons to have a zero batch-mean and within the most
linear portion of the sigmoid enables all cluster distributions to
share a common integral over the sample space, as shown later.
Thus, the approximated distributions act as probability density
functions of the observation, preventing trivial solutions.

Secondly, we propose a batch-wise EM optimization to train
the network end-to-end. We calculate the posterior probabilities
of member assignments using the approximated cluster likeli-

hoods. As shown later, these posteriors are approximated by
the softmax of the normalized final-layer neurons. We formu-
late the EM loss to backpropagate using the calculated poste-
riors and cluster likelihoods. The optimization process of the
network performs EM iterations batch-wise in an online fash-
ion. For each iteration, we feed a batch of observations to the
network. The forward pass through the network corresponds
to the E-step, where we calculate the cluster likelihoods and
posterior probabilities from the NN output for the given batch
of observations and derive the EM loss. The backward pass
through the network corresponds to the M-step, where we per-
form a gradient step in optimizing the EM loss. Fig. 1 illustrates
the overview of the proposed Mixture-EM optimization using a
NN.

Thirdly, we integrate the EM optimization to consistency op-
timization between original and augmented datapoints for im-
age clustering. It is essential to let the neural network learn gen-
eral semantically important features and prevent the network
from overfitting to only the lower-level information in data in
clustering images. While this can be done by either learning a
self-supervised pretext task [3] or learning to output a consis-
tent model response to the original and its transform versions
[4, 5, 6], we choose the latter and integrate it to our mixture-
EM optimization. Our consistency optimization includes mini-
mization of the Kullback–Leibler (KL) divergence [7] between
the model responses to original images and their transformed
versions. We embed this optimization into the EM process, re-
sulting in a two-fold optimization. We show that this two-fold
optimization shows accelerated and better convergence than the
consistency optimization alone.

Our framework does not use any conventional clustering
techniques such as k-means. The proposed optimization per-
forms EM iterations batch-wise in an online fashion, thus, elim-
inates the need to iterate over the entire sample space for a sin-
gle update. Using a NN allows learning complex cluster repre-
sentations rather than limiting them to hand-designed parame-
ters. The transformation of the final layer neurons to regulate
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cluster distributions as probability density functions prevents
the model from collapsing to trivial solutions. Thus, this simple
transformation eliminates additional effort to force the model to
divide the samples among the clusters evenly. The training pro-
cess consists of only the EM optimization in a multi-layer per-
ceptron for vector data and the EM optimization along with the
consistency optimization or any representation learning tech-
nique in a convolutional neural network for image data. The
implementation is straightforward compared to many deep ap-
proaches.

2. Related Work

Clustering a set of data points into several categories is
generally done by learning a cluster representation, which
acts as a basis to cluster the data points into homogeneous
groups. The cluster representation is learned by following dif-
ferent approaches such as connectivity based [8], centroid based
[9], distribution based [10], density modelling based [11] and
subspace-based [12] methods. Mixture models fall under the
distribution-based category, where a statistical distribution rep-
resents each cluster. GMM [13], in particular, maintains a
Gaussian distribution for each cluster and updates those dis-
tributions and member assignment iteratively using the EM op-
timization [1]. k-means [9] can also be thought of as a special
case of GMM where the clusters are represented with untilted
spheres. Since these traditional clustering algorithms are lim-
ited to hand-designed parameters hence limited representabil-
ity, there have been efforts to incorporate neural networks to
model advanced clusters [5, 14, 15, 16, 17, 18].

Notably, simple k-means is still being used in many deep
clustering techniques [3, 15, 19, 20, 21]. These work either
synthesize k-means using NNs [19], or use k-means in latent
abstract space [3, 15, 20]. Generally, the mapping to latent
space is learned via a representation learning method such as
autoencoding [3] or self-supervised methods [20]. k-means is
used to cluster the latent abstract vectors directly [3] or to gener-
ate pseudo-labels to train the network [15]. In contrast to these
works, we let the neural network learn a direct mapping from
the input space to class-assignment probabilities while model-
ing rich cluster distributions following the abstract intuition of
mixture modeling.

Although synthesizing k-means using a neural network has
been studied before [19], realizing mixture modeling and EM
for clustering with neural networks is rarely explored as per our
knowledge. Neural Expectation-Maximization (N-EM) [22] in-
troduces a differentiable clustering method utilizing the EM al-
gorithm. N-EM’s objective is to learn the perceptual grouping
of a given input by separately identifying the different concep-
tual entities in the input. N-EM uses neural networks to pre-
dict the statistical parameters of cluster distributions (e.g., a sin-
gle probability for Bernoulli, mean, and variance for Gaussian)
from object vectors. These statistical parameters are used to
compute the corresponding cluster distribution manually, which
is used in EM optimization, and the backpropagation updates
the object vector and network parameters. In contrast, we in-
tend to directly approximate the cluster distribution outputs

from the final layer neurons of a network for the input data point
to reflect the likelihoods of that data point in the corresponding
clusters. Our solution is a better replacement for standard clus-
tering objectives such as k-means or GMM.

A successful deep image clustering method should learn
general semantic information, which is essential for identify-
ing abstract groups. Therefore, it is vital to enable a neu-
ral network to harvest rich features while optimizing the clus-
tering objective. We identify two basic ways to enable such
feature learning in the literature. The first one is learning a
prior task that enables the network to extract important fea-
tures [6, 3, 20, 21, 23, 24]. The clustering is conducted in
the learned abstract space partially or fully using standard algo-
rithms [3, 20, 21] or other clustering objectives as loss functions
to train the network [6, 18, 23, 24]. Learning a self-supervised
pre-text task [6, 20, 21, 23, 24] often enables learning a rich
semantic representation that acts as a solid prior for the cluster-
ing. Deep Embedded Clustering Based on Contractive Autoen-
coder (DECCA) [6] uses a two-phase approach of unsupervised
feature learning and clustering the learned latent space. The
unsupervised feature learning consists of reconstruction of in-
put with a Contractive Autoencoder [25] and maintaining con-
sistent model response to original and self-augmented inputs.
The learned latent space is clustered during the second stage
by minimizing the cumulative divergence between embeddings
and cluster centers. Semantic Clustering by Adopting Nearest
Neighbors (SCAN) [23], among its multiple stages, first learns
a pre-text task such as instance discrimination [26] with a NN.
Then, it uses the learned embedding to identify semantically
similar neighbors that mostly fall into the same class. Nev-
ertheless, the performance gain of SCAN is mostly attributed
to the pre-text task, which acts as a prior to clustering. These
multi-stage frameworks often also use the third step to refine the
clustered space further using self-labeled supervision [23, 27].
In contrast, our two-fold optimization performs feature learning
and clustering concurrently, and our clustering optimization is
a novel neural mixture modeling method.

