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Abstract

Time series data is ubiquitous in the real-world problems across vari-
ous domains including healthcare, social media, and crime surveillance.
Detecting anomalies, or irregular and rare events, in time series data,
can enable us to find abnormal events in any natural phenomena, which
may require special treatment. Moreover, labeled instances of anomaly
are hard to get in time series data. On the other hand, time series data,
due to its nature, often exhibits localized expansions and compressions in
the time dimension which is called warping. These two challenges make it
hard to detect anomalies in time series as often such warpings could get
detected as anomalies erroneously. Our objective is to build an anomaly
detection model that is robust to such warping variations. In this paper,
we propose a novel unsupervised time series anomaly detection method,
WaRTEm-AD, that operates in two stages. Within the key stage of repre-
sentation learning, we employ data augmentation through bespoke time
series operators which are passed through a twin autoencoder architec-
ture to learn warping-robust representations for time series data. Second,
adaptations of state-of-the-art anomaly detection methods are employed
on the learnt representations to identify anomalies. We will illustrate that
WaRTEm-AD is designed to detect two types of time series anomalies:
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point and sequence anomalies. We compare WaRTEm-AD with the state-
of-the-art baselines and establish the effectiveness of our method both in
terms of anomaly detection performance and computational efficiency.

Keywords: Anomaly Detection, Time Series Data, Warp Resilient
Embeddings

1 Introduction

With electronic technology and sensors permeating every sphere of life, there
are tremendous amounts of digital time series data being generated every
moment. All over the world, person-level data measurement devices which gen-
erate daily sequences such as medical wearables' and activity trackers® are
gaining popularity. In this case, the dataset would naturally be a set of day-
level time series sequences, and the data object would be an individual time
series. On the other hand, population level time series such as sequences of
daily footfalls in a hospital or bank may be considered as a single large time
series sequence. Each such sequence is itself a dataset comprising the sequence
of points within it, with each individual point or a small sub-sequence consid-
ered as a data object. Anomalous temporal patterns over such data could point
to emerging epidemics or health issues (in hospital data) or financial instabil-
ity (or rumours thereof) of financial institutions (in bank data). In the former
case of medical wearables, the anomaly is at the level of the daily sequence
(we call them as sequence anomalies), whereas the latter case involves anoma-
lous point-events or sub-sequences (called point anomalies or sub-sequence
anomalies) within a long time series.

Time Series Warping: Time series anomaly detection is a challenging task,
because normal and abnormal behaviours depend on the context and various
temporal dependencies. Moreover, due to several legitimate reasons, time
series data is often locally compressed or expanded keeping the high-level
temporal pattern unchanged. These localized expansions and contractions are
called warping. Such warping variations appear in virtually every time series
process, and these should not be interpreted as semantic variations. For exam-
ple, accent differences in speech time series would manifest as lengthening
and shortening of words. Time series anomaly detection should be cognizant
of and robust to such warping effects and ensure that varying accents not be
regarded anomalous. These challenges can be illustrated with a point anomaly
detection task on a synthetic time series signal as shown in Fig. 1. Some
points or sequences in a time series can be within the range of normal data
values but still have anomalous behaviour as shown in red patch near 100"
time stamp in the top most plot of Fig. 1. At the same time, warp variations
as shown in green patches in Fig. 1 should not be regarded as anomalous. We

L https://www.businesscloud.co.uk/news/nhs-to-give-thousands-of-free-wearables-to-reduce-diabetes
https://en.wikipedia.org/wiki/Activity_-tracker
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consider anomaly as any kind of rare and non-mainstream pattern other than
warping distortion
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tion: In general, anomaly detection _f
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Existing Methods: Existing anomaly detection methods are neither
designed to handle the presence of warping in the time series datasets specially,
nor do so incidentally. For example, Euclidean distance based Local Outlier
Factor (LOF) method [10] (second row of Fig. 1) estimates similarity using
Euclidean metric for each sub-sequence and hence consider warping distor-
tions also as anomalous points (180" timestamp). Similar observations hold
for the discord based MERLIN [5] model (third row of Fig. 1) which detects
the first warp distortion (50" timestamp) as anomaly. Recent Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN) based models
[2, 3] also treat a signal and its warp variants as different signals and hence
tend to detect warping as anomaly. Moreover, deep learning fails to model the
extreme values for the sake of generalisation[11] and hence it is observed that
the state-of-the-art auto-encoder based vector representation model Recurrent
Neural Network Autoencoder Ensembles (RNNAE) [12] (third row of Fig. 1)
assign high anomaly scores to all extreme value points and hence fails to cap-
ture actual anomalous points (250" timestamp). Detecting warp variations
as anomalies can cause an abundance of false positives and reduce the utility
of anomaly detection methods with significant implications in domains like
motion capture, gesture recognition, digital signature verification, robotics
and astronomy. Therefore, a notion of (dis)similarity between time series that
is robust to warping variations, is indispensable in anomaly identification.
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Dynamic Time Warping (DTW) [13] has been among the most successful [14]
warping robust distance measures. But, time complexity for calculating DTW
is in the quadratic order of the length of a time series which makes it non-
scalable and hard to be used in anomaly detection over large datasets.

