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Abstract—Unsupervised domain adaptation (UDA) has shown
remarkable results in bearing fault diagnosis under changing
working conditions in recent years. However, most UDA methods
do not consider the geometric structure of the data. Further-
more, the global domain adaptation technique is commonly
applied, which ignores the relation between subdomains. This
paper addresses mentioned challenges by presenting the novel
deep subdomain adaptation graph convolution neural network
(DSAGCN), which has two key characteristics: First, graph
convolution neural network (GCNN) is employed to model the
structure of data. Second, adversarial domain adaptation and
local maximum mean discrepancy (LMMD) methods are applied
concurrently to align the subdomain’s distribution and reduce
structure discrepancy between relevant subdomains and global
domains. CWRU and Paderborn bearing datasets are used to
validate the DSAGCN method’s efficiency and superiority be-
tween comparison models. The experimental results demonstrate
the significance of aligning structured subdomains along with
domain adaptation methods to obtain an accurate data-driven
model in unsupervised fault diagnosis.

Index Terms—Unsupervised fault diagnosis, graph convolu-
tion neural network, subdomain adaptation, adversarial domain
adaptation

I. INTRODUCTION

ROLLING bearings, the most important mechanical
components of rotary machines, are prone to fault

for various reasons, like a harsh working environment
and a long working period. The faulty bearing may harm
mechanical equipment, which leads to catastrophic accidents.
Accordingly, an accurate and effective diagnosis of bearing
faults is essential for equipment’s reliable operation [1].
With the advancement of technology, many approaches for
intelligent bearing fault diagnosis have been developed.
Machine learning is one of them, in which extracted features
from pre-processed data are fed into classifiers such as
Support Vector Machine (SVM) [2], k-Nearest Neighbors
(KNN) [3], and Random Forest (RF) [4] to classify fault types.
The prerequisite of accurate predicting is when extracted
features are considerably knowledgeable [5], [6]. There are
still drawbacks when there is a particular need for technical
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expertise in graph feature extraction and feature selection and
a low capacity to learn non-linearity and complexity in the
data patterns. [7].
Deep learning (DL) techniques have been employed in recent
years to address the shortcomings of traditional machine
learning methods. This technique has more dependable
performance in feature learning and extracting more abstract
features. Furthermore, no prior knowledge or experience is
required for feature engineering by using end-to-end learning
algorithms [8], [9]. Convolution neural network (CNN)
[10], deep auto-encoder (DAE) [11], deep belief network
(DBN) [12], and recurrent neural network (RNN) [13] are
the most commonly utilized DL techniques in intelligent fault
diagnosis. A novel discriminant regularizer in DAE has been
proposed in [14] to diagnose bearing faults. Deep residual
CNN is used in [15] ,in which the noise impact is decreased
by employing a wide kernel in the first layer of convolution.
Also, an attempt is made to reduce the gap produced by
the distribution discrepancy between source and target data
by utilizing the adaptive batch normalization method. Peng
et al. [16] proposed a multiscale CNN to extract short-time
and long-time features and feature fusion to enhance model
performance for fault diagnosis. Wang et al. [17] introduced
a normalized CNN to identify the fault, and the suggested
model’s hyperparameters are optimized using particle swarm
optimization.
If a substantial number of labeled data is available for model
training, and the distribution of training and test data is the
same, DL models can perform accurately. In contrast, the
collection of labeled data, particularly faulty data, is not
practicable in many real-world applications due to time and
cost constraints. Consequently, the train and test data may
have different probability distributions due to continuously
changing operating conditions of rotary machines, resulting
in poor performance and limited generalization of the DL
models [18]. Hence, it is essential to develop a strategy that
alleviates the gap between training and test data distribution
and enhances performance without creating a novel model
for new unlabeled data. Over the past few years, the
UDA technique has been utilized as a distinctive form of
transfer learning in intelligent fault diagnosis, in which
learned knowledge from labeled data in the source domain
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is transferred to the unlabeled data of the target domain
through discovering domain-invariant and discriminative
characteristics [19]. Source and target domain are utilized in
UDA approaches to training a model with shared weights,
which can benefit from both. Moreover, it aims to learn the
invariant characteristics across two domains. Coral [20], is
one of the most effective UDA methods that has been widely
utilized in unsupervised bearing fault diagnosis recently.
This regularization method aims to align sources and targets’
second-order statistics (batch covariances) with a linear
transformation. An extended version of coral named deep
coral is intergraded with a deep neural network that aims to
learn a nonlinear transformation to align layer activations’
correlations [21]. RMCA-1DCNN model based on Riemann
metric correlation alignment loss is proposed in [22] to
obtain unsupervised fault diagnosis with domain-invariant
and fault-discriminative capacity. Furthermore, UDA follows
to reduce the difference distance between distributions in
latent space resulting from criteria such as the maximum
mean discrepancy (MMD) and Multi kernel maximum
mean discrepancy (MK-MMD) [23], [24]. For instance, the
MK-MMD is employed in [25] to decrease the distribution
disparity caused by changing operating conditions. Lu et al.
[26] introduced multi-layer MMD to match the distribution
between source and target. The objective of these approaches
is to decrease the difference between the mean values of the
distribution in the two domains, but data characteristics like
median and the standard deviation in domains may not be the
same after using MMD-based approach [27]. This reduces the
accuracy of classification in the target domain. It should be
noticed that if the distribution discrepancy between the data
is substantial, some critical data characteristics may be lost
while projecting data from two domains to the same feature
space. In a nutshell, applying the MMD-based approach is
not sufficient individually to learn invariant features in two
domains.
The discriminative adversarial network for domain adaptation
has been introduced with promising outcomes [28]. The
source and target domain distributions are aligned in this
technique until the discriminator can determine whether
the input data belongs to the source or target domain.
Mao et al. [27] proposed adversarial domain training to
identify faults under various working conditions. Xu et al.
[29] employed multi-layer adversarial learning to adjust
the domain and boost the model’s generalizability. Li et
al. [30] proposed two feature extractors, one of which
uses MMD techniques and the other adversarial domain
training to extract invariant features, ensemble learning is
used to improve the accuracy of fault diagnosis. Zhang et
al. [31] introduced the multi-adversarial domain adaption
approach with the Wasserstein distance criteria to aid in
diagnosing bearing faults under various operating conditions.
The distribution discrepancy between the two domains in
bearing fault diagnosis is considerable due to multiple factors
such as changing operating conditions and environmental
noise. Appropriately, if the distribution difference between
the two domains increases, the convergence of adversarial
techniques to a stable position will confront difficulties.