The second one is learning the general feature extraction
and the clustering simultaneously as a single-stage task. These
methods usually consists of heavy augmentation [5, 17], multi-
ple complex losses [14], or series of sub-steps [16, 17]. Invari-
ant information clustering (IIC) [5], following the intuition of
the consistency optimization, learns a latent mapping from the
input by maximizing the mutual information (MI) between the
mappings of original and transformed images. MI maximiza-
tion requires large batch sizes [28] and repeated sampling where
each image is transformed multiple times. DCCM [17] builds
on the same consistency optimization and uses pseudo-label
and pseudo-graph supervision alongside triplet mutual infor-
mation optimization. Associative Deep Clustering (ADC) [14]
embeds an image and its transformed version through a CNN
and jointly trains the network end-to-end along with another
set of centroids. ADC minimizes a sum of multiple losses and
requires additional hyper-parameter tuning of the loss weight-
ings. Deep Adaptive Clustering (DAC) [16] recasts the clus-
tering problem as a binary pairwise classification task. DAC
generates the labels by leveraging the learned feature vectors
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for which constitutes a series of sequential stages.
In contrast to these work, we propose mixture modeling with

a neural network posing as the cluster distribution estimator
and the network parameters posing as the cluster distribution
parameters. Our framework is a single-stage end-to-end clus-
tering framework. The proposed mixture-EM optimization is a
better alternative for k-means and other standard clustering al-
gorithms. In addition, our formulation can be used as the clus-
tering objective along with other initialization methods such
as pre-text task learning, consistency optimization, self-label
based fine-tuning methods to build rather complex end-to-end
multi-stage clustering solutions. This paper discovers only the
fusion of consistency optimization to the mixture-EM optimiza-
tion to cluster image data, resulting in a two-fold single-stage
training process.

3. EM Algorithm for Mixture Model Clustering

Expectation-Maximization [1] is often used to approximate
solutions to the maximum likelihood estimate (MLE) and max-
imum a posterior (MAP) estimate. In mixture modeling, a set
of distributions are fitted to the observation space such that the
total likelihood is maximized. Due to the difficulties in maxi-
mizing this likelihood, EM is often used to optimize an alter-
native lower bound. Here, we briefly discuss the use of EM to
approximate MLE in fitting a mixture of distributions to a given
dataset to provide background for our formulation and training
approach.

Let x be an observation of the continuous random variable
X in the space D, and D be a set containing N such observa-
tions sampled fromD (D ⊂ D). Let θ be the parameters which
define the clusters. We need to cluster the space D to K clus-
ters. We introduce a latent discrete variable Z whose outcome is
the cluster assignment (z ∈ [1 . . .K]). The MLE objective is to
find θ that maximizes the total likelihood marginalized over Z:
L(θ; D) =

∏
x∈D
∑

z∈[1...K] f (x, z | θ). Here, f (x, z | θ) is the joint
probability density of x and z, given the parameters θ, viewed
as the likelihood of θ for observed x and z: l(θ; x, z). Note that f
denotes a continuous probability whereas p denoted a discrete
probability.

The EM Algorithm alternates between two steps, the E-step
and the M-step, to optimize a lower bound to the aforemen-
tioned total likelihood. During the tth iteration, in the E-step, the
algorithm computes the posteriors for the current θ: p(z | x, θt)
and formulates the EM objective:

Q(θ | θt) =
∑
x∈D

∑
z∈[1...K]

p(z | x, θt) log[ f (x, z | θ)], (1)

where p(z | x, θt) is the posterior probability of Z = z given
x and current parameters θt. This objective is then optimized
w.r.t. θ in the M-step,

θt+1 = arg max
θ

Q(θ | θt). (2)

At the time of formulation (E-step), θ carries same values as
θt as both represent the current parameters. However during the

M-step optimization, θ (in the log term in Eq. (1)) gets updated
to new values, i.e., p(z | x, θt) in Eq. (1) is a constant in the
M-step optmization.

4. Towards Formulating Mixture-EM on a Neural Network

From this section onwards, we explain the proposed realiza-
tion of mixture modeling with EM algorithm using a NN to
cluster a dataset end-to-end. Rather than maintaining a set of
centroids or Gaussian distributions, we let the NN parameters
freely model the clusters with advanced distributions. While the
parameters in all layers except the final layer learn shared clus-
ter representations, the parameters in the final-fully connected
layer learn cluster-specific representations. We perform EM
optimization in an online fashion with batch-wise backpropa-
gation. During the forward pass of the NN, we feed a batch of
observations and perform one EM iteration on this batch, where
the EM-based loss is calculated and back-propagated. Unlike
traditional EM, which fully optimizes the current EM loss in
the M-step (Eq. (2)), we perform only a single step in optimiz-
ing the EM loss for the current batch (a gradient descent step).
For the next iteration, we feed the next batch and calculate the
EM loss again. Such batch-wise EM iteration prevents taking
all observations for a single iteration which is inefficient.

