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Abstract—Huge computational costs brought by convolution
and batch normalization (BN) have caused great challenges
for the online training and corresponding applications of deep
neural networks (DNNs), especially in resource-limited devices.
Existing works only focus on the convolution or BN acceleration
and no solution can alleviate both problems with satisfactory
performance. Online training has gradually become a trend in
resource-limited devices like mobile phones while there is still no
complete technical scheme with acceptable model performance,
processing speed, and computational cost. In this research, an
efficient online-training quantization framework termed EOQ is
proposed by combining Fixup initialization and a novel quan-
tization scheme for DNN model compression and acceleration.
Based on the proposed framework, we have successfully realized
full 8-bit integer network training and removed BN in large-
scale DNNs. Especially, weight updates are quantized to 8-bit
integers for the first time. Theoretical analyses of EOQ utilizing
Fixup initialization for removing BN have been further given
using a novel Block Dynamical Isometry theory with weaker
assumptions. Benefiting from rational quantization strategies and
the absence of BN, the full 8-bit networks based on EOQ can
achieve state-of-the-art accuracy and immense advantages in
computational cost and processing speed. In addition to the huge
advantages brought by quantization in convolution operations,
8-bit networks based on EOQ without BN can realize >70×
lower in power, >18× faster in the processing speed compared
with the traditional 32-bit floating-point BN inference process.
What’s more, the design of deep learning chips can be profoundly
simplified for the absence of unfriendly square root operations
in BN. Beyond this, EOQ has been evidenced to be more
advantageous in small-batch online training with fewer batch
samples. In summary, the EOQ framework is specially designed
for reducing the high cost of convolution and BN in network
training, demonstrating a broad application prospect of online
training in resource-limited devices.

Keywords: Full 8-bit Quantization, Network without Batch
Normalization, Small Batch, Online Training, Resource-
limited Devices

I. INTRODUCTION

With the support of rapidly increasing computing capacity
and data volume, deep neural networks (DNNs) [1] have
achieved remarkable successes in many tasks like image
classification [2], object detection [3, 4], robotics [5] and
natural language processing [6, 7], etc. Despite state-of-the-
art results in such fields, there still exists one biggest problem
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in the application of DNNs on portable devices. In the most
common application scenarios, the model must be trained on
large computing clusters (GPUs [8] or TPUs [9]) with super
computing power and energy support and then re-implemented
on portable devices with limited computational and energy
resources. That is to say, once the trained model is downloaded
to the portable devices, the portable devices can not re-train
or fine-tune the model in the newly-collected data for better
performance [10]. At the same time, the private data of users
is difficult to be obtained and uploaded for the model training.
In this case, online training comes into being for promoting
the GPU or TPU pre-trained model performance. It works
by further updating the model on the private datasets with
more personal characteristics and the whole training process
will only be executed on the user’s own portable devices,
solving the problem of private data acquisition. However, most
portable devices with limited resources can’t be provided with
such online training ability for two reasons: the huge cost of
computation and energy caused by large models; the complex
operations during the forward and backward propagation of
batch normalization (BN) [11].

In pursuit of more diverse tasks and higher performance,
the DNN model is getting deeper and larger for the reason
that the model with more layers and parameters can better
extract features from the input data and generate more accu-
rate results [12]. What’s more, relatively large batch data is
essential for model optimization. Meanwhile, along with the
performance improvement brought by a larger model and batch
size, the lower computing speed, the increasing computational
resource, the huge energy consumption are limiting the wider
application of DNNs severely. Most DNN models can only
be trained and even inferred on cumbersome devices with
supercomputing power and energy support. And the computing
capacity of portable devices like smartphones and wearable
devices is far from satisfying the memory and energy demand
of such a huge calculation.

At the same time, served as a default technique in most
deep learning tasks, it has been widely demonstrated that
BN is effective for DNN training with high performance and
good robustness. Although studies on understanding why BN
works are still underway [13–15], the practical success of
BN is indisputable. Whereas the number of operations and
computational resources BN needs are much less than the
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convolution layer, the computation complexity of BN is much
higher than that of convolution both forward and backward
because BN requires square root operations. And these high-
cost operations involving strong nonlinearity bring giant chal-
lenges for resource-limited devices such as the ASIC chips
and FPGA. What’s more, BN contains many costly reduction
and element-wise operations which are hard to be executed in
parallel. Last but not least, the backward propagation requires
saving the pre-normalized activations, thus occupying roughly
twice the memory as a non-BN network in the training phase
[16]. For these reasons, BN becomes the most crucial part in
non-convolution layers [17] because it involves about 58.5%
of the execution time and 90% operations of non-convolution
layers [18]. Research also shows that BN lowers the overall
training speed by > 47% for deep ResNet and DenseNet
models [19] and brings incredible difficulties in the special
DNN inference and online training accelerator architecture
design [18].