Hence, providing an effective solution is critical to increasing
the stability of adversarial techniques in bearing diagnosis.
The domain label, the label for each category, and the data
structure as three critical kinds of information represent an
essential role in UDA techniques for bridging knowledge
transfer from the source to the target domain [32]. The
domain label is used to train a domain classifier to represent
the global distribution of both domains in adversarial UDA.
If the label of each category for the source and target domain
data samples is the same, it is expected to be mapped to the
same feature space. The data structure comprises the data’s
intrinsic characteristics, such as probability distribution and
geometric structure of data. All three types of information can
assist in alleviating the gap between the two domains under
different operation conditions and improve the performance
of the fault diagnosis model [33]. As we know, most studies
cover just one or two of these types of information and
pays inconsiderable regard to the geometric structure of the
source and target data. The data structure is considered as
a grid in the mentioned models, which may be a limiting
factor for the model’s generalization. On the other side, If
we offer data with a graph-based structure as an input to
a network like CNN, the desired results are not reached
because these networks are built on grid-structured data.
Furthermore, the domain adaptation method’s objective is
to match the distribution of source and target domains.
While each domain has multiple different subdomains, the
UDA technique does not follow each subdomain’s adjusting
distribution with the corresponding class. After adjusting
the global distribution of two domains in the UDA, some
unrelated data from different classes may be nearby to the
data of a specific class in latent space, resulting in a decrease
in domain adaptability and diagnostic accuracy. One solution
to this problem is the LMMD technique [34], which is an
extension of the MMD method. In addition to adjusting the
global distribution between domains, the LMMD technique
brings the distributions of each identical class as a subdomain
in two separate domains closer together in latent space and
adapts them.
This paper proposes a unique DSAGCN as a graph convolution
neural network (GCNN)-based [35] solution and distribution
discrepancy reduction employing LMMD and adversarial loss
function to satisfy all of the limitations mentioned earlier.
A CNN is used in DSAGCN to extract features from the
vibration signal. The extracted features are input into several
topology adaptive graph convolutional network (TAGCN)
[36] blocks of learning the geometric structure of the data,
which are produced by investigating the relationship between
the structural characteristics of the data and propagating
structural information in the graph network’s parameters.
Then, the LMMD loss function and the adversarial loss
function jointly alleviate the structure discrepancy in domains
distribution. Both of these criteria have advantages that have
been described earlier. As a result, the structural information
of the data is examined by employing feature modeling in the
form of graphs. The classifier also models class labels, and
the adversarial domain discriminator distinguishes the domain
label for each data. Therefore, the suggested DSAGCN
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method incorporates all three elements that significantly
increase UDA performance.

The following are the major contributions of this study:
1) This paper offers a practical and comprehensive end-to-

end DSAGCN method to diagnose cross-domain bearing
faults based on graph and domain adversarial discrimi-
nator and structured subdomain adaptation. In this pro-
posed method, all information, including data structure,
domain label, and labels of each class, are used in an
integrated manner to minimize the distribution difference
across domains and the distribution difference between
relevant subdomains in latent space.

2) The GCN model proposed for this study is the TAGCN
method. The simulation results indicate that this model
can provide acceptable results by employing graphs
with second-order polynomials. Combining with CNN
increases the model’s effectiveness in identifying bearing
faults under different operation conditions.

3) Due to the substantial distribution difference between the
source and target domain through changing load while
collecting the vibration data, LMMD and an adversarial
domain discriminator were employed concurrently to
find domain-invariant and discriminative features that
would reduce the distribution difference between the
two domains and align them. The ablation study demon-
strates that the LMMD applied in DSAGCN outperforms
coral and other MMD-based loss functions in average
accuracy and convergence speed.

The rest of this paper is structured as follows: The fundamental
theory of the approaches utilized in DSAGCN is explained
in Section II. Section III describes the structure and charac-
teristics of the proposed DSAGCN method. In Section IV,
after introducing the dataset used to evaluate the model, the
experimental results of the proposed technique are compared
with other comparative methods to assess the benefits of the
DSAGCN method. Finally, Section V provides the conclusion.