First, we approximate K cluster distributions from K output
nodes of the NN. To this end, it is vital for all K distributions
to behave as probability density functions of input x, which im-
plies the K approximated distributions should be continuous,
positive, and have a common integral over the sample space.
The K distributions must share a common integral; otherwise,
a single cluster distribution can easily grow over other distribu-
tions, capturing all datapoints. This leads to the trivial solution
of all datapoints being allocated to one cluster. We enforce the
final layer K neurons to show the PDF behavior by restricting
their sigmoid output to the most linear region of the sigmoid
with its input normalized over the batch. We then use the ap-
proximated cluster distribution outputs to derive the EM objec-
tive as in Eq. (1). The posterior class memberships are approxi-
mated for a given input by taking the softmax of the normalized
final layer neurons and cluster likelihoods by cluster distribu-
tion outputs. Finally, we integrate consistency optimization be-
tween original and augmented images into the image clustering
to encourage the NN to learn semantically important features.

Let g be a parametric computation, the NN which learns the
cluster characteristics and the cluster assignments. The learn-
able parameters of the NN now represent the cluster parameters
θ. The final layer has K number of nodes, each representing the
relevance to the respective cluster. Given a batch of n observa-
tions xi,i=1,...,n, for each observation xi, the network outputs K
relevance scores ai: ai = [ai1, . . . , aiK] = gθ(xi). Here, ai j is the
relevance of xi to jth cluster, which is expected to rise with high
degree of membership to cluster j. This relevance can further
be shown as the output of the composite functions gθs and gθ j :
ai j = gθs,θ j (xi) = gθ j (gθs (xi)). If the NN contains L layers, gθs

represents the network up-to layer L − 1, where the parameters
θs are shared among all clusters. gθ j denotes the mapping from
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the layer L − 1 output to the jth neuron of the final layer corre-
sponding to cluster j. The parameters θ j are exclusive for the
cluster j.

5. Approximate Cluster Distributions

Now, we move to the most important approximation of this
paper, the estimation of the distribution function hθ for each
cluster, i.e., the probability density of a particular observation
x when the cluster assignment z and θ are known: f (x | z, θ).
Let hθs,θ j (x) denote the distribution function of the jth cluster:
f (x | Z = j, θ) = hθs,θ j (x). Essentially, hθs,θ j (x) is a probabil-
ity density function (PDF) of the observation x. Our goal is
to derive hθs,θ j (x) from the relevance score gθs,θ j (x) computed
for each batch. To this end, we list the required qualities for
the cluster distribution function hθs,θ j . 1) hθs,θ j (x) should be a
continuous function of the observation x. 2) hθs,θ j (x) should be
non-negative for all observations which is particularly impor-
tant when taking the logarithm. 3) the integral of hθs,θ j over all
possible x in the spaceD should be 1. However, the integral of
hθs,θ j being a constant that is common to all the clusters is suf-
ficient since dividing the distributions by this constant results
in PDFs, and we can neglect this constant in the optimization
process. Such an integral restriction regulates the cluster shapes
and prevents certain clusters from overpowering other clusters
(trivial solutions).

The output of the final layer neuron j: ai j = gθs,θ j (xi) is not
yet suitable to approximate the distribution of the cluster j, al-
though it is related to the degree of the membership of xi to clus-
ter j. Therefore, we transform this relevance to a form which
can represent the cluster distribution by another transformation
H: hθs,θ j (x) = H(gθs,θ j (x)). We derive this transformation step
by step to meet the criterion mentioned above. First, gθs,θ j (xi)
is already a continuous function of xi. However, gθs,θ j (xi) (or
ai j) is the output of a final layer neuron of the NN before any
activation, therefore can be negative. The sigmoid of ai j will
transform it to a non-negative value. In addition, the sigmoid
function consists of a nearly linear region which is important as
discussed next.

However, the third criterion is not yet satisfied as the inte-
gral of sigmoid(ai j) over all x ∈ D does not evaluate to a fixed
value common to all the clusters. We enable this property by
imposing a common restriction to regulate all cluster distribu-
tion integrals within the spaceD. First, we normalize the input
to the sigmoid, the relevance ai j over all such relevance scores
to cluster j in the batch.

a∗i j =
ai j − µ j

σ j
, where µ j =

1
n

n∑
i=1

ai j and σ2
j =

1
n

n∑
i=1

(ai j−µ j)2.

(3)
Here, a∗i j is the normalized relevance score of xi to cluster j,
where µ j and σ j are the mean and the standard deviation of ai j

in the batch. Then, we further divide a∗i j by another constant γ
(γ > 1). Thus, the distribution function of cluster j satisfying
all criterion is,

hθs,θ j (xi) = sigmoid(g∗θs,θ j
(xi)/γ) = sigmoid(a∗i j/γ). (4)

−11.23 −5 5 11.23

0.5

1

a∗

sigmoid(a∗)
sigmoid(a∗/5)

1√
2π

e−
1
2 x2

Figure 2: sigmoid function and the standard normal distribution. If we assume
that the input of the sigmoid is normalized with zero mean and unit variance,
then it is restricted to a limited interval around 0 with high confidence. Even
without this assumption, since a∗ is normalized along a batch-size of 128, it
is bounded to [-11.23,11.23] (green vertical lines). We divide a∗ by γ = 5 to
ensure sigmoid output stays in its mostly linear region for this interval for 128
batch-size. The sigmoid function, with its zero mean linear region input, acts
as a PDF of x.

We now explain the motivation and the justification for such
normalization of relevance score ai j and division by γ. Refer-
ring to Fig. 2, if we assume that the input to the sigmoid is a
standard normal variable with zero mean and unit variance, the
input of the sigmoid activation function is restricted to a small
interval around zero as larger inputs are unlikely (99.9% confi-
dence interval of standard normal score is [−3.29, 3.29]). Even
without this assumption, since we normalize a set of n points
[a1 j, . . . , an j], the normalized values are bounded within the in-

terval of
[
−(n−1)√

n
, (n−1)√

n

]
[29]. For example, if we normalize ai j

over a batch of 128, for any observation xi, the normalized rel-
evance score a∗i j is bounded within the interval [−11.23, 11.23].
Furthermore, to keep the sigmoid output within its mostly linear
region for all a∗i j which falls within this interval, we divide a∗i j
by γ (γ > 1). γ is dependent on the batch-size. If the batch-size
is 128, we set γ to 5 to make sure the sigmoid output is within
the mostly linear region, as depicted in Fig. 2.