Our Contribution: In this paper, we design a novel auto-encoder based
deep learning model to achieve robustness against warping in time series
anomaly detection. At a very high level, the idea is to obtain warping robust
embeddings of time series in a scalable manner through data augmentation
and self-supervised learning. We illustrate warping robustness within the
learnt space through a local density based anomaly detection method over
the embeddings. Our empirical analysis of the effectiveness of the anomaly
detection illustrates the effectiveness of our formulation. Our contributions
are:
¢ Novel Direction: In a first-of-a-kind exploration (to our best knowl-
edge), we consider warping-robustness, a critical feature, in unsupervised
time series anomaly identification.
® Method: We propose a warping-robust two-phase anomaly detection
framework Warp Resilient Time-series Embedding - Anomaly Detection
(WaRTEm-AD), that can detect both point as well as sequence anomalies:
— The first phase, WaRTFEm, involves learning a warping-robust embed-
ding for time series through a novel twin auto-encoder architecture
which employs a unique mechanism called warping operators for data
augmentation.
— The second phase makes use of WaRTEm representations within
a local neighborhood-based anomaly detection framework to score
points or sequences for anomalousness.
¢ Empirical Study: Through an extensive empirical evaluation over a vast
number of real-world datasets and state-of-the-art baselines, we illustrate
the effectiveness of WaRTEm-AD in detecting anomalies of varying length
and nature.

2 Related Work

We now summarize related work on point anomalies and sequence anomalies
separately.

2.1 Point Anomalies

There are several families of point anomaly detection approaches based on the
type of techniques they use. (I). Density-based Modelling defines anoma-
lousness of a point as directly related to the sparsity of the local neighborhood
around it. Approaches in this family, viz., LOF [10, 15] and LOOP [16],
consider points as independent, and are thus inherently incapable of mod-
elling temporal dependencies. (II). Prediction-error based Approaches,
such as Numenta and NumentaHTM [17, 18] model sequence information
using hierarchical temporal memory (HTM) and quantify anomalousness as
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the difference between the predicted and actual values. (III). Deep-learning
Methods, while a recent entrant, have demonstrated significant success in the
task. While LSTM-AD [19] uses normal sequences to train a LSTM model,
DeepAnT [20, 21] uses LSTMs and CNNs in a prediction-based formulation.
Ensembles of auto-encoders [12, 22] have been used in a reconstruction-
error based scheme, where anomalousness is quantified as directly related to
reconstruction error. (IV) Discord Discovery [4-9, 23, 24] focuses on find-
ing discords, i.e., time series subsequences that vary significantly from the
‘usual’ pattern. The top discord, or top-k discords [7], are then identified; this
scheme is often sensitive to parameters. MERLIN [5] is a recent ‘parameter-
free’ discord discovery method and only needs a range of subsequence length
(MinL-MaxL); however, the performance of the method is highly sensitive
to the setting of these bounds. When discord discovery is adapted to iden-
tify points rather than subsequences (e.g., by changing MERLIN’s bounds to
unity), it morphs to a point anomaly detection method. (V). Multivariate
Approaches exploit correlations [25] or other relationships [26] among dif-
ferent time series for multi variate data to detect anomalies. They are not
applicable for univarite time series, the task we address in this paper. Accord-
ingly, We compare our model with LOF, NumentaHTM, MERLIN and RNN
autoencoder ensembles(RNNAE) [12] which are the state-of-art of methods
from each relevant category above.

2.2 Sequence Anomalies

Here the task is to look at the sub-sequences of a long time series and to
identify anomalous sub-sequences. The families of techniques are as follows.
(I). Deep-learning Methods have been used to model long-range sequential
dependencies [2] and cluster structural information [3], followed by using recon-
struction error as an indication of anomalousness. BeatGAN [27] combines
Auotencoders and Generative Adversarial Networks trained on non-anomalous
datasets while using warp variations to augment the data. (II). Similarity-
based Approaches target to embed warping resilience in the similarity
quantification, DTW [13] being the most successful [14, 28] among them. It has
been also used for anomaly detection [29, 30] using clustering. However, DTW
has a quadratic complexity over both the number of sequences and length of
sequences, making it infeasible for large datasets. A recent work [31] proposed
learning a low-dimensional embedding to approximate actual DTW distances
using factorization of an n x n matrix of DTW distances, approximated by
using n x log(n) DTW measurements for efficiency. With each DTW compu-
tation being quadratic in sequence length, this is still inefficient. We compare
our method against BeatGAN [27] and DTW [29], these models being the most
recent and state-of-art in relevant categories.
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3 Warp Resilient Time-series Embedding based
Anomaly Detection (WaRTEm-AD) Method

The task that we address in this paper is to detect point and sequence anoma-
lies in univariate time series in unsupervised manner. Our focus is to ensure
cognizance to warping variations and avoid identifying warp distortions as
anomalies. We denote a time series of length ¢ as T = {s1, $2,..., 8¢}, a time-
ordered sequence of real numbers, i.e. each s; € R. The three anomaly detection
tasks have slightly varying problem definitions, described below.

For the sequence anomaly task, we consider a data set containing N
time series sequences, each of length ¢, i.e., D = {71, 7s, ..., Tn} where 7; € D
is denoted as T; = {s;1, Si2, - - -, Sit }. The task of sequence anomaly detection,
thus, is to find semantically anomalous time series sequences within D. The
anomaly detection method involves associating each 7; € D with an anomaly
score AS(T;); the time series sequences with high anomaly score would be
regarded as anomalous.

For the point anomaly scenario, the dataset comprises of one (long) time
series, T = {s1, $2,. .., ¢}, and anomaly detection involves identifying specific
data points s; within 7 that may be regarded as non-conformant to the overall
pattern(s) within 7. The anomaly detection method would associate each data
point s; € T with an anomaly score AS(s;) that quantifies anomalousness.