II. PRELIMINARIES

A. Graph Convolutional Neural network

CCNs have essential properties such as local connection,
weight sharing, and invariance with shifts, which allow them to
be used in various disciplines such as image processing, fault
diagnosis, and data with uniform and grid-based structures
[37]. However, Conventional CNN methods cannot achieve
an accurate result in many cases, such as biological systems,
social networking applications, and fields where the data has
a non-Euclidean and irregular structure [38]. Graph structure
outperforms conventional CNNs in these applications. Further-
more, knowing the geometric structure of the data improves
model learning and lowers the distribution gap across domains
in transfer learning fields. Graph signal processing (GSP) [39]
is used to alter conventional CNNs by leveraging graph theory,
which provides both a general framework and a rigorous view
for GCNN. A conventional CNN and a GCNN are compared
in Fig. 1. Conspicuously, The convolution operator computes
the sum of pointwise multiplications of a subset of input by

Fig. 1. Comparison of conventional CNN and GCNN architecture

the kernel of that layer. This process is repeated until the
kernel has moved through the input. Fig. 1 demonstrates the
GCNN architecture and how it differs from a conventional
CNN for inputs with irregular structures. A 1-degree filter is
shown, with the blue vertex collecting information about the
red adjacent vertices A 1-degree filter is shown, with the blue
vertex collecting information about the red adjacent vertices. A
graph is commonly expressed as G = (ν, ε, A), where ν is the
set of N vertices, ε denotes the set of edges connecting the two
corresponding vertices, and A expresses the adjacency matrix
that shows how each vertex is related to the other vertices.
Each Ai,j term represents the weight of the connected edge
between i and j. The graph Laplacian is defined as L = D−A,
where L is the graph Laplacian and D = diag[

∑
j Ai,j ] is

the degree matrix of A [40]. Every graph has the option
of being directed or undirected. The adjacency matrix is
symmetric in an undirected graph since the path between
the two vertices is common, but it can be asymmetric in a
directed graph due to the path’s direction. Any graph can
either be weighted or unweighted. GCNN techniques are
broadly classified into two types: spectral domain and spatial
domain [41]. spectral domain technique utilizes the Fourier
transform of the graph and the generalized Laplacian operator
in the spectral approach. The spatial domain approach does
not employ the Fourier transform, instead of relying on GSP’s
definition of graph convolution and the concept of graph shift
[42]. This concept describes how to propagate information
from one node to neighboring nodes and replace each node’s
signal value with a linear combination of signal values in that
node’s neighborhood. Shift operator is a vital component in
GSP. For example, the adjacency matrix A as a shift operator
and x as a graph signal, the one-stage propagate is the new
graph signal Ax, and the n-stage propagate is the signal Anx.
TAGCN technique [36] is one of the most acceptable spatial-
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Fig. 2. TAGCN polynomial filter for jade color node for k = 2. The signal
from the orange nodes is propagated to the jade node and aggregated, i.e.,
α2Ā2x(L) + α1Āx(L) + α1INx

(L)

based methods in GCNNs. A graph convolutional layer is
generated in this technique by integrating the concepts of
graph convolution and graph shift. The operation of graph con-
volution on the L-layer convolutional is described without loss
of generality. Assume that each vertex of the graph has the PL

feature input in this layer, and the vector x(L)
p ∈ RNL contains

the L-th layer’s input data for the p-th feature of all vertices.
The graph G indexes the elements x(L)

p ∈ RNL . Assume that
G

(L)
p,f ∈ RNL×NL represents the GCNN’s f -th filter in the L-

th layer. Multiplying the G(L)
p,f x

(L)
p matrix produces the graph

convolution. The f -th output of the convolution is calculated
using the following equation:

y
(L)
f =

PL∑
p=1

G
(L)
p,f x

(L)
p + b

(L)
f 1NL (1)

where b
(L)
f is the bias and 1NL

is a square matrix with
one element with dimensions equal to the number of graph
vertices. G(L)

p,f can be obtained as a polynomial in A:

G
(L)
p,f =

K∑
k=0

αkĀ
k (2)

In this equation, αk and Ā = D−
1
2AD

1
2 are the polynomial

coefficients of the graph filter and the normalized adjacency
matrix, respectively. Normalizing the adjacency matrix ensures
that all eigenvalues are localized inside a unit circle, resulting
in computational stability G.
The TAGCN method as a spatial-based method can be com-
pared with spectrum methods in different aspects. Basically,
The TAGCN technique uses a series of learnable node filters
with fixed sizes ranging from size 1 to size K to perform
graph convolution. Furthermore, it has O(K) learning com-
plexity, similar to conventional CNN algorithms. TAGCN has
a reduced computing burden than spectrum-based techniques,
which spectrum-based techniques have a more significant com-
putational burden owing to Fourier transform, inverse Fourier
transform, and Eigen decomposition. Aside from the reduced
computing burden, the TAGCN technique also has lower
computational complexity than spectrum methods. Second-
order polynomials can produce good results in this approach,
whereas 25-order polynomials from the graph adjacency ma-
trix are required in [43]. Fig. 2 depicts the TAGCN polynomial
filter for k = 2. The selected k and graph direction indicate the
connections for information propagation and collection from

Fig. 3. Top: the global DA approach merely reduces the distribution distance
across domains. Bottom: The deep subdomain adaptation approach, which
takes fine-grained information into account and brings the distribution of
subdomains of the same class in two domains closer together.

the orange nodes to the jade node in Fig. 2. This graph demon-
strates the TAGCN approach’s decreased computational com-
plexity compared to other methods, particularly the method
provided in [43]. In addition, unlike the study in [44], no
linear estimation is used in the TAGCN, leading to data loss
and lower classification accuracy. TAGCN uses GSP theory to
construct filters ranging from 1 to K to avoid this problem.
The spectral technique is unusable for directed graphs because
the spectral technique utilizes shift graph operators such as
graph Laplacian, which is only relevant to undirected graphs,
and since the graph Laplacian must be positive semidefinite in
order to apply this approach, which is only possible with the
symmetry of matrix A. Unlike spectrum-based strategies, each
convolutional layer in the TAGCN technique is unique due to
variable-size graph convolutional layers. The Fourier transform
will not be unique in spectrum methods if the eigenvalue
obtained from the Laplacian is repeated.