Normalization of relevance score ai j over the batch (a∗i j) and
further dividing by γ (γ > 1) makes couple of important re-
strictions to the cluster distribution hθs,θ j (xi) = sigmoid(a∗i j/γ)
as follows;

1. The average input to the sigmoid (a∗i j/γ or g∗θs,θ j
(xi)/γ) over

the batch is zero:

1
n

n∑
i=1

a∗i j/γ = 0. (5)

2. For any observation xi, sigmoid(a∗i j/γ) limits to its mostly
linear region. In addition, since the average input to
the sigmoid is zero, we can approximate the average of
sigmoid(a∗i j/γ) over the batch by 0.5:

1
n

n∑
i=1

hθs,θ j (xi) =
1
n

n∑
i=1

sigmoid(a∗i j/γ) = 0.5. (6)

With these conditions, using the Monte Carlo integral estima-
tion [30], we can show that over all x ∈ D, cluster j distribution
hθs,θ j integrates to a value which is common for all clusters. Let
us denote the integral of cluster j distribution hθs,θ j (x) over the
spaceD by I j:

I j =

∫
D

hθs,θ j (x) dx. (7)
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Here, x is an m-dimensional observation from the spaceD (D ⊂
Rm). The objective is to approximate this integral by uniformly
sampled batch of n observations xi|i=1,...,n. Given the batch of
n uniform samples in the space D, the Monte Carlo method
approximate I j by,

I j ≈ V
1
n

n∑
i=1

hθs,θ j (xi), (8)

where V is the volume of the m-dimensional space D: V =∫
D

dx. The average of distribution outputs over n samples is 0.5
as per Eq. (6). Thus, the Monte Carlo estimation for the integral
of the cluster j distribution over the spaceD (I j) becomes,

I j ≈ 0.5V. (9)

The approximated integral for cluster j distribution (0.5V) is
common for all cluster distributions hθs,θ j (x)| j=1,...,K . Therefore,
within the sample spaceD, these distributions act as PDFs with
a common integral. This integral regularization prevents cer-
tain clusters overpowering other clusters, i.e., trivial solutions
or empty clusters.

6. Deploying EM Batch-Wise

With the cluster distributions defined, we move to the batch-
wise EM iterations. During the tth forward pass for a given
batch xi,i=1,...,n, first, we calculate the E-step posterior proba-
bilities p(z | x, θt). Given the input xi and parameters θ, the
probability of the assigned cluster being j is,

p(Z = j | xi, θ) =
p(Z = j | θ) f (xi | Z = j, θ)∑K

k=1 p(Z = k | θ) f (xi | Z = k, θ)
, (10)

where p(z | θ) is the prior of cluster assignment. These priors
are calculated from the posteriors of the previous step. How-
ever, since we experiment in evenly divided datasets, we assign
the priors of all clusters to 1/K. This simplifies the posterior to
the normalized cluster distribution:

p(Z = j | xi, θ) =
hθs,θ j (xi)∑K

k=1 hθs,θk (xi)
. (11)

However, considering the ease of numerical optimization, we
simplify this ratio between sigmoid values to the ratio be-
tween un-normalized exponentials, hence the softmax function.
Therefore, we approximate the posterior p(Z = j | xi, θ

t) by the
softmax activated a∗i j (Denoted by pi j later):

p(Z = j | xi, θ
t) ≈

ea∗i j∑K
k=1 ea∗ik

= pi j. (12)

Then, we estimate the joint probability density of observation
x and cluster assignment z given parameters θ: f (x, z | θ), i.e.,
the likelihood of θ for observed x and z: l(θ; x, z). This can be
expanded as p(z | θ) f (x | z, θ). As we set the prior for cluster
assignment p(z | θ) to constant 1/K, it can be disregarded in
the optimization. Therefore, the joint density can directly be
approximated by the conditional density f (x | z, θ) hence the
cluster distribution is,

f (x, z | θ) = hθs,θ j (xi) = sigmoid(a∗i j/γ). (13)

Once the E-step posteriors and joint probability densities (like-
lihoods of θ) are formulated for the batch, we compute the EM-
based loss function which corresponds to the EM objective in
Eq. (1) by,

Lθ|θt = −
1
n

n∑
i=1

K∑
j=1

pi j log[sigmoid(a∗i j/γ)]. (14)

Keeping pi j constant, we backpropagate this loss and update
parameters θ as the objective is to maximize the total likelihood
subjected to the current posterior probabilities. Fig. 3 summa-
rizes this formulation.

The proposed method approximates the sample space with
a batch of samples at each iteration. It is vital to normalize
the relevance scores and divide by γ to restrict them to the most
linear region of the sigmoid activation to obtain the PDF behav-
ior. The value of γ depends on the selected batch size. For our
experiments, we used a batch size of 128. Therefore, the nor-
malized relevance scores fall between [-11.23, 11.23], highly
scattered around zero. To ensure the sigmoid of these scores
are within its most linear region, we maintain γ = 5. If we
use a different batch size, we have to tune γ so that the input
to the sigmoid lies within its most linear region. In addition,
since the proposed framework performs EM iterations batch-
wise, the EM optimization sees a batch of samples that repre-
sents the entire sample space in each iteration. Therefore, the
larger the batch size, the batch can better represent the sam-
ple space for each EM iteration. Meanwhile, having smaller
batches helps regulate the optimization process by adding more
noise to the sample space approximation.