For the sub-sequence anomaly case, a dataset consisting of one time
series, T = {s1,82,...,8¢}, sub-sequence anomaly detection involves iden-
tifying specific contiguous sub-sequence of data points within 7 that may
be regarded as non-conformant to the overall pattern(s) within 7. The
anomaly detection method would then associate the contiguous sub-sequence
{si,Si+1,- -, Si+k} with an anomaly score AS({s;, Si+1,-- -, Sitk})-

3.1 Warp Resilient Timeseries Embedding (WaRTEm)

Let us consider the sequence anomaly case first. For D = {...,T,...} (drop-
ping suffix-representation, i.e., 7;, for convenience), WaRTEm intends to learn
warping robust embedding V = f(7) where V € R* and k& < m. The idea is to
ensure that the embeddings are robust to warping variations; thus, the embed-
ding of a time series T and its warped variant 7 will be placed close by in
RF. Towards learning warping resilient embeddings, we develop novel warping
operators to generate and augment the data with warping variants of sequences
in D, inspired by recent learning paradigms such as self-supervision [32]. We
first outline the proposed two warping operators (copy and interpolation) and
then the WaRTEm training approach to learn warping resilient embeddings.

3.1.1 Warping Operators.

A time series T denoted as {s1, $2,. .., st }; may be modified by applying mul-
tiple operators upon a chosen contiguous sub-sequence called warping focus
window, as shown in Fig. 2. The operators are defined below.
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Copy Warping: The LeftCopyW arp
(LCW) and RightCopyW arp(RCW)
operator at timestamp ¢ with warping
focus window of length r is defined as
in Eqn.1: T I ErTararara
In other words, LCW shrinks the left Fig. 2 Illustration of warping opera-
side of the window and extends the right  tors. Blue is the original sequence, with
endpoint to a plateau, whereas RCW red a-md green indicat.ing RCW and LIW
shrinks the right side of the window and modifications respectively.

extends the left endpoint to a plateau. It may be noted that a time series T
and its warped variant LCW (T) or RCW(T) differ only in the values within
the warping focus window.

CuNwENDNEOD

LCWt,r(') : [St, St41ye 0y St4r—2, st+r71] — [Sm St4r—1y-+-5St4+r—1, 5t+r71]
ROWt,T(.) : [St, St4+1s---5St+r—2, 8t+7-_1] — [St, Sty .., Sty St+7-_1]. (1)

Interpolation Warping: The left and right interpolation warp operators
(LIW and RIW) differ from copy warp in that they fill the deleted sub-sequence
using a slope than a plateau.

LIWt,r(~) D[St Sty -y Stpr—2y Str—1] = [t LI(Sppr—2, Stqr—1,7 — 1)]
RIW, (1) © [8ty Stt1s -+ oy Stpr—2y Str—1] = [LI(8¢, Se41,7 — 1), Sp401] (2)

where LI(z,y,l) is a l-length sequence that linear interpolates from x to y.

(—2)xzx+y (—3)xx+2xy z+(1—2)xy ]
-1 I—1 B P

LI(x,y,l) = [z,

The design of the operators characterizes the kind of differences that could
be induced by time series warping, which should be treated as semantically
similar to the original, given our intent of treating warping as non-anomalous.
Warping operators provide a way to teach the model as to what kind of time
series variations it should develop a blind spot to, so the network capacity can
be better focused.

3.1.2 Twin Auto-Encoder Architecture.

The WaRTEm neural network architecture comprising of twin auto-encoders
(AEs) is illustrated in Fig. 3. Each leg consists of an encoder and a decoder.
Encoder are fed with pair inputs [T, RW(T)] or [LW(T),T] where T € D
with RW(T) and LW(T) indicating warped variants generated using right
and left warping operators introduced earlier but encoder are expected to learn
representation with information in original signal and hence both decoders are
expected to reconstruct the unwarped time series 7. Notice the left-to-right
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ordering dependency in the paired input; any left-warped variant appears as
the first element, and the right-warped variant appears as the second element.
Unlike Siamese networks [33], the weights are not tied, but the learning
is linked together through the loss function L (Eqn. 3). L has three compo-
nents L1, L2, and L3. L1 is the conventional auto-encoder loss, L2 loss is the
reconstruction loss of non-warp sequence from warp sequence which is similar
to the denoising auto-encoder, whereas L3 is the representation coupling loss.
Use of correlation based coupling loss for learning common latent representa-
tion has been explored before [34]; we have used Euclidean distance between
two presentation as coupling loss steer the learning towards a common repre-
sentation. The details of the architecture are further illustrated in Fig. 3. L3
influences only the encoder parts of the AEs, and does not affect the decoders.
L3 ensures that the representation of the sequence and warped variants of it
are close to each other in the R* space. To allow for some learning flexibil-
ity, we do not nudge the representations to be identical (as would be the case
if the same decoder were attached to both encoders), but instead minimize
deviations through the coupling loss. Thus, the optimization objective is:

L1
min 17 (7)) = IR+ 5 (7)) =TI+ MLA(T) = (TR
L2 L3
3)
Encoder f1(.) Decoder fl‘l(fl(,))
Cﬁgié? C(Téié])) ConviD ConviD (2;‘;: ConviD ConviD C{I‘%Zé? C?FI;)D

Mal(sél)’uul (32x3)  (32x3) Max- (32x3) (16x3)

Max-Pogl UnPool m . Upsample

Time series (T)

RGO

L1= T - i (fa(T))|

3 L3=fu(T) - 2D
]
Decoder f2-1(f2(.))
Encoder 2(.)

b ==
=) ) =1 =i

e | 1 g

IID Leaky ReLU activation function

Reconstructed Time Series

Time Series

‘Warp variant (T)

[PRGI)]

Reconstructed Time Series

Fig. 3 WaRTEm Twin Auto-encoder Architecture
3.1.3 Training Strategy and Embedding.