B. deep structured subdomain adaptation

DL methods mostly assume that the distribution of test and
training data is homogeneous, and if this null hypothesis is
false, DL method performance will be significantly reduced.
While the distribution difference between test and training data
is seen in many applications. The domain adaptation technique
is presented as a solution for this category of issues, in which
learning the invariant feature space in the source and target
domains leads to a reduction in the difference in domain
distribution and an increase in model’s performance. A domain
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is defined in domain adaptation as D = {χ, P (X)}, where
χ and P (X) are the data feature space and their marginal
probability distribution, respectively, and X = {xi}ni=1 ∈ χ
are instance samples. DS and DT denote the source and
target domains, respectively. An unsupervised domain adap-
tation problem is described as having Labeled source do-
main DS = {(xsi , ysi )}nS

i=1 and unlabeled target domain data
DT =

{
xtj
}nT

j=1
. The labeled space is denoted by y. In this

scenario, it is assumed that the feature space, category space,
and probabilistic conditional distribution of these two domains
are the same, but their probabilistic marginal distribution is
different owing to the domain shift. Domain adaptation aims
to predict the target domain data labels using transferred
information from the source domain [45]. The global domain
adaptation technique’s core idea is to roughly adjust the global
probability distribution of the source and target domains.
Despite the benefits of this technique, some irrelevant data
from one class may be close to another one in feature space
after aligning distribution, and DA performance suffers due to
a lack of relationships between subdomains with the same
class in different domains [34].The subdomain adaptation
technique is an efficient solution to avoid this problem. The
probability distribution of the same classes in different do-
mains and the discrepancy between them are considered in
this method. In addition to aligning the distribution of two
domains, this strategy adjusts the distribution of subdomains
with the same classes closer together in the feature space.
Fig. 3 depicts a comparison of the DA technique and the
subdomain adaption method. The relationship between the
data in these two domains must be utilized to split the source
and target domains into multiple subdomains containing data
of the same class. Nevertheless, since there are no labels
in the target domain in unsupervised learning problems, the
network output should be employed as the target domain
data’s pseudo-labels. As an outcome of the use of pseudo-
labels, the source and target domains are divided into multiple
subdomains D(c)

S and D(c)
T with probability distributions p(c)

and q(c), respectively, where c ∈ {1, 2, ..., C} is the number
of classes. The suggested approach for subdomain adaptation
is the LMMD technique [34], an extension of the MMD
method that determines the distribution discrepancy of each
same subdomain in different domains. The most commonly ex-
ploited nonparametric distance metric for DA is MMD, which
measures the difference between two domains distribution in
reproducing kernel Hilbert space (RKHS). MMD between DS

and DT is described by the following relationship:

dH(Ds, Dt) = ‖Ep[Φ(Xs)]− Eq[Φ(Xt)]‖2Hk
(3)

In this context, H is an RKHS, and Φ is a nonlinear mapping
that converts data from DS and DT to RKHS feature space. To
make computations easier, utilize the kernel characteristic k,
which is defined by the relation k (xs, xt) = 〈Φ(xs),Φ(xt)〉,
where 〈., .〉 is the inner product of the vectors. As a result, an

unbiased estimate of Eq. 3 equals:

d̂H(Ds, Dt) = ‖ 1

n2s

ns∑
i=1

ns∑
j=1

k(xsi , x
s
j) +

1

n2t

nt∑
i=1

nt∑
j=1

k(xti, x
t
j)

− 1

nsnt

ns∑
i=1

nt∑
j=1

k(xsi , x
t
j)‖2Hk

(4)
In this case, ns and nt represent the number of source and
target samples, respectively. As previously stated, despite the
MMD technique’s effectiveness in measuring the distribution
difference between two domains and playing an essential
role in the regularization term of the loss function in some
applications, there remains a need for a method to compute the
distribution difference between each subdomain. The LMMD
approach is employed in this study as generalized criteria
of MMD to determine this discrepancy, which is defined as
follows:

dH(Ds, Dt) =
∥∥Ep(c)[Φ(Xs)]− Eq(c)[Φ(Xt)]

∥∥2
Hk

(5)

Each sample in each class is supposed to be allocated a weight
W . The relationship mentioned above will be as follows in this
case:

LLMMD = d̂H(Ds, Dt) =
1

C

c∑
m=1

∥∥∥∥∥∥
ns∑
i=1

Wsm
i Φ(Xs

i )−
nt∑
j=1

Wtm
i Φ(Xt

j)

∥∥∥∥∥∥
2

Hk

(6)
Where Wsm

i and Wtm
j represent the weight of xsi and xtj

pertaining to class m, respectively.It should be noted that∑ns

m=1Wsm
i =

∑nt

m=1Wtm
j = 1 and Wm

i for the sample
xi is calculated as:

Wm
i =

Yim∑
xi,yi Yjm

(7)

Wm
i requires ysi and yti values, and as previously stated, a

DS data label is provided, but yti must be determined using a
pseudo-label.
Wtm

j can be calculated by obtaining Ŷt
i for each sample.