7. Fusing with Consistency Optimization for Image Clus-
tering

To cluster high dimensional data such as images, training
a NN with a pure clustering objective only on original data
is insufficient. The network could easily get overfitted to the
lower level textures and patterns which are unnecessary for the
clustering task. Therefore, the network needs to extract gen-
eral abstract features (e.g., body patterns, poses) from images
relevant to capturing the class. To enable such rich feature
extraction alongside mixture-EM optimization, we incorporate
transformed images into the learning process. The transforma-
tion T converts an original image xi to its transformed version
xtr

i : xtr
i = T (xi). It consists of basic data augmentation such

as random crop, shift, rotation, scale, and random adjustment
of image brightness, contrast, saturation, and hue. We com-
pute the relevance scores for the transformed images as before:
atr

i = gθ(xtr
i ). We add another term to the EM loss in Eq. (14),

the log-likelihood for the transformed image weighted by the
posterior of the original image. Thus, the loss becomes,

Lθ|θt = −
1
n

n∑
i=1

K∑
j=1

pi j

[
log[σ(a∗i j/γ)] + log[σ(atr∗

i j /γ)]
]
. (15)

Optimizing the log-likelihoods of both original and transformed
images in favor of the posterior for the original image (pi j)
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Figure 3: Adopting Mixture-EM to train a NN end-to-end for clustering. The NN final layer relevance scores are normalized and used to calculate cluster likelihoods.
Same normalized relevance scores are used to calculate posteriors. Using the likelihoods and posteriors, the EM-based loss is derived which is backpropagated.

encourages the network to maintain similar behavior for both
original and transformed images. Further continuing on such
motivation, we use a concept similar to consistency regular-
ization [4] to encourage the network to maintain similar out-
puts for the original and transformed images. Once the model
outputs posterior probabilities qi to the transformed input xtr

i :
qi = softmax(g∗θ(xtr

i )), we minimize the KL divergence between
the posteriors pi and qi for the original image and the trans-
formed image respectively,

DKL(pi || qi) =

K∑
j=1

pi jlog
pi j

qi j
. (16)

We keep the posteriors of the original image pi constant in op-
timizing the KL divergence, making them temporary soft la-
bels for the augmented image response qi. We embed this opti-
mization into the main EM optimization by performing gradient
steps in optimizing both objectives (Eq. (15) & Eq. (16)) one af-
ter the other for each batch, using two separate optimizers. This
leads to a two-fold optimization process as shown in Algorithm
1.

The posterior for original images pi updates to a better pos-
terior after one gradient step of EM optimization as the network
parameters get updated in favor of the current posteriors. The
KL objective intends to encourage the network to maintain the
current network response for the original image pi, for its aug-
mented image. Optimizing these two objectives together is in-
efficient. Because when the posteriors for the original images
pi gets updated to better values (pnew

i ), the KL objective forces
the posteriors for the augmented images qi to stay closer to the
current (old) pi. Therefore we optimize these two objectives
alternatively. After one EM optimization step, to optimize the
KL objective, we freshly calculate the posteriors for the original
image pi since the network has now been updated.

Algorithm 1 Two-fold optimization for a given batch [xi,i=1...n],
its transformed batch [xtr

i,i=1,...,n] and the NN which is parame-
terized by θ

EM Optimization
Compute cluster relevances scores
ai = [ai1, . . . , aik] = gθ(xi). Similarly atr

i = gθ(xtr
i )

Normalize relevances a∗i j =
ai j−µ j

σ j
. Similarly atr∗

i j .
Compute posterior probabilities pi = softmax(a∗i ).
Compute clustering loss: Lθ|θt ,

− 1
n
∑n

i=1
∑K

j=1 pi j

[
log[σ(a∗i j/γ)] + log[σ(atr∗

i j /γ)]
]

(Eq. (15))
Backpropagate loss and update parameters θ
Consistency Optimization for Augmented Images
Compute posteriors pi with updated θ
pi = softmax(g∗θ(xi))
Compute posteriors for augmented images
qi = softmax(g∗θ(xtr

i ))
Step in optimize the KL Divergence (pi j constant)
DKL(pi || qi) =

∑K
j=1 pi jlog pi j

qi j
(Eq. (16))

8. Time Complexity Analysis

Considering the dimension of each sample, the number of
samples to cluster, the number of clusters (i.e., number of final
layer neurons), and the number of iterations for convergence,
the proposed optimization of NN carries a similar time com-
plexity to k-means or GMM. Let us consider a task of cluster-
ing n samples to K clusters, with each sample being an image
of dimension d = M × N. If k-means takes ik−means number of
iterations over set D for convergence, the time complexity of
clustering this space with k-means is O(ndKik−means).

Let us assume we employ a convolutional network of Nc con-
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volutional layers followed by a fully-connected layer for the
proposed clustering. Let every convolutional layer contains f
number of w × w filters without any down-sampling, and the
fully connected layer outputs K nodes. The running time for
a sample is therefore O(d f w2) for the first convolutional layer,
O(
∑

Nc−1
d f 2w2) = O(d f 2w2) for the rest of convolutions and

O(d f K) for the fully-connected layer. This is a valid upper-
bound even for a network with down-sampling layers. There-
fore, the time taken for a single image to forward pass through
the NN is O(d f w2 +

∑
Nc−1

d f 2w2 + d f K). This can be simpli-
fied to O(dp) where p denotes the total number of parameters
of the NN (p = f w2 +

∑
Nc−1

f 2w2 + f K). Thus, the complex-
ity of our framework considering n, d, p and iNN is O(ndpiNN).
During training, the backward pass through the network is of
similar time complexity to the forward pass. If we fix all layers
except the final layer, the total running time for one sample be-
comes O(dK) depending on the number of final layer neurons
K. Thus, the time complexity of the proposed clustering for
n samples and iNN number of iterations over set D (number of
epochs) now becomes O(ndKiNN), which is similar to k-means.