Many researchers have tried to address the challenging
issues of the huge computational cost and the BN trap in
the training process of DNN models. Among the existing
model compressing methods trying to address the first issue
such as compact model [20], tensor decomposition [21–23]
and network sparsifying [24], etc., network quantization can
decrease the computational cost and accelerate processing
speed profoundly by converting floating-point values and
floating-point multiply-accumulate (MAC) operations to fixed-
point values and bit-wise operations [25, 26]. Initial researches
focus on the inference quantization for improving the inference
processing speed of a well-trained model [27–30]. Such works
quantize the inference data including weight, activation to low-
bit integers for less memory consumption and faster computing
speed. Recently, training quantization is becoming a much
hotter field for the increasing interests in providing resource-
limited devices with online training ability [31–35]. These
works add the data quantization of the training process includ-
ing error, gradient, and update, mainly aiming at decreasing the
computational and energy cost in the backward propagation.
Among these works, WAGEUBN [36] have pushed the online
training DNN model to a high level where all the data (weight,
activation, gradient, error, update, and BN) involving the
training the process has been quantized to 8-bit and the full
8-bit training framework has been successfully applied in the
large-scale DNN model training. However, they only quantize
BN and the operations that are complex and difficult to process
in parallel still can’t be avoided.

As for the second issue of the BN trap, many researchers
have also done lots of works to alleviate the problem. L1-BN
[19] and QBP2 [37] replace the standard deviation with L1-
norm value and range of the data distribution, respectively.
Even if the complex operations in calculating the standard
deviation of mini-batch are avoided, the forward and backward
propagation with high computational and memory cost is still
existing. WAGE [38] replace BN with a layer-wise scalar,
however, it has been verified that it’s hard to be implemented in
large-scale DNN model training [36]. As aforementioned, re-
moving BN takes great advantages in computational resources,
training speed, ASIC chip and FPGA compatibility, and online

training accelerator design. Recently, FixupNet [39] points out
that the gradient norm of certain activations and weights in
residual networks without normalization is lower bounded by
some constant and this causes the gradient explosion. Based
on this analysis, a novel initialization method is designed
for updating the network with proper scale and depth inde-
pendence to remove BN. However, the theoretical analysis
of Fixup initialization is very coarse and only focuses on
the prevention of gradient explosion. What’s more, they have
not considered the model compressing and accelerating with
quantization. More importantly, small-batch online training is
seldom involved in existing removing BN works.

As mentioned above, there is still a lack of methods in
addressing both issues named huge computational cost and
BN trap for the online training of resource-limited devices
completely. In this work, we firstly propose a novel complete
training quantization framework without BN by combing
Fixup initialization and a novel quantization scheme to address
both challenging issues named huge computational cost and
BN trap for efficient online training. Using this framework,
we have successfully removed BN, which can not only speed
up the computation but also avoid the unfriendly square root
operations for ASIC chips and FPGA. What’s more, every
data, both forward and backward in DNN training, including
weights, activations, error, gradient, and update, is quantized
to turn high-cost float-point operations into efficient fixed-
point operations. Then, to further validate the proposed work
theoretically, we provide a comprehensive understanding of
the scheme behind removing BN for the online training from
the point of Block Dynamical Isometry [40] with weaker
assumptions. Finally, extensive experiments have been done
to verify the effectiveness of the proposed no BN quantization
framework. Based on this framework, we have removed BN
in large-scale DNNs and achieved a full 8-bit network with
little performance degradation. More than this, we have also
analyzed the hardware performance in FPGA. Experiment
results show that with this complete quantization training
framework, we can achieve about 4× memory saving, >3×
and 9× faster in speed, 10× and 30× lower in power, 9× and
30× smaller in circuit area in the most executed multiplication
and accumulation operations, respectively. More importantly,
the proposed 8-bit framework has successfully removed BN,
realizing >70× lower in power, >18× faster in processing
speed compared with the traditional 32-bit floating-point BN
and bringing immeasurable simplification to the design of deep
learning chips. The small-batch training experiment, which
is much closer to the realistic scene, is also done to verify
the performance and computational advantages of the online
training framework without BN in practical applications. Our
contributions can be threefold, which are summarized as
follows:

• We address two main challenging issues named high
computational cost and BN trap existing in current online
training schemes via proposing a novel efficient online
training quantization framework named EOQ without
BN. Based on this framework combining Fixup initializa-
tion and a novel quantization scheme, the computational
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cost of BN and the unfriendly operations for ASIC chips
and FPGA are removed, solving the BN trap perfectly
and simplifying the deep learning chip design profoundly;
every data, both forward and backward, is quantized
and all float-point operations are transferred into fixed-
point operations, reducing the computational resources
for training and accelerating the processing speed greatly.

• Further than all previous works, we realize full 8-bit
large-scale DNN training without BN. Especially, small
batch online training is explored and weight updates are
quantized to 8-bit integers for the first time with a novel
quantization strategy.

• We explain why BN works and how to remove BN
theoretically with weaker assumptions from the point
of Block Dynamical Isometry [40], making a deeper
understanding of how Fixup initialization avoids gradient
vanishing and explosion.

• Extensive experiments have been done to validate the
effectiveness of the proposed online training quantization
framework without BN. Experiment results show that
the full 8-bit DNNs without BN can achieve state-
of-the-art accuracy with much fewer overheads in the
ImageNet dataset compared with existing works. The full
8-bit quantization brings about 4× memory saving, >3×
and 9× faster speed, 10× and 30× lower power, 9×
and 30× smaller circuit area in the most convolution
executed multiplication and accumulation operations and
removing BN can realize >70× lower power, >18× faster
processing speed compared with the traditional 32-bit
floating-point BN. What’s more, the small-batch training
experiment is also done to further verify the performance
of the proposed EOQ framework, demonstrating a broad
application prospect in resource-limited devices.