Eq. 6 can be modified to adjust the source and target domain
features in the l− th layer where zl is the lth layer activation
of L layer.:

d̂H(Ds, Dt) =
1

c

c∑
m=1

[

ns∑
i=1

ns∑
i=1

Wsm
i Wsm

j k(zsli , z
sl
j )

+

nt∑
i=1

nt∑
i=1

Wtm
i Wtm

j k(ztli , z
tl
j )− 2

ns∑
i=1

nt∑
j=1

Wsm
i Wtm

j k(zsli , z
st
j )]

(8)

C. Domain Adversarial Network

The adversarial domain adaptation network is one of the
most famous fault diagnosis architectures. Applying This tech-
nique in unsupervised fault diagnosis has increased due to its
powerful ability to reduce the distribution discrepancy between
data in different domains [46]. The architecture contains two
incorporating networks; a feature extractor and a domain
discriminator network. On the one hand, the Feature extractor
network aims to extract knowledgeable and discriminative fea-
tures from the source and target domain. On the other hand, A
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Fig. 4. Proposed method

domain discriminator network distinguishes whether extracted
features come from the target or source domain. It inherits a
binary classification algorithm to learn a logistic regressor for
mapping features between [0,1]. Robust knowledge of source
features maps into approximate target maps by fooling the
feature extractor with a reverse gradient layer. Consequently, a
classifier can use the knowledge to define unlabeled fault types
in the target domain [47]. As a final point, The Optimization
objective as a binary cross entropy loss of the adversarial
domain network is shown as follows:

Ld

(
xs, xt

)
=− Ex′∈Dx

[logD (G (xs))]

− Ex′∈Dt

[
log
(
1−D

(
G
(
xt
)))] (9)

where G(.) is the feature extractor, and D(.) accepts 0 or 1 as
an input.

III. PROPOSED METHOD

In this section, we discuss the detailed architecture of the
proposed method in Fig. 4. As shown in Table I, We divide
our model into graph feature extraction, domain adaptation,
and classifier networks, which is detailed below:

A. Graph Feature Extraction

We employed a five-layer CNN with a wide kernel in
the first part of the feature extraction network for longer
dependencies. As we proceed deeper into the layers, the
kernel size decrease, improving local graph feature extraction
and feature representation. Furthermore, using a wide kernel
rather than the small one in the beginning layers causes high-
frequency environmental noise to be repressed in input data
to have a more robust network in the classification task [48].
Directly after the convolution operation, the batch normaliza-
tion technique is used to accelerate the network’s training and
decrease the shift of internal covariance [49]. Rectified linear
unit (ReLU) is utilized as an activation function to improve

TABLE I
STRUCTURES OF PROPOSED METHOD

Network Layer Kernels Size /Stride/Filter Number Output size Pooling Size Padding

Graph Feature Extractor

Conv1D, BN, Relu, Max Pool 128/1*1/16 N*1024*16 2*2 Yes
Conv1D, BN, Relu, Max Pool 64/1*1/32 N*521*32 2*2 Yes
Conv1D, BN, Relu, Max Pool 32/1*1/64 N*256*64 2*2 Yes
Conv1D, BN, Relu, Max Pool 16/1*1/128 N*128*128 2*2 Yes

Conv1D, BN, Relu, Adaptive Max Pool 3/1*1/128 N*4*128 32*32 Yes
FC1, Relu, Dropout 0.5 256 neurons N*256*1 NO

GGL, Dropout None N*N NO
TGACN, BN 128 neurons N*128 NO
TGACN, BN 256 neurons N*256 NO

Domian Discrimnetor FC2, Relu, Dropout 0.5 128 neurons N*128 NO
FC3,Relu, Dropout 0.5 128 neurons N*128 NO

FC4, Sigmoid 1 neurons N*1 NO
Classifier FC5, Softmax Number of Fault types neurons N*10 NO

the representation ability and learn the complex pattern in the
data [48]. We used two kinds of pooling layers to reduce
the network’s parameters. Accordingly, the max-pooling layers
directly after Relu activation layer and adaptive max-pooling
are employed at the top of the CNN for a given reduced
fixed-size output dimension. In the next stage, we reduced the
dimensions of the feature vector by a dense layer (FC1(.))
with 256 neurons to have better robust feature representation.
As the input of TAGCN is structured, it is necessary to
transform unstructured features to structured ones, the output
of the CNN network passes to a graph generation layer (GGL)
[33] for producing structured graph data, and then TAGCN is
applied to structure features. Each feature vector is specified as
a node whose feature vectors come from the output of a dense
layer, and an adjacency matrix is defined by the multiplication
of the features vector and its transpose, as shown below:

X = CNN(InputData) (10)

X̂ = FC1(X) (11)

A = N (X̂X̂T ) (12)

Where N (.) represents the normalization function. It is ben-
eficial to make the adjacency matrix sparse to avoid compu-
tational costs. Therefore, as detailed below, K(.) returns the
k-largest elements of the given adjacency matrix. Finally, Eq.
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13 delivers a sparse adjacency matrix by indexing the top-k
largest values of A at row-wise.

Â = Top−K(A) (13)

The generated graph will be fed through graph convolution
layers in the next stage, extracting node features and aggregat-
ing neighbors’ information. For better feature representation
and robust aligned structured features, we used two TAGCN
layers with the number of hops of two (K = 2). The output of
each layer directly is connected to graph batch normalization
layers as described in below:

x = TAGCN(X̂, Â,K) (14)

x′i =
x− E[x]√
Var[x] + ε

� γ + β (15)

Where x′i shows normalized structured features; E(.) and
V ar(.) are expectation and variance functions, respectively;
γ and β are trainable parameters; ε is added for numerical
stability. To sum up, assuming Eq. 10 to Eq. 15, we considered
CNN and GCNN network as a graph feature extractor network
which is indicated by G(.), where it takes input data and
returns structured features.

B. Domain Adaptation Networks

As stated, we used two separate networks for aligning
target and source features and reducing distribution between
features in latent space, which are discussed in two following
subsections:

1) Domain Discriminator: Adversarial domain learning
tries to identify the label of extracted features supplied to
the domain discriminator, as been described in Section II. For
producing invariant features in the target domain, reducing the
loss computed inversion gradient by gradient reversal layer
(GRL) in Eq. 9. We used FC2 and FC3 as a backbone of
the domain discriminator network to produce more robust
invariant latent space features. As a result, the classifier will
adopt either health states from the target domain or the source
domain.