9. Experiments

9.1. 2-Dimensional Space

To validate our algorithm and study the cluster distribution
behavior, we first conduct a small-scale clustering experiment
on a 2-d space created from the MNIST [31] dataset. To create
2-d data from MNIST, we train a CNN in MNIST in a super-
vised manner. The network contains a bottleneck layer of 2
nodes before the final 10-node layer. Once trained, we extract
the bottleneck output of the network that contains 70,000 2-d
points as shown in Fig. 4(a). We use these data points as the
set D for the clustering. This supervised setting for dimension-
ality reduction enables the 2-d samples to scatter in observable
clusters better than unsupervised techniques [32, 33, 34].

(a) Input Space (b) Categorized Space

Figure 4: The 2-d sample space generated from the MNIST dataset and the clus-
tered set after training with our algorithm. The algorithm identifies observable
clusters. See Fig. 5 for the cluster distribution plots.

To cluster this 2-d space, we use a three-layer perceptron with
two 32-node hidden layers and a 10-node final layer (10 clus-
ters). We use the mixture-EM optimization as in Eq. (14) which
uses only original data points. We train the NN with a batch
size of 128, setting γ to 5, and using an Adam optimizer [35]
with a learning rate (LR) of 0.001. The algorithm converges
within ten epochs. Fig. 4(b) shows the clustered space, where
the network identifies the observable clusters. The final layer

relevance score normalization does not use the affine transfor-
mation as in conventional batch-normalization [36] since it can
reverse the normalization effect. Furthermore, while relevance
score normalization can be done dynamically, using a running
mean and a running standard deviation smoothens the learning
and enables inference with different batch sizes.

cluster 4 cluster 6 cluster 10
(a) Without normalizing relevance scores

cluster 4 cluster 6 cluster 10
(b) With normalized relevance scores

Figure 5: Importance of relevance score normalization: Cluster distributions of
chosen clusters when trained in the 2-d space. (a) Without relevance score nor-
malization, some clusters overpower other clusters by acquiring all members.
Here, cluster 6 dominates the sample space by capturing all observations. (b)
With relevance score normalization, the cluster distributions act as PDFs with a
common integral over the input space. Distributions show high likelihoods for
each observable group.

In Fig. 5, we show the contour plots of the cluster distribu-
tions ( f (x | Z = j, θ) or hθs,θ j (x)) with the observation x. We
choose three cluster distributions among the 10 clusters corre-
sponding to 4th, 6th and 10th nodes of the final layer. Fig. 5(a)
shows the chosen cluster distributions when trained with un-
normalized relevance scores ai j where the distributions are not
explaining possible clusters. Also, their integrals over the space
do not seem to evaluate to a common value. Cluster 6 distri-
bution shows maximized likelihoods for all data points, where
cluster 10 distribution is fairly low for all observations. In this
scenario, the model collapses to a trivial solution by assigning
all samples to cluster 6. Fig. 5(b) shows the same cluster distri-
butions when trained with normalized relevance scores a∗i j. The
contour plots illustrate that each distribution captures an ob-
servable cluster of points by showing high likelihoods for those
points. These distributions act close to PDFs since they em-
pirically share a common integral over the observation space.
These plots validate that our relevance score normalization is
crucial for clustering.

Table 1: Average of estimated cluster distribution outputs for the three clusters
in Fig. 5 for a given batch of 128 samples. Without relevance score normal-
ization, they reach different values without any restriction. Cluster 6 has the
highest average, closer to 1. With relevance score normalization, they all reach
0.5.

Cluster index j 4 6 10
1
n

∑n
i=1 hθs ,θ j (xi) with ai js (un-normalized) 0.736 0.999 0.108

1
n

∑n
i=1 hθs ,θ j (xi) with a∗i js (normalized) 0.498 0.507 0.504

8



We further estimate the cluster distribution integrals for these
3 clusters experimentally to validate the PDF behavior. As
shown in Eq. (8), the integral of the cluster distribution h over
the space D is proportional to the average output of h over n
uniform samples. We also showed that the average cluster dis-
tribution output of a batch of n samples reaches 0.5 due to the
relevance score normalization and constraint to the sigmoid lin-
ear region (Eq. (6)). To empirically observe this, we calculate
the average cluster distribution output 1

n
∑n

i=1 hθs,θ j (xi) for these
3 clusters over a given batch of n = 128 samples and report
in Table 1. Without the relevance score normalization, the av-
erage cluster distribution outputs over the batch show different
values, and the dominating cluster 6 shows an average close to
1. All three clusters show an average distribution output close
to 0.5 for the batch when we use relevance score normalization.
Hence, they share a common integral of 0.5V (V is the volume
ofD as in Eq. (8)) over spaceD and act as PDFs of x.

9.2. Clustering Image Datasets

Table 2: Network Architectures. Cn denotes a convolutional operation with n
filters. M stands for Max-pooling. Fn denotes a fully-connected layer with n
output nodes.

Dataset Architecture Params

MNIST C64 M C128 M C256 F32 F10 0.8M
CIFAR C64 C64 M C128 C128 M C256 C256 Fn 1.3M
STL10 C64 C64 M C128 C128 M C256 C256 2.7M

M C256 C256 F10

We further test our algorithm on four image datasets com-
monly used for unsupervised clustering, STL10 [37] 1, CI-
FAR10/100 [38] 2 and MNIST [31] 3. STL10 consists of 13k
labeled samples and 100k unlabelled samples. We only clus-
ter the labeled set as the unlabelled set contains additional
classes. CIFAR100 contains 100 classes and the data are fur-
ther abstracted to 20 super-classes, each super-class containing
5 classes. Following other clustering work [3, 5, 16], we cluster
the CIFAR100 dataset to the 20 super-classes and other datasets
to the standard numbers of categories. We use a 9-layer CNN
for the STL10 dataset, a 7-layer network for CIFAR10/100, and
a 5-layer network for the MNIST dataset. The network archi-
tectures are detailed in Table 2. Before feeding the images to the
NN, if RGB, we convert them to single-channel grayscale. We
process the single-channel images with vertical and horizontal
Sobel filters. Thus, NN input is a stack of two planes of similar
height and width to the original image (2×H×W), carrying ver-
tical edges and horizontal edges. Such pre-processing prevents
the network from overfitting to colors and enables learning of
general structures.