The organization of this paper is as follows: Section II intro-
duces the related works of DNN quantization and BN acceler-
ation; Section III details the novel online-training quantization
framework termed EOQ without BN and Section IV illustrates
the theoretical analysis of Fixup initialization from the point
of Block Dynamical Isometry [40]; Section V presents the
experiment results of the proposed EOQ framework and the
corresponding analyses; Section VI summarizes this work and
delivers the conclusion.

II. RELATED WORKS

We aim to solve the two biggest problems named huge
computational cost and BN trap that perplex the online train-
ing on resource-limited devices. DNN quantization and BN
acceleration are two effective methods for alleviating these
two problems and recent works are summarized as follows.
However, there is still no complete solution combining them
and making special optimization for resource-limited device
online training.
DNN Quantization: DNN quantization has been confirmed
as an effective technique for shrinking model size and accel-
erating processing speed [41]. Usually, the ≥ 8-bit fixed-point
data quantization for inference will suffer negligible accuracy
loss [42, 43]. At the same time, more aggressive low-bit in-
ference quantization can be seen to get an ultrahigh execution

performance with a certain degree of accuracy degradation.
Compared with inference quantization, training quantization
is more challenging and attractive for researchers for its
higher complexity and greater applicability. Three aspects
domains the research of training quantization: quantization
completeness, data precision, and model performance after
quantization. Many works, such as DoReFa [31], GXNOR-
Net [32], QBP2 [37], etc., lack quantization completeness
for the reason that they only quantize part of data, not all
of it, in the training processing. Meanwhile, data precision
signifies quantizing data to the lowest bit width for model
compression and acceleration. However, recent works like MP
[34], MP-INT [35], FP8 [33] still rely on the 16-bit float-point,
16-bit fixed-point, and 8-bit float-point values, respectively.
Finally, the accuracy of existing works, including WAGE [38],
WAGEUBN [36], etc., usually cause a loss of accuracy greater
than 5% in large-scale networks and datasets.

BN Acceleration: Allowing a more casual initialization
method, a faster convergence speed, and much deeper layers,
BN has become one of the most favorite techniques in DNN
training. However, considering the tremendous difficulties in
processing speed and computational resources brought by
BN, researchers start to focus on BN acceleration in the
training process. The works of BN acceleration can be two-
fold: reducing or avoiding the high-cost operations of BN and
removing BN completely. The former realizes BN acceleration
by reducing the number of BN operations [40] or replacing
the high-cost standard deviation operations with certain values
like L1-norm value [19] and data range [37]. The latter
removes BN completely by proper initialization methods [39],
novel activation functions [44], small constants or learnable
scalars [45–47], weight Standardization [48, 49], and adaptive
gradient clipping techniques [50], etc. However, all these
techniques haven’t been deeply integrated with other DNN
acceleration technologies.

III. QUANTIZATION FRAMEWORK WITHOUT BN

The main idea of this research is to explore the full 8-bit
integer DNNs without BN by combining Fixup initialization
and novel quantization techniques for solving the BN trap and
reducing the computational cost. Here we will first introduce
the Fixup initialization method in Section III-A and then detail
the full 8-bit online training framework without BN both
forward and backward comprehensively in Section III-B.

A. Fixup Initialization

For a long time, the huge computing burden brought by
BN has plagued the development of deep learning. Many
researches try to remove BN and Fixup initialization [39] has
been confirmed as a simple and effective method. Researchers
observe that the output variance of ResNet with standard
initialization methods grows exponentially with depth and
finally causes the failure of gradient exploding. One important
role BN plays is to ensure that the output variance of each
residual block does not change dramatically with depth and
then it can naturally avoid the gradient exploding problem.
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Base on this observation, Fixup initialization is more con-
cerned about the scale of the update and the key conception
of it is to design an initialization such that SGD updates to the
network function are in the right scale and independent of the
depth. For this purpose, they re-scale the weight layers inside
the residual branches with a layer-wise coefficient related to
the number of network residual blocks and the number of
block layers to make the updates are in the right scale. The
layer-wise coefficient αLi is defined as

αLi = L
− 1

2mi−2 (1)

where L is the number of network residual blocks and mi is
the layer number in the i-th block. Besides, they add some
scalar multipliers and bias in the residual block for better
performance. Fixup initialization shows great advantages after
removing BN. However, it has not been well integrated with
DNN acceleration technologies and it is still a great challenge
to utilize Fixup initialization without compression and accel-
eration when it comes to DNN online training on resource-
limited devices.

B. Efficient Online Training Quantization Framework

Inspired by Fixup initialization [39], for the purpose of
shrinking the model size and accelerating computing speed,
here we’d like to introduce the efficient online-training quan-
tization framework removing BN and we name it EOQ. Like
most quantization studies, we follow the straight-through esti-
mator (STE) method [25, 31, 51] for the gradient propagation
in the backward process. The EOQ framework only contains
integer operations in the whole training process and makes
the backward propagation as easy as the forward pass because
of the absence of BN. To make it clear, we will first deliver
the overview of the whole framework and then illustrate the
quantization functions used in EOQ. Finally, we will detail the
quantization strategies of different data in DNNs.