2) LMMD Loss: It is used at the top of the graph feature
extractor part to reduce the distribution between extracted
structured features. As a non-parametric technique, LMMD
aims to match the distribution of source and target features and
reduce the discrepancy distribution of relevant subdomains by
integrating deep feature adaptation and feature learning. As
been detailed in Eq. 8, the radial basis function (RBF) kernel
is chosen as a kernel.

C. classification layer

We used a fully connected layer whose number of neurons
equals the number of health conditions. The Softmax classifier
is adopted as an activation function. Another usage is to
produce pseudo labels in the target domain for calculating
LMMD loss. By defining Hs

i , H
s
j = G(xsi , x

t
j), the objective

function of classification LC is defined as:

ŷtj =

{
1 if j = arg max

j
HjSoftmax, t

0 otherwise
(16)

TABLE II
ALGORITHM OF DETAILED DSAGCN METHOD

Algorithm: DSAGCN
Require: Raw Input Data, Learning Rate (η), Trade-off Parameters(µ , β)
1. Define labeled source and unlabeled target dataset through pre-processing raw data
2. Initialize model’s weights Using Xaviar initialization
3 Consider Input {xis, yis}, {xtj}
For i, j = 1, ......, n do :

4.
Graph Feature Extractor ←− G(.)

(Hs
i , H

t
j)←− G({xsi , xtj}

ns=nt=n
i,j )

5.

Generate target pesudo labels :

ŷtj =

{
1 if j = argmax

j
HjSoftmax,t

0 otherwise

6.
Define total loss of the DSAGCN method in forward pass:

Ltotal(H
s
i , H

t
j, y

s
i, ŷ

t
j) ←− Lc(Hs

i , H
t
j) + µ Ld(H

s
i , H

t
j) + β LLmmd(Hs, Ht, y

s
i, ŷ

t
j)

7.

update weights of the DSAGCN model using Backpropagation algorithm:
θg ←− θg − η × ∂LTotal

∂θg

θd←− θd − η × ∂Ld
∂θd

θc←− θc − η × ∂LLc
∂θc

Until θc, θd, θg converge

ŷsi =

{
1 if i = arg max

i
HiSoftmax, s

0 otherwise
(17)

LC (Hs
i , y

s
i ) = E(xs,s)−DL (ŷsi ), y

s
i ) (18)

Where E(.) is considered mathematical expectation; ŷi and ŷj
are generated logits by classification layer, respectively.

D. Objective Function

Considering classification loss (Eq. 18), structured subdo-
main loss (Eq. 6), and adversarial loss (Eq. 9 )total loss
of DSAGCN method with combining the defined three-loss
described as follows:

Ltotal
(
Hs

i , H
t
i , y

s
i , ŷ

t
j

)
= Lc

(
Hs

i , H
t
i

)
+ µLd

(
Hs

i , H
t
j

)
+βLLmmd

(
Hs, Ht, y

s
i , ŷ

t
j

)
(19)

Where µ and β are trade-off hyper-parameters. The algorithm
of the proposed DSAGCN is summarised in the table II. It is
shown that after producing total loss by network parameters
of each network is updated with back-propagation operation
and will be converged, which are detailed as below:

θg = θg − η ×
∂LTotal

∂θg

θd = θd − η ×
∂Ld

∂θd

θc = θc − η ×
∂Lc

∂θc

(20)

Where θg , θd, and θc are parameters of graph feature extractor,
domain discriminator, and classification layer, respectively; ∂
denotes partial derivative function; η shows learning rate.
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IV. EXPERIMENTS

The effectiveness of the proposed model is investigated in
a variety of ways for two well-known datasets, including the
CWRU [50] and Paderborn [51] bearing datasets, in order
to assess the validity of the proposed DSAGCN method in
diagnosing bearing faults under various operating conditions.

A. implementation details

The Xavier initializer [52] is used during the training phase
to set the DSAGCN method parameters The initial learning
rate of DSAGCN is set at 0.001. The Adam optimization
technique [53] is employed to optimize the parameters, and
each batch has a length of 128. The optimal values of the
trade-off parameters β and µ are selected as 0.5 and 1,
respectively. In addition, The degree of polynomial filter in
the graph used in the DSAGCN method is considered equal
to 2. Each experiment is repeated ten times to decrease the
results’ randomness. Fault diagnosis’s average accuracy is used
as assessment criteria.

B. compared approaches

To demonstrate the superiority of the proposed DSAGCN
method over existing techniques, ten comparative methods
including SVM, CNN, JDA [54], CORAL [55], DANN [56],
unsupervised domain adaptation convolution neural network
(UDACNN), Baseline, graph convolution maximum mean
discrepancy (GC-MMD), graph convolution multi-kernel max-
imum mean discrepancy (GC-MKMMD), and graph convolu-
tion CORAL (GC-CORAL) have been implemented. All of
these techniques use the same hyperparameters and settings
as the DSAGCN method. These methods can be divided into
the following categories:

1) Traditional approaches: SVM technique with radial
basis function (RBF) kernel is used to evaluate the
effectiveness of the proposed method compared to the
traditional supervised method. Six features are chosen as
the SVM model’s input, similar to [57]. The SVM model
is trained using extracted features from the labeled
source domain, and the model is tested with unlabeled
data in the target domain.