We use the two-fold optimization shown in Sec. 7 and Al-
gorithm 1, maintaining two Adam [35] optimizers, one for EM
optimization (LR = 5e-5) and the other for consistency opti-
mization (LR = 1e-4). It is important to assign a higher LR for

1STL10 - https://cs.stanford.edu/~acoates/stl10/
2CIFAR10 & CIFAR100 - https://www.cs.toronto.edu/~kriz/

cifar.html
3MNIST - http://yann.lecun.com/exdb/mnist/

consistency optimization as if learning general semantic fea-
tures gets high priority over learning cluster representations;
clustering will be richer and more accurate. We train our mod-
els for 250 epochs with a batch size of 128 and γ = 5, with the
full datasets apart from STL10 where we use the labeled set.

We compare our approach with traditional and state-of-the-
art deep clustering methods in Table 3. Here, we evaluate the
trained model’s unsupervised classification accuracy and the
normalized mutual information (NMI). Since we cannot ex-
pect the predicted class indexes to match the labels due to the
unsupervised training setting, we use the Hungarian algorithm
[49] to assign the predicted cluster index to the actual label as
a linear sum assignment [5]. We report our model performance
when trained with only the mixture-EM optimization with both
original and augmented images (Eq. (15)) and when trained
with the two-fold optimization (Algorithm 1). For each dataset,
we report the average accuracy of our algorithm over six tri-
als. For the two-fold optimization, we also report the margin of
error, considering 95% confidence interval.

When trained with only the mixture-EM optimization for
both original and transformed images, our models surpass all
traditional clustering algorithms and existing deep clustering
methods, which still rely on k-means such as Deep Embed-
ded Clustering (DEC) [3] and DeepCluster [15]. The two-fold
optimization further improves the performance of the mixture-
EM optimization, surpassing end-to-end deep clustering meth-
ods such as DECCA[6], SCAE [28], DAC [16], ADC [14] and
IIC [5] in most cases. IIC [5] uses both labeled and unlabelled
spaces of STL10 and, when trained with only the labeled por-
tion, achieves only 49.9%. Furthermore, IIC uses many aug-
mented samples in a batch by repeated augmentation (5 times).
With augmentation once per batch, they only achieve 47% for
the STL10 dataset. Also, IIC uses multiple heads with over-
clustering strategies to improve overall performance.

In contrast, our framework reports an impressive 57.93%
when trained with only the labeled portion, with lesser image
augmentation, which is imposed only once per batch. We show
that IIC with only one head achieves inferior performance in
our training setting with lesser augmentation to both mixture-
EM optimization and the two-fold optimization. The consis-
tency optimization term in the two-fold optimization shares the
same intuition to IIC, maintaining a similar model response to
the original and its transformed images. Hence, we can con-
clude that our two-fold optimization improves sole consistency
optimization in clustering. Figure 6 further shows the learn-
ing curves of IIC in our setting and the two-fold optimization,
validating this fact.

It is important to note that certain deep image clustering
methods report superior performance to our method [23, 17,
27, 18]. However, most approaches are multi-stage meth-
ods consisting of initialization methods, multiple losses, and
fine-tuning methods. For example, most of the performance
improvement of SCAN can be attributed to the pre-text task
learned prior to the clustering. In addition, SCAN also uses
self-labeled fine-tuning. While our mixture-EM formulation
optimization can also be extended with such pre-text learn-
ing, heavier augmentation, fine-tuning such as self-labeling, we
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Table 3: Unsupervised classification accuracy (%) comparison. We cluster CIFAR100 into 20 superclasses. † denotes approaches that get the support of k-means.
Our two-fold optimization surpasses all traditional clustering algorithms, all single-stage deep algorithms that still rely on k-means, and even state-of-the-art single-
stage approaches in some cases. ∗ denotes DeepCluster [15] and ADC [14] performance figures produced by Ji et al., [5].

Approach STL10 CIFAR10 CIFAR100 MNIST
Acc NMI Acc NMI Acc NMI Acc NMI

K-means [39] 19.2 12.5 22.9 8.7 13.0 8.4 57.2 50.0
Spectral Clustering [40] 15.9 9.8 24.7 10.3 13.6 9.0 69.6 66.3
JULE [41] 27.7 18.2 27.2 19.2 13.7 10.3 96.4 91.3

Triplets [42] † 24.4 - 20.5 - 9.94 - 52.5 -
AE [43] † 30.3 25.0 31.4 23.4 16.5 10.0 81.2 72.6
Sparse AE [44] † 32.0 25.2 29.7 24.7 15.7 10.9 82.7 75.7
Denoising AE [45] † 30.2 22.4 29.7 25.1 15.1 11.1 83.2 75.6
Var. Bayes AE [46] † 28.2 20.0 29.1 24.5 15.2 10.8 83.2 73.6
SWWAE [47] † 27.0 19.6 28.4 23.3 14.7 10.3 82.5 73.6
GAN [48] † 29.8 21.0 31.5 26.5 15.1 12.0 82.8 76.4
DEC [3] † 35.9 27.6 30.1 25.7 18.5 13.6 84.3 77.2
K-meansNet [19] - - 20.23 6.87 - - 87.76 78.70
DeepCluster [15] † 33.4* - 37.4* - 18.9* - 65.6* -

DECCA [6] - - - - - - 96.37 0.9087
SCAE [28] - - 33.48 - - - 99.0 -
DAC [16] 47.0 36.6 52.2 40.0 23.8 18.5 97.8 93.5
ADC [14] 53.0 - 32.5 - 16.0* - 99.2 -
IIC [5] 59.8 49.6 61.7 51.1 25.7 22.5 99.2 -
IIC [5] our setting 47.12 0.4102 44.17 0.3489 16.18 0.0988 95.72 0.9396

EM Optimization (Eq. (15)) 49.61 0.4199 49.53 0.3959 19.36 0.1223 98.44 0.9567
Two-Fold Optimization 63.84 0.503 57.97 0.4703 25.94 0.1972 98.88 0.9674

± 2.6 ± 0.0213 ± 3.03 ± 0.0204 ± 0.8 ± 0.0041 ± 0.07 ± 0.0016

Figure 6: Training curves in STL10 dataset. The blue curve shows the two-fold
optimization, and the red curve shows the consistency optimization in IIC [5]
in our setting. Our two-fold optimization, which utilizes mixture-EM optimiza-
tion alongside consistency optimization, shows a significant improvement over
consistency optimization alone.

omit such additions in this paper.