1) Quantization Overview:
The training process of DNNs can be divided into two parts:

forward and backward propagation. Corresponding to the pro-
cess and notations of Figure 1(a), for a typical Fixup residual
block with bias and removing BN, the forward propagation
can be represented as

xl0 = xl−15

xl1 = xl0 +Qb(b1)

xl2 = Qa1(conv(xl1))

xl3 = Qγ(γ)xl2

xl4 = xl3 +Qb(b2)

xl5 = Qa2(relu(xl4))

(2)

where the superscript l and the subscript i ∈ {1, 2, 3, 4, 5} of
xli denote the layer index and the output of the i-th operation
block, respectively. xl−15 is the (l− 1)-th layer output and xl0
is the l-th layer input. b1, b2 are bias and γ is a layer-wise
scale. Qb, Qγ and Qa1 /Qa2 are the quantization functions for
bias, layer-wise scale and activations, respectively, which will

be detailed later in Section III-B3. kw, kb, kγ and ka in Figure
1(a) are the bit width of weights, bias, layer-wise scale and
activations.

As shown in Figure 1(b), because of the absence of BN, the
backward propagation is as simple as the forward propagation.
The backward propagation can be summarized as

el0 = el+1
5

el1 = el0
∂x5

l

∂x4
l

el2 = el1
∂x4

l

∂x3
l

= el1

el3 = Qe(e
l
2

∂x3
l

∂x2
l

) = Qe(e
l
2Qγ(γl))

el4 = Qe(e
l
3

∂x2
l

∂x1
l

) = Qe(e
l
3Qw(wl))

el5 = el4
∂x1

l

∂x0
l

= el4

(3)

where the superscript l and the subscript i ∈ {1, 2, 3, 4, 5}
of eli denote the layer index and the output of the last i-th
operation block, respectively. el+1

5 is the (l+1)-th layer error
output and el0 is the l-th layer error input. Qe and Qw are
the quantization functions for errors and weights that will be
illustrated in Section III-B3. ke, kg in Figure 1(b) are the bit
width of errors and gradients.

To compute and quantize the gradients of weight, bias and
scale, we have

glwl = Qg(e
l
3

∂xl2
∂wl

) = Qg(e
l
3x

l
1)

glbl1
= Qg(e

l
4

∂x1
l

∂bl1
) = Qg(e

l
4)

glbl2
= Qg(e

l
1

∂x4
l

∂bl2
) = Qg(e

l
1)

glγl = Qg(e
l
2

∂x3
l

∂γl
) = Qg(e

l
2x

l
2)

(4)

where Qg is the quantization function for gradients.

2) Quantization Functions:
The quantization functions are used to convert the original

floating-point values to fixed-point values. Considering both
model performance and hardware compatibility, different data
with diverse distributions in DNNs need to be quantized prop-
erly. Based on this observation, we propose three quantization
functions for different data according to the corresponding
distributions and effects on model performance.

Basic quantization: This basic quantization function Q(.) is
a fundamental part that approximates the floating-point value
with its nearest integer. It works as

Q(x, k) =
R(x · 2k−1)

2k−1
(5)

where x, R(·) and k are the quantized value, rounding function
and quantized bit width, respectively. The resolution of basic
quantization is 1

2k
.
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Fig. 1: The overview of EOQ framework: (a) the forward propagation; (b) the backward propagation.

Clamp quantization: With the basic quantization function,
we’d like to introduce the clamp quantization function to
further limit the data range after quantization for hardware
friendliness. Data after clamp quantization is constrained to

[−1 +
1

2k−1
, 1− 1

2k−1
]. The clamp quantization function is

CQ(x, k) = Clamp(Q(x, k),−1 +
1

2k−1
, 1− 1

2k−1
) (6)

which has the same resolution as the basic quantization
function.

Scale quantization: The basic and clamp quantization is
suitable for the data quantization with large values and low
precision requirement. For the data with small values and high
precision demand, we propose the scale quantization as

scale(x) = 2R(log2(max(|x|)))

SQ(x, k) = scale(x) · CQ(
x

scale(x)
, k)

(7)

whose resolution is scale(x)
2k

. The scale(·) function is used
to estimate the maximum value of x and CQ(·) is used for
normalization.

3) Quantization Strategies:
Having given three quantization functions, here we will

specify the quantization strategies for different data in DNNs.
After analyzing the distributions of different data, we find that
the data in the forward propagation, such as weight, bias,
activation, scale, etc., are with larger distribution range and
lower precision requirements. While the data in the backward
propagation, including error, gradient, and update, are with a
smaller distribution range and higher precision requirements
in the training process. Based on this, same as WAGEUBN
[36], we use the basic and clamp quantization for the most
data including weights, activations, scale, bias in the forward

propagation, etc. and utilize scale quantization for error, gra-
dient, and update quantization in the backward propagation
empirically.

Weight quantization: In the EOQ framework, the weight is
initialized by Kaiming initialization [52] in all layers and then
scaled by L−

1
2mi−2 only in the residual branch. To accelerate

the computing and reduce the memory, the weight is quantized
by

Qw(x) = CQ(x, kw) (8)

where kw is the bit width of the weight.

Activation quantization: Activation is the most memory
intensive among all data in DNNs. The bit width of activation
is increased after convolution and multiplier. To further reduce
the memory consumed by activation and accelerate computing,
the activation is quantized by

Qa1(x) = Q(x, ka)

Qa2(x) = CQ(x, ka)
(9)

where ka is the bit width of activations. Here, to constrain the
range of data transferred to the next layer, we use the clamp
quantization after the layer activation function.