For each T € D, we generate five warped variants by using a random left-
warping operator (LIW or LCW) and another five using a random choice
of right-warping. The warping focus window is also sampled randomly. Each
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of these are paired with 7 to generate pairs of the form [LW(T),T] and
[T, RW(T)]. This augmented data-set (of size 10 x ||D||) is used to train the
neural architecture. As the design suggests, the left (right) leg trains for left-
warping (right-warping) robustness. While the elements within the training
pairs differ only by one warping operator, the warping robustness achieved
through the training process will work to ensure that sequences and their
warped variants would also lead to similar representations.

3.1.4 Embedding Generation.

Once the training process is complete, each T is separately passed through
the twin encoder and the average of the codes f1(7) and fo(T) is used as the
embedding for 7.

3.2 WaRTEm-AD Point Anomaly Scoring

The setting of point anomaly involves one time series 7. We instantiate
WaRTEm by generating a dataset from it using an m length overlapping slid-
ing window that is slid through the entire length of 7, to generate a dataset of
m-length sequences, D(T,m). We generate a WaRTEm embedding V; for each
T: € D(T,m) learnt by treating D(T,m) as a sequence dataset. For computing
anomaly scores AS(V;), we use the K-NN distance of each embedding, i.e.,
the distance of the embedding V; to its K'* nearest neighbor, as an anomaly
score. The point anomaly task, however, requires us to assign an anomaly score
for each data point, and not to a sliding window sequence. Accordingly, we
aggregate the AS(.) scores estimated at the sliding window level to the level
of each data point s € T.

1
D) = Sl o A5 W
where SWr . p(8) is the set of m-width sliding windows in 7 of which s
is part of middle p points of a sliding window. In other words, the anomaly
score for s is the average of the anomaly scores for the embeddings of sliding
windows of which s is part of middle p points.

3.3 WaRTEm-AD Sequence Anomaly Scoring

For sequence anomaly case, after getting embedding for each sequence, the
sequence anomaly scores are computed using the K-NN distance. Thus,
AS(V;) is the distance of V; to its K*" nearest neighbor.

4 Experimental Analysis

We now describe our empirical evaluation of WaRTEm-AD against state-of-
the-art baselines. Our evaluation is in three parts: (i) Comparison on Retrieval
Accuracy, (ii) WaRTEm-AD’s sensitivity to parameters, and (iii) WaRTEm-
AD scalability analysis. We set the WaRTEm-AD hyperparameter A to 2 to
balance the two kinds of losses.
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Evaluation: To decide which points in a time series are outliers, one needs to
set a threshold. The points whose AS(.) exceed the threshold can be considered
as outliers; however, setting such a threshold is a non-trivial task. Hence, we
use area under the precision recall curve (PR-AUC) and the ROC curve (ROC-
AUC) to capture the trends across varying thresholds [35]. For extreme class
imbalance as in our case where anomalies are a small minority, the ROC-
AUC may be regarded as too optimistic (see [36]). Therefore, the PR-AUC is
more effective than the ROC-AUC in reflecting the quality of the detector in
this case [37]. We also compare WaRTEm-AD retrieval using Reciprocal Rank
(RR) [38] scores. RR is a popular evaluation metric used in retrieval tasks,
which computes the reciprocal rank of first relevant match.

4.1 Point Anomaly Evaluation

Dataset: Real-world univariate time series data sets, i.e., real AWSCloud-
watch, realTraffic, realAdExchange, realTweets and realKnownCause from
Numenta Anomaly Benchmark (NAB)? repository have been used evaluation
of point anomalies. The NAB data sets have 6 to 15 time series sequences and
length of these sequences varies from ~ 2K to 16K.

Baseline Methods: We compare WaRTEm-AD against several methods,
outlined below:

e RNNAE [12]: As described in the paper, we consider 40 seq2seq
autoencoder ensembles, with anomaly scores computed as median of
reconstruction errors.

e NumentaHTM [18], with hyper-parameters as reported in the paper.

e MERLIN [5]: MERLIN outputs the indices of the top discord of various
length specified by a range. We set the range to unity as outlined in
Sec 2.2, to adapt it to the point anomaly task. Since MERLIN returns
only the top discord, PR-AUC and ROC-AUC can’t be calculated for it.

¢ Window LOF: In an adaptation of LOF for our setting, we use the
WaRTEm-AD sliding window framework to find sub-sequences of time
series, score them using LOF scores, followed by aggregation using Eq. 4
to obtain point anomaly scores.

Parameters and Setup: We set the length of overlapping sliding window,
m, as 25, moving one time-step at a time, so that each time point is shared
across multiple windows, rendering the design less sensitive to window size.
We have experimented with various K values (K = {1,3,5}) and p values

(p = {37 2, 7})

4.1.1 Results and Analysis

The first and second one-thirds of the Table 1 reports the mean PR-AUC
and ROC-AUC values. As may be seen therein, WaRTEm-AD outperforms all
baselines convincingly. MERLIN cannot be included in the AUC comparisons
since the design of the method allows only to identify one top anomaly.

3https://github.com/numenta/NAB
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Table 1 Point Anomaly Evaluation: Comparison of PR-AUC, ROC-AUC and
Reciprocal Rank (RR) scores of WaRTEm-AD, MERLIN, RNNAE, NumentaHTM and
Window LOF. Each element of table shows average performance and std over individual
time series in each data set for 3 sets of experiments, with varying values of the anomaly
neighborhood parameter(except RNNAE and MERLIN). Top score in each row is shown in
boldface, and second best is underlined.