9.3. Visualizations
This section analyzes an STL10-trained network to validate

the rich cluster modeling and feature extraction empirically. We
first plot the network response before softmax in 2-d for a subset
of STL10 containing 2560 images in Fig. 7. We use the T-SNE
algorithm [33] to map the network response vectors to 2-d while
preserving the relationship between vectors. Fig. 7(a) shows

such visualization for a randomly initialized network. Fig. 7(b)
shows the network response when trained with the two-fold op-
timization, but without normalizing the cluster relevance scores
over the batch. Fig. 7(c) shows the response when trained
with the same loss and batch-normalization of cluster relevance
scores. The randomly initialized network (Fig. 7(a)) contains
no information on a possible clustering basis. Our algorithm
trains such a network to categorize the sample space into mean-
ingful clusters with observable cluster boundaries (Fig. 7(c)).
Fig. 7(b) shows the trivial convergence where a single cluster
is formed with other clusters having no members. Fig. 7(b)
and Fig. 7(c) further show that normalizing relevance scores
over the batch leads to a boost of performance and prevents the
network from converging to trivial solutions, without any other
refining technique such as normalizing by cluster assigned fre-
quencies [3].

In Fig. 8, we plot the ten images which output the high-
est values of the corresponding relevance scores for chosen
five clusters, along with the synthesized image that maximizes
the corresponding neuron. We construct the synthesized input
by performing gradient ascent on the randomly initiated input
image to maximize the corresponding node’s response before
the activation [50]. The resulting visualizations illustrate that
the model clusters images with similar abstract information to-
gether. The synthesized images match the corresponding high-
level information contained in top member images. For exam-
ple, cluster 4 mostly activates for dogs, and in the synthesized
image, we can observe matching leg patterns. Cluster 7’s best
images mostly contain cats, and the synthesized image shows
dotted patterns present in all ten highest activated images. Clus-
ter 8’s top images mostly show deers observed from the side,
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(a) Random Network (b) No Normalization (c) Normalization

Figure 7: 2-D mapping of the final-layer response for a subset of STL10. a) Random network: shows no knowledge of possible clusters. b) When trained without
normalizing cluster relevance scores: collapses to trivial solutions (here, only one cluster). c) When trained with normalizing relevance scores: non-trivial observable
meaningful clusters.

cluster 3

cluster 4

cluster 7

cluster 8

cluster 9

Figure 8: Five chosen clusters represented by the corresponding five neurons in the final layer for STL10 trained NN. Each row shows the ten images with the highest
relevance score for the corresponding cluster, followed by the synthesized image that maximizes the particular score. Images with similar high-level information
have been categorized together. The synthesized images show matching body structures and patterns.

and the synthesized image shows matching body structure. This
experiment validates the trained network’s ability to model rich
clusters end-to-end than limited hand-designed cluster charac-
teristics.

Finally, we visualize the convolutional filters of the model to

observe and validate the convolutional feature extraction. To
visualize a filter, we optimize a randomly initialized input to
maximize the output of the particular filter [50]. Fig. 9 gives
such visualizations for initial layer convolutions and final layer
convolutions. In each layer, we plot the synthesized images for
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four chosen filters. The shallow initial filters learn to extract
low-level patterns (Fig. 9(a)) and the deepest convolutional fil-
ters learn high-level patterns (Fig. 9(b)), i.e., the CNN learns
features that are distributed along with the network depth with
increasing complexity. This visualization proves that our fully
unsupervised learning algorithm enables the convolutional fil-
ters to extract relevant patterns to the clustering task. Main-
taining the model response to transformed images through con-
sistency optimization enables this general feature extraction of
convolutions.

(a) Initial convolutional layer filters

(b) Final convolutional layer filters

Figure 9: Filter visualization for the initial and the last convolutional layers.
The initial layer shows simple features whereas, the deep filters show complex
patterns. Overall, the convolutional filters are learning features, ascending in
the level of abstraction with our unsupervised algorithm.

10. Conclusion

Our batch-wise mixture-EM formulation trains a neural net-
work end-to-end to concurrently learn the cluster distributions
and cluster assignment in an online fashion. It is a better al-
ternative to k-means; we can replace k-means with a neural
network and EM optimization in any scenario in the cluster-
ing context. 1) To efficiently cluster a set of raw data points to
a given number of categories. 2) In image clustering context,
as the clustering method to be used alongside representation
learning or other techniques of general feature learning. The
normalization of the cluster relevance scores over batches en-
ables the sigmoid of these relevance scores to approximate the
cluster distributions as PDFs of the observation, thus prevent-
ing trivial solutions. The visualizations empirically validated
the meaningful cluster modeling, the rich convolutional feature
extraction, and the effect of the relevance score normalization.
Using a neural network of the required depth and the simplicity
of the training process makes our algorithm easy to use in any
form of clustering task with varying cluster modeling complex-
ity. This paper presents results without support from heavy data
augmentation, other representation learning techniques such as
pre-text tasks, deeper networks or initialization, or fine-tuning
methods. Nevertheless, it is worthwhile to investigate the pos-
sibility of further improvements by studying them. While we
propose the sigmoid activation along with normalized relevance
scores to model cluster distributions, it would be interesting to
explore more sophisticated activations or methods to derive bet-
ter distributions.
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