2) DL-based approaches: The CNN network of the pro-
posed graph feature extraction plus the classification
layer is used as a CNN model compared with the
proposed method in this study. Labeled source domain
is utilized for CNN model training, whereas unlabeled
target domain data is used exclusively for model testing.
This model does not involve domain adaptation, and the
only loss function is cross-entropy.

3) DA-based techniques: Four domain adaptation ap-
proaches, including JDA, CORAL, DANN, and
UDACNN, were utilized to demonstrate the superiority
of the proposed method. The structure of the UDACNN
approach is similar to the CNN model. Also, it in-
corporates two domain adaptation modules, including
the domain discriminator and LMMD, similar to the
DSAGCN method. The only difference between the

Fig. 5. The experimental setup of CWRU bearing vibration dataset

TABLE III
DESCRIPTION OF THE CWRU BEARING DATASET

Working Condition Load Types of Fault Fault Diameter (mils)
A 0 hp N,IRF,ORF,RF 7,14,21
B 1 hp N,IRF,ORF,RF 7,14,21
C 2 hp N,IRF,ORF,RF 7,14,21
D 3 hp N,IRF,ORF,RF 7,14,21

UDACNN and DSAGNN models is the lack of a graph;
all other variables and hyperparameters are the same.

4) Graph-based techniques: We considered either the
backbone of DSAGCN method domain with discrim-
inator network in GC-MKMMD, GC-MMD and GC-
CORAL or the Baseline method without them to com-
pare the role of structure subdomain adaptation with
other domain adaptation with non-parametric loss in
our proposed method. As previously stated, the baseline
model includes the feature extraction and classifica-
tion layer parts, but unlike the CNN model, it also
includes a graph. In addition, unlike DSAGCN, it does
not employ any domain adaptation modules. In GC-
MKMMD, GC-MMD, and GC-CORAL, the adversarial
domain discriminator loss function and the cross-entropy
loss function are employed, and Their difference is in
the third loss function. In contrast to DSAGCN, the
MMD loss method is applied in GC-MMD instead of
LMMD. Also, for GC-MKMMD and GC-CORAL meth-
ods, the multi-Gaussian kernels with a mixture of five
different bandwidths {0.001, 0.01, 1, 10, 100} and the
CORAL loss function are utilized, respectively. These
three techniques aim to decrease the distribution differ-
ence between domains by applying three loss functions
simultaneously and improving classification accuracy.

C. Case I: CWRU Expriment

1) data description: The CWRU bearing vibration dataset
is utilized to assess the efficiency of the suggested DSAGCN
method, which the test platform depicted in Figure 4. In
this work, the CWRU bearing vibration dataset is utilized
to assess the efficiency of the suggested DSAGCN method,
which the test platform depicted in Fig. 5. Vibration data are
obtained using an accelerometer with a sampling rate of 12kHz
located at the motor’s drive end. Data are gathered under
four different operating conditions caused by load changes
ranging from 0 to 3 hp. This dataset considers four different
bearing health modes: Normal, Inner Race fault (IRF), Outer
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Fig. 6. Diagnosis accuracy of different methods on CWRU bearing dataset under changing working conditions

Race Fault (ORF), and Roller Fault (RF). Each of them has
three different severity faults with diameters 7, 14, and 21
mils. Therefore, this dataset has ten different states of bearing
health status, which is given in Table III. Data augmentation
is used to enhance the number of samples, which improves
the performance of the training process. As a result, a sliding
window with a length of 1024 data points and a time step of
475 is employed. Finally, there are 200 training and 50 test
samples for each motor load after shuffling samples. There are
12 transfer learning tasks based on four different loads. Each
task is divided into two parts: the source and the target. For
instance, in task B→D, the labeled data from dataset D is used
as the source domain, whereas unlabeled data from dataset B
is used as the target domain. The DSAGCN method is trained
on the CWRU dataset across 100 epochs.

2) CWRU bearing fault diagnosis Result and Discussion:
Fig. 6 depicts the simulation results for various tasks using the
DSAGCN method and comparison approaches. The collected
results can be categorized as follows:

1) It is evident from the results that the DSAGCN method
outperforms the other comparison methods in unlabelled
fault diagnosis. The DSAGCN method achieves higher
accuracy by utilizing the geometric structure of data
in graphs, matching each structured subdomain using
the LMMD algorithm, and minimizing the distribu-

tion discrepancy between domains using the adversarial
loss function. As a result, because it covers all three
types of essential information for the UDA technique,
the DSAGCN method surpasses the three traditional,
DL-based, and DA-based procedures. Furthermore, the
DSAGCN method outperforms graph-based techniques
in terms of accuracy, emphasizing the significance of
deep structured subdomain adaptation methods.

2) In one of the most challenging tasks,B→D, the worst
fault diagnosis accuracy is 57.95%, while the best ac-
curacy is related to the proposed DSAGCN method
with 99.03%. The DSAGCN method’s fault diagnosis
accuracy is 0.02%, 1.65%, and 16.16%, greater than the
best accuracy of the three categories, graph-based, DA-
based, and DL-based. This high accuracy demonstrates
the DSAGCN method’s efficiency when there is a sub-
stantial distribution difference between domains.

3) In graph-based techniques, GC-CORAL, GC-MMD, and
GC-MKMMD have higher average accuracy than DA-
based methods, demonstrating the necessity of using
hybrid DA tools and the importance of data geometry
in approaching the distance between two domains. As
can be observed, the geometric structure of the data is
an essential aspect in improving the UDA’s performance.
Also, this group of approaches has been offered as an ab-
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Fig. 7. t-SNE feature visualization of proposed DSAGCN method for task
B → D of CWRU dataset in different layers: (a) input layer, (b) CNN layer,
(c) FC1 Layer, (d) TAGCN layer, (e) classifier layer(%)

lation study. In contrast to the DSAGCN approach, GC-
MMD, GC-MKMMD, and GC-CORAL employ MMD,
MKMMD, and CORAL instead of LMMD. The findings
demonstrate the superiority of the suggested strategy and
the effectiveness of utilizing LMMD.