Dataset | WaRTEm-AD | MERLIN | RNNAE | Num-HTM | Win LOF
PR-AUC
AdExchange 0.36+0.17 0.1940.12 0.0540.10 0.2340.10
Traffic 0.35+0.25 0.22+40.09 0.07+0.11 0.15+0.07
AWS 0.24+0.08 0.24+0.18 0.1940.08 0.17£0.07
Tweets 0.204-0.05 0.21+0.08 0.1440.03 0.1240.03
KnownCause 0.23+0.13 0.1740.15 0.1840.11 0.17£0.10
ROC-AUC
AdExchange 0.68+0.21 0.5040.02 0.5040.10 0.6240.16
Traffic 0.66+0.20 0.5340.03 0.5940.11 0.47£0.11
AWS 0.62+0.12 0.5540.09 0.47£0.08 0.55£0.06
Tweets 0.60+0.08 0.5840.08 0.5240.10 0.52+0.04
KnownCause 0.62+0.12 0.5240.13 0.5440.13 0.5340.07
RR (Reciprocal Rank) scores
AdExchange 0.74+0.38 0.0340.06 0.4240.46 0.4940.30 0.5140.24
Traffic 0.60+0.50 0.1440.38 0.3240.47 0.4240.30 0.49+0.41
AWS 0.7840.37 0.294+0.47 | 0.80+0.37 0.39£0.28 0.36+0.42
Tweets 0.6610.46 0.1740.41 0.92+0.20 0.8340.26 0.29+0.44
KnownCause 0.3540.50 0.0440.08 | 0.41+0.46 0.2140.14 0.41+0.48

time series

The bottom one-third of Table 1 52] YT |

. 0 200 400 600 800 1000
reports the RR scores, which can . actual label
be computed for MERLIN too. It ,3] I 1Tl |
0 200 400 600 800 1000
can be observed that WaRTEm- 150 MERLIN discords
AD method outperforms MERLIN, 5‘ " P R .
. 0 200 400 600 800 1000
NumentaHTM and Window LOF WaRTEM-AD anomaly score
. . . . 25
with significant margins, whereas ] DT YNNI, T S | (D
. 0 200 400 600 800 1000
RNNAE shows high scores on some RNNAE score
. 10
datasets; on closer analysis, we found DJ |
. 0 200 400 600 800 1000
that those datasets contained sev- . Numenta score
eral high Z-score anomalies, which 0] LIl Hh Ak )ﬁ P\J« ) |
RNNAE is better at detecting due R
to its design where the focus is on 72] |
0 200 400 600 800 1000

deviations from sequence-level char-
acter (on the other hand, WaRTEm-  Fig. 4 Time series, actual labels & anomaly
AD is focused on local neighbor- scorings of different methods for realTraffic
. . (speed-7578) dataset
hoods). This explains the better per-
formance than WaRTEm-AD on RR
too, for those datasets. The compar-
ative AUC results were tested for statistical significance using t-test where
it was found that WaRTEm-AD improvements were significant at p < 0.05,
except RNNAE on PR-AUC and RR.

For qualitative analysis, Fig. 4 presents realTraffic (speed7578) dataset
which has 4 anomaly points (around timestamps 300, 700 and 900) and
give a visualization of performance of proposed method and all benchmarks.
WaRTEm-AD method detects all anomalies without any false positives,
whereas MERLIN method fails to detect some anomalies, and incurs several
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false detections. NumentaHTM scores are high for anomaly points but also
detects several normal points as anomalous, whereas Window LOF shows a
number of false positives. This also illustrates how RNNAE method is ori-
ented towards identifying high amplitude deviations; given most deviations are
downward, observe that the RNNAE score graph appears similar to what a
reflection of the time series would look like.

4.1.2 Sensitivity Analysis

Analysis over p: The WaRTEm-AD parameter, p, controls the aggregation
of sub-sequence anomaly scores to the point level. Higher p values reduce the
ability to distinguish between adjacent points; for example, with p = 1, each
point gets it’s score from a distinct sliding window and with p = 5, adjacent
points share four sliding windows, reducing the difference between the anomaly
scores assigned to them. In our sensitivity analysis, it was observed that the
movements over both AUC values are quite smooth with varying values of p.
The AUC values were seen to be flatten out for p increasing beyond seven.
Analysis over K: The performance was also quite stable for variations in
K; the maximum change in AUC values observed by changing K was 0.04,
indicating stability over K as well. Among the warp operators experimented it
is found that interpolation operator showing slightly higher performance than
copy operator

4.2 Sequence Anomaly Detection

Datasets: In our sequence anomaly evaluation, we use several datasets from
UCR repository [39] that have one class described as normal and the other
as abnormal. This normal/abnormal classification suits the anomaly detection
semantics. For example, in case of ECG datasets, one class is normal heart
beat and other class indicates some case of heart failure. Similarly for Toe-
Segmentation dataset and HandOutline dataset one class shows normal walk,
outline of a normal hand and other classes indicate abnormal walk, outline of
defective hand respectively.