Scale and bias quantization: The scale and bias are used to
replace traditional BN and further improve the model perfor-
mance. They are initialized as 1 and 0 from the beginning. To
realize a complete online training quantization framework and
avoid the floating-point operations for hardware friendliness,
we also quantize the scale and bias by

Qγ(x) = Q(x, kγ)

Qb(x) = Q(x, kb)
(10)

where kγ and kb are the bit width of the scale and bias,
respectively.
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Error quantization: Because of the relatively high precision
requirements, the quantization of error is most difficult and
may make a great impact on the final model performance.
Although WAGEUBN [36] has solved the convergence prob-
lem when the bit width of error comes to 8, it still suffers
a huge performance degradation (about 4% and 7% accuracy
decline in ResNet-18 and ResNet-50 compared with the vanilla
networks). After removing BN, the error can be quantized to 8-
bit integers using the EOQ framework with nearly no accuracy
loss in ResNet-18 and much less accuracy loss in ResNet-50.
The error is quantized by

Qe(x) = SQ(x, ke) (11)

where ke is the bit width of error.

Gradient quantization: The distribution of gradient is some-
times similar to that of error. The error needs to be backward
propagated accurately layer by layer for loss descent while
gradients are more important to maintain the magnitude and
sign because it is used for weight update in a training step
[36]. The quantization of gradients is governed by

Qg(x) = SQ(x, kg) (12)

where kg is the bit width of gradients.

Update quantization: Updating weight, scale, and bias is the
final procedure in a training step. Different from WAGEUBN
[36] quantizing updates to 24-bit, we first realize the 8-bit
update quantization in the proposed EOQ framework. That is
to say, the weight can be stored with 8-bit integers initially
with a scale, achieving roughly 2× weight memory space-
saving. The update is quantized by

Qu(x) = SQ(x, ku) = SQ(lr · g, ku) (13)

where ku is the bit width of the update, lr is the learning rate
decreased gradually during training, and g is the gradient of
the updated data.

IV. NOVEL THEORY ANALYSIS OF REMOVING BN

Although the theoretical understanding of BN is still not
unified [13–15], we’d like to give a deeper understanding
of why BN works in DNNs and how to remove BN in the
EOQ framework using the novel Block Dynamical Isometry
theory [40] with weaker assumptions and a more intuitive
point of view. At the same time, EOQ tries to estimate the
original floating-point values with sufficiently precise fixed-
point values. Therefore, in this research, the error caused by
quantization can be neglected in the analysis of the quantiza-
tion network with batch normalization and Fixup initialization.
In this section, we will first introduce the indicator named
gradient norm for judging whether gradients explode or vanish
in DNNs. Next, the mathematical prerequisites are presented.
Finally, we will provide the detailed training stability analyses
of networks with batch normalization and Fixup initialization
respectively using the Block Dynamical Isometry theory [40].

1) Gradient Norm:
Regarding each block as a function, considering a network

with L sequential blocks, we have

f(x0) = fL(fL−1(fL−2(...f1(x0)))) (14)

where fi denotes the i-th block, x0 is the input of the network.
In the back propagation process, the update of weights in

the i-th block is

∆θi = η

(
dfi
dθi

)T  i+1∏
j=L

(
dfj
dfj−1

)T

dL(fL(x), y)

dfL(x)
(15)

where L(·) is the loss function; θi is the weights of the i-th
block fi; η is the learning rate.

Denoting the Jacobin matrix
dfj+1

dfj
as Jj and

dL(fL(x), y)

dfL(x)
as JL , the L2 norm of ∆θi can be represented as

||∆θi||22 = η2 (JL)T
(

i+1∏
j=L

Ji

)
dfi
dθi

(
dfi
dθi

)T
(

i+1∏
j=L

Ji

)T

JL (16)

For a network with E[||∆θi| |22] (the expectation of ||∆θi| |22)
tending to be 0 or ∞, the gradient vanishing or explo-
sion will happen and cause the failure of network train-
ing. Suppose η and JL are constants, it’s essential for
network to be stable for training that the middle part(∏i+1

j=L Ji

) dfi
dθi

(
dfi
dθi

)T (∏i+1
j=L Ji

)T
in Equation (16) is not

exponential related to the the block index i.

2) Prerequisites:
Before giving the mathematical analysis of BN and Fixup

initialization in residual networks, we’d like to introduce some
necessary definitions and lemmas.

Definition 1. Normalized trace of a matrix: In linear
algebra, the sum of the elements on the main diagonal of an
n×n matrix A is called the trace of matrix A and is generally
denoted as Tr(A). Here we denote the normalized trace of A
Tr(A)
n as tr(A), for example: tr(I) = 1, where I represents

the identity matrix.
Definition 2. Block Dynamical Isometry: For a network

represented as a sequence of individual blocks as Equation
(14) and Jj denoted as the j-th block’s Jacobian matrix, for
all j, if E

[
tr(JjJ

T
j )
]
≈ 1 and D

[
tr(JjJ

T
j )
]
≈ 0, we say it

achieves the Block Dynamical Isomtry [40], where E[·] and
D[·] are the expectation and variance, respectively. Actually,
in most cases, E

[
tr(JjJ

T
j )
]
≈ 1 is enough to conclude the

individual block satisfies the Block Dynamical Isomtry. If each
block in a network satisfy Block Dynamical Isometry, the
expectation of ||∆θi| |22 in Equation 16 tending to be 0 or ∞
is avoided and thus gradient vanishing or explosion will also
disappear.