Baseline Methods: There is no method which targets the task of warping-
robust sequence anomaly detection; thus, we use the following methods as our
baseline methods:

e ANN: This is an auto-encoder model with the same architecture as that
of the auto-encoder part of WaRTEm-AD. The representation size and the
calculation of AS(-) with the help of Euclidean distance in the embedding
space identical to WaRTEm-AD.

e DTW: In this case, the AS(-) for a time sequence is calculated using K-
N N method considering DTW (dynamic time warping) distances between
time series sequences. We set the DTW warping window size parameter
to 10% of sequence length, making it comparable to the choice of extent
of warping operations in WaRTEm-AD.
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Table 2 Sequence Anomaly Evaluation: Comparison of PR-AUC, ROC-AUC and
RR for WaRTEm-AD, DTW, ANN, BeatGAN (unsupervised version) and LOF. Each
element of table shows average performance and std over individual data set for 3 sets of
experiments, with varying values of the anomaly neighborhood parameter (except
BeGAN-U). Top score in each row is shown in boldface, and second best is underlined

PR-AUC
Dataset WaRTEm-AD DTW ANN BeatGAN LOF
(unsupervised)
Toel 0.55+0.01 0.07+ 0.01 0.14+ 0.01 0.17£ 0.05 0.44+ 0.08
Synthetic 0.1640.14 0.50+ 0.01 0.14+ 0.01 0.04=+ 0.00 0.06=+ 0.00
Middle 0.2240.00 0.39+ 0.00 0.20+ 0.14 0.11+£ 0.00 0.30+ 0.03
HandOut 0.54+0.00 0.47+ 0.04 0.11+£ 0.00 0.23£ 0.01 0.45+ 0.06
Toe2 0.29+0.00 0.06+ 0.00 0.14%+ 0.02 0.13£ 0.13 0.20+ 0.02
Strawbry 0.0740.00 0.62+ 0.04 0.12+ 0.00 0.09+ 0.00 0.09+ 0.00
ECG5000 0.37+0.03 0.07+ 0.02 0.05+0.00 0.17+ 0.00 0.09+ 0.02
Wafer 0.23+0.00 0.06+ 0.00 0.11£0.01 0.11£ 0.01 0.09+£ 0.01
Distal 0.2940.01 0.20+ 0.01 0.11£0.01 0.21£ 0.01 0.41+ 0.01
Proximal 0.1240.00 0.47+ 0.01 0.1240.01 0.06=+ 0.00 0.29+ 0.02
Phalanges 0.18+0.00 0.36+ 0.01 0.1240.01 0.11+£ 0.00 0.36+ 0.02
Dodger 0.66+0.01 0.03£ 0.01 0.21£0.01 0.07£ 0.01 0.60£ 0.09
Earthgks 0.0640.00 0.17+ 0.03 0.10£0.02 0.08+ 0.05 0.09+ 0.01
ECG200 0.2940.01 0.35+ 0.04 0.1440.04 0.19+ 0.04 0.23=+ 0.06
ROC-AUC
Dataset WaRTEm-AD DTW ANN BeatGAN LOF
(unsupervised)
Toel 0.89+0.01 0.77+0.00 0.59+ 0.03 0.57+ 0.05 0.87+0.07
Synthetic 0.6340.08 0.88+0.17 0.58+ 0.02 0.11£ 0.04 0.37+ 0.03
Middle 0.6540.01 0.88+0.02 0.55+ 0.01 0.45=+ 0.00 0.73+ 0.02
HandOut 0.89+0.01 0.8840.02 0.57+ 0.01 0.59+ 0.01 0.76+ 0.03
Toe2 0.84+0.02 0.7840.00 0.60£ 0.01 0.58+ 0.12 0.71£ 0.04
Strawbry 0.4440.03 0.95+0.01 0.56+ 0.01 0.54=+ 0.00 0.53+ 0.02
ECG5000 0.92+0.03 0.90+0.01 0.5940.02 0.69=+ 0.00 0.58+ 0.01
Wafer 0.73+0.01 0.31£0.04 0.574+0.01 0.54+ 0.01 0.52+ 0.01
Distal 0.79+40.01 0.89+0.05 0.58+0.03 0.63£ 0.01 0.7840.02
Proximal 0.5240.01 0.89+0.02 0.5940.02 0.274 0.00 0.7740.05
Phalanges 0.66+0.01 0.87+0.01 0.58+0.01 0.45=+ 0.00 0.79+ 0.02
Dodger 0.934£0.01 0.80+0.01 0.6940.02 0.48+ 0.01 0.97+0.00
Earthqgks 0.47+£0.01 0.73+0.03 0.51£0.06 0.45+ 0.05 0.5440.08
ECG200 0.714£0.03 0.87+0.01 0.6040.05 0.63% 0.06 0.6310.06
Reciprocal Rank (RR) scores

Dataset WaRTEm-AD DTW ANN BeatGAN LOF
Toel 0.66+.28 1.00+0.00 0.83+0.29 0.41£0.12 0.83+0.28
Synthetic 0.35+0.56 0.67+0.57 0.3940.53 0.0440.02 0.11£0.04
Middle 1.00+0.00 1.00+0.00 0.66+0.29 0.07£0.35 0.66+0.28
HandOut 1.00+0.00 1.00+0.00 1.00+0.00 1.00+0.00 1.00+0.43
Toe2 0.3040.05 1.00+0.09 0.50+0.43 0.66+0.47 0.50+0.54
Strawbry 0.05+0.04 0.0940.04 0.134+0.11 0.014+0.00 0.37+0.02
ECG5000 1.00+0.00 1.00+0.00 0.17£0.03 1.00+0.00 0.17£0.28
Wafer 1.00+0.00 0.01+0.01 0.3740.55 0.1640.01 0.0510.28
Distal 1.00+0.00 1.00+0.29 1.00+0.00 1.00+0.00 0.83+0.28
Proximal 0.33£0.00 0.83+0.51 0.3510.00 0.014+0.09 0.6640.00
Phalanges 1.00+0.00 1.00+0.29 1.00+0.27 1.00+0.00 1.00+0.28
Dodger 0.2540.00 0.66+0.10 0.51+0.49 1.00+0.00 0.83+0.03
Earthqgks 0.0240.00 0.44+0.23 0.0940.05 0.4240.12 0.10£0.03
ECG200 0.50+0.00 0.2740.05 0.5540.42 0.6240.53 0.66+0.28

¢ BeGAN-U: BeatGAN [27] model trained in an unsupervised way with
the whole data-set (anomalous + non-anomalous points) forms another
baseline.
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e LOF: LOFI10] method, considers each time sequence as a multidi-
mensional datapoint, and defines anomaly score based on neighbor
density.