Lemma 1. Variance of general transforms: Given a gen-
eral linear transform f(x) = Jx, then, we have V ar[f(x)] =
E[tr(JJT )]V ar[x], where V ar[·] is the variance of x.

Lemma 2. Additive transformation: Given J =
∑
i Ji

where Ji is independent random matrix. For all Ji, if at
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most one E[Ji] 6= 0, we have E[tr(
∑1
i=L (JiJ

T
i ))] =∑1

i=LE[tr(JiJ
T
i )].

In summary, Definition 1 gives the fundamental mathemat-
ical indicator named normalized trace of a matrix, and Defi-
nition 2 illustrates the tool named Block Dynamical Isometry
for judging whether gradient vanishing or explosion happens
in network training. Lemma 1 and 2 are used in the analysis
of BN and Fixup initialization and the proof of them can be
found in the work [40].

3) Training Stability Analysis of Network with Batch Nor-
malization:

As mentioned in Section IV-1, given a common network
containing L sequential blocks, we divide each block into three
components, which are Relu activation, convolution, and BN,
respectively.

ConvRelu BN ConvRelu BN……

if Lf

0

ix 1

ix 2

ix 3

ix
1

Lx 2

Lx
3

Lx

0

if
1

if
2

if
0

Lf
1

Lf
2

Lf

0

Lx

Fig. 2: Networks composed of L sequential blocks.

As illustrated in Figure 2, we denote the Relu activation,
convolution and BN in the i-th block as f0i , f1i , f2i . Then we
have

Jki =
∂fki (xki )

∂xki
(17)

where k ∈ {0, 1, 2}.
Since Relu activation, convolution and BN can be seen as

general linear transforms, then we have

fki (xki ) = Jki x
k
i . (18)

According to Lemma 1, supposing the variance of xki is αki ,
then, we have

α3
i = V ar[f3i f

2
i (f1i (x0i ))] = E[tr((

0∏
k=2

Jki )(

0∏
k=2

Jki )T )]α0
i

(19)

Considering the i-th block and denoting
0∏
k=2

Jki as the

Jacobian matrix of the block Ji, we have

α3
i = E[tr(Ji(Ji)

T )]α0
i (20)

At the same time, in the initialization stage where γ and β
in BN are initialized as 1 and 0, respectively, the variance of
the BN output is

α3
i = V ar[f3i (x2i )] = 1 (21)

Combing Equation 20 and 21, we have

E[tr(Ji(Ji)
T )] =

1

α0
i

. (22)

Since α0
i is also the variance of the output of BN, so α0

i is
1 and wo get

E[tr(Ji(Ji)
T )] = 1. (23)

Now we can conclude that the block illustrated as Figure 2
containing BN satisfies Definition 2 and avoiding the vanishing
and explosion of gradients.

4) Training Stability Analysis of Network with Fixup Ini-
tialization:

After proving that BN satisfies the Block Dynamical Isom-
etry theory, here we’d like to explain that Fixup initialization
can also make a similar effect to BN and meet up this the-
ory through re-scaling residual branches. The i-th individual
residual block in ResNet can be represented as a sum of the
main branch hi(.) and residual branch ri(.), which can be
represented as

xi = fi(xi−1) = hi(xi−1) + ri(xi−1) (24)

where i is the block index and fi denotes the i-th block.
Considering the hybrid network block in series and parallel,

according to Lemma 2, we have:

E(tr(JiJ
T
i )) = E(tr(Jhi (Jhi )T )) + E(tr(Jri (Jri )T )) (25)

Where Jhi and Jri are the Jacobian matrices of the main
branch and residual branch, respectively. In FixupNet [39],
the weights w in all layers are initialized with standard
methods like Kaiming initialization [52] to make the variance
of the input keep consistent with that of the layer output.
As illustrated in Equation 1, then the weights inside residual
branches are scaled with a coefficient L−

1
2mi−2 , where L and

mi is the number of residual blocks and layers inside the
i-th block, respectively. As one of the most popular initializa-
tion techniques, Kaiming initialization initializes weights to

N(0,
2

n
) where n is the number of layer input activations.

So for the main branch of the l-th block using Kaiming
initialization, we have

E[tr(Jhi (Jhi )T )] = 1. (26)

For the k-th layer in the residual branch of i-th block using
Kaiming initialization with a coefficient L−

1
2mi−2 , we have

E[tr(Jhik(Jhik)T )] = L
− 1

mi−1 . (27)

where mi is usually a small positive number, e.g., 2 or 3.
And for the whole residual branch, we have

E[tr(Jhi (Jhi )T )] =

mi∏
k=1

E[tr(Jhik(Jhik)T )

= L
− mi

mi−1

(28)

Next we can denote the i-th block as

E(tr(JiJ
T
i )) = 1 + L

− mi
mi−1 . (29)



8

Since L is a relatively large positive integer especially in
extremely deep residual networks, we can conclude

E(tr(JiJ
T
i )) = 1 + L

− mi
mi−1 ≈ 1. (30)

Now we can testify that Fixup initialization helps to satisfy
Definition 2 and is effective for training extremely deep resid-
ual neural networks without gradient vanishing and explosion.

V. EXPERIMENTS

To verify the effectiveness of the proposed EOQ frame-
work and build new full 8-bit DNNs removing BN, we
have implemented extensive experiments and analyzed the
performance impact and computational advantages caused by
data quantization and removing BN. Experiment results show
that the EOQ framework puts forward a complete solution
for solving the two biggest challenging problems named huge
computational cost and BN trap perfectly in DNN training.

To the best of our knowledge, We are the first to achieve
the full 8-bit integer large-scale DNNs training without BN
in the ImageNet dataset using the EOQ framework by setting
kw = ka = kb = kγ = ke = kg = ku = 8 with much less
accuracy loss. Results on the ImageNet dataset are given in
Section V-A and the computational advantages of EOQ are
detailed in Section V-B. Finally, Section V-C illustrates the
results of small batch size experiments to show the superiority
of EOQ in model performance.

A. Full 8-bit Training on the ImageNet Dataset

We test the proposed EOQ framework with the ResNet-
18/34/50 networks on the classification task over the ImageNet
dataset. We go further than most works leaving the first and
last layer unquantized [31, 36, 53, 54] by quantizing all layers
in the model except the last layer to avoid the relatively huge
accuracy loss. The comparisons between the full 8-bit integer
EOQ networks and classical networks are as shown in Table
I. To further improve model performance, we take advantage
of the common data augmentation method mixup and we
set the hyperparameter α as 0.7. The model is trained with
synchronized stochastic gradient descent (SGD) optimizer over
4 GPUs and the total epoch number is 90.

0 10 20 30 40 50 60 70 80 90
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40

50

60

70

A
cc

ur
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y

Vanilla-32bit (BN)
FixupNet-32bit
EOQ-8bit

Fig. 3: Validation accuracy of ResNet-34 during the training
process.

Figure 3 shows the accuracy curves on validation set of
ResNet-34 during the training process. We can see that there
is almost no difference between the full 8-bit EOQ network
and the 32-bit floating-point FixupNet. This also proves the

rationality of quantization functions used in EOQ, indicating
that the 8-bit integer data after quantization can even achieve
the same performance and robustness as 32-bit float-point data
in the whole training process. The results of EOQ and recent
classical works on the ImageNet dataset are as shown in Table
I. Compared with the floating-point vanilla network, the full 8-
bit EOQ networks without BN only suffer 1.34%, 1.92%, and
2.99% accuracy degradation in ResNet-18, 34, and 50 net-
works. While the corresponding data of full 8-bit WAGEUBN
[36] with BN are 3.91%, 4.36%, 6.71%. Compared with the
floating-point FixupNet [39] with data augmentation mixup,
the full 8-bit EOQ networks take lower accuracy degradation,
which are 0.56%, 0.63%, 3.28% in ResNet-18, 34 and 50,
respectively. Considering the huge improvements in compu-
tational cost brought by 8-bit quantization and removing BN
compared with vanilla floating-point networks and the much
less accuracy degradation compared with WAGEUBN [36],
the EOQ framework has achieved a complete 8-bit training
quantization scheme with high performance and excellent
hardware efficiency.

B. Computational Advantages of EOQ
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Fig. 4: Efficiency comparison of EOQ and BN.

As discussed in previous works, most of the computing costs
are concentrated in convolution operations. To measure the
hardware overhead more precisely, we use the same FPGA
platform (Intel DE5-Net) as WAGEUBN [36] and L1-BN [19]
for the test of basic arithmetic operations. Compared with
32-bit floating-point vanilla network, the 8-bit EOQ networks
can achieve the same advantages as WAGEUBN [36], which
is >3× faster in speed, 10× lower in power, 9× smaller in
circuit area in the multiplication operation, and 9× faster in
speed, 30× lower in power, and 30× smaller in circuit area
in the accumulation operation. What’s more, the EOQ takes
2× smaller weight memory space for that the weights in EOQ
stored in memory are with 8-bit while those of WAGEUBN
[36] are with 24-bit.

Another advantage of the EOQ framework lies in the
absence of BN. According to L1-BN [19], BN with the high-
cost square and root operations in the forward and backward
propagation can even reduce the overall computing speed by
>47%, making great challenges for resource-limited ASIC
chips and FPGA. Without computing the mean and standard
deviation of a mini-batch, EOQ naturally solves the BN trap
by a scale factor and bias with much less computation cost
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Model Method BN kw/ka/kg /ke/ku Accuracy Top-1/5(%)

ResNet-18

Vanilla X 32/32/32/32/32 68.70/88.37
WAGEUBN X 8/8/8/8/24 64.79/84.80
EOQ(ours) × 8/8/8/8/8 67.36/87.72

mixup X 32/32/32/32/32 67.51/88.08
Fixup+mixup × 32/32/32/32/32 68.13/87.77

EOQ+mixup(ours) × 8/8/8/8/8 67.57/87.62

ResNet-34

Vanilla X 32/32/32/32/32 71.99/90.56
WAGEUBN X 8/8/8/8/24 67.63/87.70
EOQ(ours) × 8/8/8/8/8 70.07/89.22

mixup X 32/32/32/32/32 73.17/91.34
Fixup+mixup × 32/32/32/32/32 72.11/90.48

EOQ+mixup(ours) × 8/8/8/8/8 71.48/90.29

ResNet-50

Vanilla X 32/32/32/32/32 74.66/92.13
WAGEUBN X 8/8/8/8/24 67.95/88.01
EOQ(ours) × 8/8/8/8/8 71.67/90.08

mixup X 32/32/32/32/32 75.72/92.74
Fixup+mixup × 32/32/32/32/32 75.54/92.52

EOQ+mixup(ours) × 8/8/8/8/8 72.26/90.78

TABLE I: ImageNet test results of the EOQ framework.