4.2.1 Results and Analysis

Table 2 shows the comparative evaluation on PR-AUC, ROC-AUC and RR
values obtained for each method, averaged across random initializations. It can
be observed from the results that WaRTEm-AD performs better for the vast
majority of datasets achieving the top-place in six out of fourteen datasets,
and the second place in four of the remaining eight, on PR-AUC metric. The
margin of improvement given by WaRTEm-AD method compared to other
baselines is substantial with range varying from 10% to 25% where it is the
top-performer, and for rest of the cases WaRTEm-AD method performance is
reasonably close to the best performing method. DTW is seen to be our clos-
est competitor, with LOF being next. DTW method is explicitly designed for
warping robustness. The trends observed for PR-AUC, holds reasonably well
for ROC-AUC also.

From statistical significance t-test(at p < 0.05), it was observed that
WaRTEm-AD is statistically significant to all other baseline methods, except
DTW and LOF, as observed from the AUC metrics.

4.2.2 Sensitivity Analysis

We analysed the sensitivity to the neighborhood parameter K and warp opera-
tors on PR-AUC and ROC-AUC values. It was observed that the interpolation
operator was somewhat more effective than the copy operator, in detecting
sequence anomalies. The standard deviations in Table 2 show that the perfor-
mance of the proposed method is robust to random initialization and is not
highly sensitive to varying K for almost all datasets. We found maximum gain
in AUC by changing K in a data set is around 0.02, indicating stability on K.

4.3 Sub-sequence Anomaly Detection

Datasets: We now perform an empirical evaluation over sub-sequence
anomaly detection datasets viz., Space Shuttle Marotta Valve time series,
Ann’s Gun dataset, BIDMC Congestive Heart Failure Database (record 15)
and patient respiration dataset [4, 6, 8, 9, 19].

Baselines: We use the same baselines as in sequence anomaly evaluation.
Additionally, we also compare against MERLIN which can identify sub-
sequence discords; we set sub-sequence range to 5-150.

Results and Analysis : The sub-sequence empirical results are in Table 3.
It can be observed that WaRTEm-AD method outperforms all baseline meth-
ods compared identifying exact anomaly sequences with very few false alarms.
DTW is the closest competitor to WaRTEm-AD which is expected. False pos-
itive rate in BeGAN-U has been observed high. We could not get results for
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Table 3 Sub-Sequence Anomaly Evaluation: Comparison of ROC-AUC, PR-AUC
and RR values for WaRTEm-AD, DTW, ANN, MERLIN, BeatGAN (unsupervised

version) and LOF. Each element of table shows mean values and std for each dataset over

various K values for each of the metrics compared

15

PR-AUC

Dataset ‘WaRTEm-AD DTW ANN MERLIN BeatGAN LOF

(unsupervised)
dutch_power_demand 0.35 £0.01 0.41 +0.04 0.17 £0.03 - 0.36+0.06
Marotta_Valve_Tek14 0.751+0.03 0.714+0.12 0.28 £0.13 0.15 £ 0.00 0.244+ 0.05
Marotta_Valve_Tek16 1.00 £0.01 1.00+0.00 0.06 £0.02 0.18+0.00 0.10+£0.04
Marotta_Valve_Tek17 0.86 +0.02 0.68 £0.45 0.25 £0.29 0.17+0.00 0.15+0.12
chfdbch_15 0.54 +0.64 0.03 £0.01 0.01 £0.00 0.06 £ 0.03 0.0540.02
ann_gun 0.93 +0.01 0.46 £0.08 0.09 £ 0.04 - 0.30+ 0.16
Patient_Respiration 0.15%0.00 0.5240.00 0.05+0.01 0.5240.00 0.3540.27
Patient_Respiration2 0.5240.00 0.5340.01 0.04+0.01 0.574+0.00 0.53+0.01

ROC-AUC

Dataset WaRTEm-AD DTW ANN MERLIN BeatGAN LOF

(unsupervised)
dutch_power_demand 0.64 +0.04 0.58 +0.01 0.69 +0.08 - 0.61+0.16
Marotta_Valve_Tek14 0.88+0.02 0.8740.03 0.61 £0.04 0.65 £ 0.01 0.77+ 0.09
Marotta_Valve_Tek16 1.00 +0.01 0.98 £0.01 0.39 £0.09 0.76 £0.00 0.55+0.20
Marotta_Valve_Tek17 0.98 +0.01 0.97 £0.12 0.62 £0.40 0.74 £0.00 0.63+0.33
chfdbch_15 0.89 +0.04 0.85 £0.13 0.49 £0.25 0.84 £ 0.01 0.83+£0.09
ann_gun 0.97 +0.01 0.92 £0.02 0.41 £ 0.09 - 0.70+ 0.15
Patient_Respiration 0.69+0.03 0.5540.04 0.51+0.13 0.59+0.00 0.68+0.09
Patient_Respiration2 0.6810.04 0.5610.03 0.5440.07 0.8940.00 0.73£0.01