Model Method Memory (MB)
Batch size=1 Batch size=2 Batch size=4 Batch size=8 Batch size=16 Batch size=32 Batch size=64 Batch size=128

ResNet-18
Vanilla-32bit 127.30 210.12 375.64 706.68 1368.78 2692.96 5341.33 10638.07
Vanilla-8bit 31.83 52.53 93.91 176.67 342.20 673.24 1335.33 2559.52
EOQ-8bit 25.64 40.15 69.15 127.16 243.19 475.23 939.32 1867.51

ResNet-50
Vanalla-32bit 472.52 847.54 1597.59 3097.68 6097.86 12098.24 24098.98 48100.47
Vanalla-8bit 118.13 211.89 399.40 774.42 1524.47 3024.56 6024.75 12025.12
EOQ-8bit 90.39 156.46 288.60 552.87 1081.42 2136.01 4011.95 8481.07

TABLE II: Memory cost on the ImageNet dataset with different batch sizes.

Method Accuracy(%)/Memory(MB)
Batch size=1 Batch size=2 Batch size=4 Batch size=8 Batch size=16 Batch size=32 Batch size=64 Batch size=128

Vanilla-32bit 22.74/34.64 85.05/62.68 88.41/118.77 90.36/230.94 91.67/455.29 92.57/903.99 92.98/1801.38 92.84/3596.16
EOQ-8bit 89.41/6.39 92.74/11.64 93.11/21.64 93.13/41.63 92.97/81.63 92.98/161.61 94.64/321.59 93.11/641.53

TABLE III: Results of ResNet-110 on the CIFAR-10 dataset with small batch training.

and higher hardware parallelism. The efficiency comparison
of EOQ and traditional BN is as shown in Figure 4. Only
considering the forward propagation, supposing the power and
speed of float32 BN are 1, the corresponding data 8-bit EOQ
are 0.014 and 18.93. When both BN and EOQ are 8-bit,
even though the power of BN and EOQ are similar (0.014
v.s. 0.013), the speed of EOQ is >3× faster than BN (18.93
v.s. 5.32). As shown in Figure 4, no matter the data type
is float32, int32, float16, int16, float8, and int8, EOQ takes
great advantages in both power consumption and computing
speed. What’s more, the memory advantages of EOQ networks
over vanilla networks are as shown in Table II. Far beyond
this, EOQ only contains low-bit integer multiplication and
accumulation operations in the whole training process after
removing BN, bringing great convenience for DNN accelerator
design.

In summary, combining with the analysis Table I and Figure
4 comprehensively, we can conclude that the EOQ makes fur-
ther improvements in network quantization and removing BN,
achieving state-of-the-art accuracy with whole 8-bit integer
training and great promotion in hardware efficiency.

C. Small Batch Online Training

For a long time, the large batch size is an important factor
for network training. On the one hand, a large batch with
enough samples can provide a more accurate gradient for

model convergence while the gradient of a small batch may
bounce back and forth during training. On the other hand,
batch size plays an important role in BN because it is directly
related to the computing of the mean and standard deviation
of a mini-batch. The large batch size can reduce the impact
of extreme samples on the overall results. However, the large
batch size is not friendly for online training especially when
it comes to portable devices because the limited memory and
computational resources can’t bear so many input samples in
one training iteration. As shown in Table II, though the full 8-
bit EOQ can realize >469% and >37% less memory consump-
tion compared with the 32-bit and 8-bit vanilla networks, the
memory occupied in the training process still raises by >70
times when batch size increases from 1 to 128. At the same
time, the small-batch online training has a strong practical
significance because it’s closer to real applications and can
provide resource-limited devices with self-learning ability. In
this case, it’s essential to study the network training with small
batch size.

The EOQ framework has abandoned BN so that it naturally
takes advantage in small-batch training. The results of the 32-
bit vanilla network using BN and 8-bit EOQ network without
BN are as shown in Table III. Experiments show that the
accuracy of the 8-bit EOQ network is 66.67%, 7.69%, and
4.7% higher than that of the 32-bit floating-point BN network
when batch size is 1, 2, and 4, respectively. This fully shows
the superiority of EOQ in small-batch training, demonstrating
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a great perspective in future online training applications of
portable devices.

VI. CONCLUSION

The two biggest challenging issues named huge compu-
tational cost and BN trap have hindered the further devel-
opment and application of deep learning. To address these
two issues, by combining the Fixup initialization technique
for removing BN and the quantization technique for reducing
computational cost, we propose a general efficient quantization
framework named EOQ with specified quantization functions.
The EOQ framework has realized a complete 8-bit integer
network without BN for the first time. We further give a
novel theoretical analysis of the scheme behind removing
BN using the Block Dynamical Isometry theory with weaker
assumptions. Extensive experiments have been done to verify
the effectiveness of EOQ. Results show that the 8-bit EOQ
networks can achieve state-of-the-art accuracy and higher
hardware efficiency compared with existing works. It also
brings great convenience to the deep learning chip design.
What’s more, we have also borne out that the EOQ framework
can be directly used in small batch training, making it closer
to the real applications. In summary, the proposed EOQ
framework alleviates the problem of huge computational cost
and BN trap greatly, demonstrating great perspectives in future
online training applications of portable devices.
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