Reciprocal Rank (RR) scores

Dataset ‘WaRTEm-AD DTW ANN MERLIN BeatGAN LOF

(unsupervised)
dutch_power_demand 1.00+0.00 1.00+0.00 0.2540.00 0.33 - 1.00+0.00
Marotta_Valve_Tek14 1.00£0.00 1.00+0.00 0.66+0.47 0.00 0.11+£0.01 0.36+0.17
Marotta_Valve_Tek16 1.00£0.00 1.00£0.00 0.1040.02 0.00 0.14%0.00 0.214+0.06
Marotta_Valve_Tek17 1.00+0.00 0.7540.35 0.5440.65 0.13 0.18+0.00 0.20+0.18
chfdbch_15 0.1340.04 0.1240.07 0.02+0.01 1.00 0.20+£0.01 0.09+0.05
ann_gun 1.00+0.00 1.00£0.00 0.08+0.06 1.00 - 0.66+0.47
Patient_Respiration 0.5040.00 1.00 £0.00 0.1040.03 0.33 1.00+0.00 0.75+0.35
Patient_Respiration2 1.00+0.00 1.00+0.00 0.06+0.03 0.00 1.00+0.00 0.60+£0.00

BeGAN-U for two data sets, as sequence reconstruction error was higher than
specified threshold. ANN works well when anomaly is due to extreme values.
LOF fails to identify subtle anomalies as in case of MarottaValvel6 dataset
as we will see soon. Table 3 does not have MERLIN results on PR-AUC and
ROC-AUC metrics, since its design of returning just the top anomaly makes it
unsuitable for those, where all methods were analyzed on the Reciprocal Rank

metric (Ref. Section 4.1)

As an example, we show
Marotta Valve time series along
with anomaly scorings obtained
from various methods in Fig. 5.
Among other methods, DTW raises
some false alarms. LOF, on the
other hand, captures longer flat
part and shorter bump part (both
can be considered as warp variant
of other similar parts) as anoma-
lies. ANN and MERLIN is seen to
fail to detect anomalies for Marotta
Valve datasets.

time series
5
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Fig. 5 MarottaValvel6 time series with

anomaly annotations & scorings.
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4.4 Efficiency and Scalability

We now discuss scalability of WaRTEm-AD on running times. While our task
is unsupervised, the running time of the various methods may be seen as
comprising two components; (i) training time that involves the model gen-
eration part, and (ii) inference time where the trained model is applied on
each data point to derive anomaly scores. As expected, the former was seen
to dominate the total running time. Fig. 7b and Fig. 7c show training time
required for WaRTEm-AD, BeGAN-U and DTW on all sequence and sub-
sequence anomaly detection datasets. Fig. 7b and Fig. 7c profile the training
time on both the number of sequence in the dataset and length of each
sequence, whereas Fig. 7a illustrates the training time over length of time
series for point anomaly task. All these plots illustrate the training efficiency of
WaRTEm-AD, albeit being slower than BeGAN-U due to data augmentation.
Fig. 6 illustrate the inference time on point anomaly 800

‘WaRTEm-AD

tasks against time series length; MERLIN is slow at _ 60 A oF
inference time, all other methods are able to com- g4 ~"F

plete inferencing within 3-20 seconds. The sequence = 200

and sub-sequence anomaly inference times for all T

methods are comparable expect for DTW. These Time Series Length
results illustrate the high scalability, both in train- Fig. 6 Inference time for
ing and inference time, achieved by WaRTEm-AD.  point anomaly detection
This establishes that WaRTEm-AD is a method

that is suitable for usage over large datasets in

real-world scenarios.
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AD and RNNAE for point BeGAN-U and DTW methods on BeGAN-U and DTW meth-

anomaly datasets sequence anomaly datasets ods on sub-sequence anomaly
datasets

Fig. 7 Training time analysis

5 Conclusion and Future Work

In this paper, we considered the problem of time series anomaly detection,
and outlined the importance of distinguishing warping from other kinds of
variations in time series, within the tasks. We devised an anomaly detection
framework, WaRTEm-AD, which can be used for both sequence and point
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anomaly detection tasks, making it a general purpose building block for time
series anomaly detection. WaRTEm-AD employs a two-phase approach, with
the first phase using a novel mechanism, that of warping operators for data
augmentation, which is leveraged in a self-supervised learning framework to
embed time series data into a vector space of pre-specified dimensionality. The
second phase makes use of simple mechanisms to score anomalousness using
local neighborhood statistics in line with the state-of-the-art in anomaly detec-
tion over non-temporal data. Through an extensive set of experiments over
real-world data, we established the empirical effectiveness of WaRTEm-AD
on both tasks, with it comparing well or outperforming the state-of-the-art in
most point and sequence/sub-sequence anomaly detection scenarios. Code is
available at https://github.com/WaRTEm-AD /UnivariateAnomalydetection.

Future Work: In future, we are interested to make WaRTEm-AD model
robust to other kinds of legitimate time series distortions within specific appli-
cation domains. Our goal is to develop a general-purpose framework that is
flexible enough to be tuned for robustness to user-specified kind of noises, to
achieve applicability across a variety of domains. We are also considering util-
ity of WaRTEm-AD in anomaly detection over multi-variate time series data,
and exploring ways of devising clever heuristics towards combining the copy
and inter methods. We are also exploring the usage of WaRTEm-AD in astro-
nomical data analysis where there is an interest towards identifying causation
of outlying events using temporal and ordering cues.

Acknowledgments. The work is supported by project titled “Robust Multi-
view Learning for Extreme Events Detection and Prediction in Time Series
Data”, IITPKD/2021/013/CSE/SAB funded by ICSR
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