4) Due to a lack of domain matching ability to decrease
the distribution difference, the baseline technique has
the lowest average accuracy compared to other graph-
based methods and the suggested DSAGCN method. The
baseline technique outperforms CNN in terms of average
accuracy, indicating the efficacy of the graph and the ge-
ometric structure of the data in lowering the distribution
disparity. The baseline approach is less accurate than the
UDACNN, meaning that the geometric data structure
is not powerful enough to alleviate the distribution
difference without other DA techniques. Performance is
when improved LMMD-based and adversarial domain
adaptation combination techniques are used.

5) The performance of the DSAGCN method, graph-based,
and domain-based techniques outperform the perfor-
mance of the other two groups. The SVM approach
does not perform as well as other methods since it
does not use all of the key information of vibration
data owing to reasons like the selection of hand-made

Fig. 8. Experimental platform of Paderborn bearing dataset

TABLE IV
DESCRIPTION OF THE PADERBORN BEARING DATASET

Dataset Faulty condition Working Condition
Rotational Speed (rpm) Load Torque (Nm) Radial Force (N)

E N,IRF,ORF 900 0.7 1000
F N,IRF,ORF 1500 0.1 1000
G N,IRF,ORF 1500 0.7 400
H N,IRF,ORF 1500 0.7 1000

features extracted as input, traditional machine learning
networks’ low performance in identifying complicated
nonlinear relationships between data, and training the
model only using Source data. When compared to other
methods, it has the worst average accuracy. Although
the CNN model outperforms the SVM model due to
deep learning networks’ capacity to analyze nonlin-
ear connections and automated feature learning, it has
lower classification accuracy than the graph-based and
UDACNN methods, due to reasons such as discrepancies
in distribution between training and test data, a lack of
adequate tools to decrease distribution disparities, and a
failure to pay attention to the varied geometric structure
of training and test data. The accuracy of the CNN model
demonstrates that the trained model in a given load
does not have excellent diagnosis accuracy in classifying
bearing faults in other loads. The features acquired in
the primary layers of the CNN model are more generic
and can be utilized for data with various distributions.
However, as they progress to the end layers, the features
become more particular, necessitating the employment
of a tool such as DA to transmit information from the
source domain to the target domain, decrease distribution
discrepancies, and consequently enhance fault detection
performance.

The t-distributed stochastic neighbor embedding (t-SNE)
approach [58] is applied to intuitively understand the suggested
DSAGCN method’s efficiency in reducing the difference in
the distribution of learned features across two domains and
aligning relevant subdomains with the same class in two
domains. This method converts learned features with high
dimensions to 2-D feature space. Fig. 7 depicts the t-SNE
representation of the B → D task as the most challenging
diagnostic task in five-step in the DSAGCN method. Fig.
7-a exhibits the model’s input data, which reveals that the
data from various classes are mixed and not proper for
classification. The output of the adaptive max-pooling layer,
which represents the CNN part of the model, is shown in
Fig. 7-b. The distribution disparity between the source and
target domains is visible in this figure. In fig. 7-c with the
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Fig. 9. Diagnosis accuracy of different methods on Paderborn bearing dataset under changing working conditions

inclusion of the FC1 layer in the continuation of the CNN
section, the segregation performance is better than that of
CNN, but the data of the distinct categories is still incorrectly
classified. For example, IRF class data with a severity of 0.021
mils are not adequately distinguished from ORF class data
with severity of 0.021 mils, which has a detrimental impact
on fault diagnosis performance. The data of various classes are
well segregated from each other in Fig. 7-d, which visualizes
the output of the TAGCN layer, although the disparity between
the distributions between domains is substantial. Domain
adaptation is employed to tackle this issue, as seen in Fig.
7-e. This figure indicates the beneficial effect of subdomain
adaptation on reducing distribution disparities and improving
class separation.

D. PU Expriment

1) data description: The experimental data are gathered
from the Paderborn university rig test [51], which included five
electric motor components: a measuring shaft, a rolling bearing
module, a flywheel, and a load motor. Fig. 8 depicts a modular
test rig for this dataset. It considers three different bearing
health conditions: Normal, IRF, and ORF. Two artificial and
real damage are supposed to generate the faults types. Given
that two distinct values for rotational speed, load torque and
radial force, were examined in this study. Table IV investigated

four different working conditions to assess fault diagnosis
performance under various operating conditions. Nine distinct
classes K001, K003, K005, KA04, KA16, KA22, KI04, KI14,
and KI16, are conducted according to [51], to assess the
proposed method. All selected ORF and IRF faults are chosen
from the types of real bearing damage generated by accelerated
lifetime testing. An accelerometer sensor with a sampling
frequency of 64 kHz is used to collect vibration data. A
1024 datapoint sliding window with no overlap is employed
to divide the data. Finally, for each motor operating condition,
200 samples for the train and 50 samples for the test are
provided. On the Paderborn dataset, the DSAGCN method is
trained for 400 epochs.

2) Paderborn diagnosis Result and Discussion: Fig. 9 de-
picts the simulation results of the proposed DSAGCN method
and comparison methods for the unsupervised fault diagno-
sis issue for the Paderborn dataset under different working
conditions. The gathered information can be divided into the
following categories:

1) When evaluating the average accuracy of fault diagnosis,
the suggested DSAGCN approach has the highest accu-
racy compared to other methods. The average accuracy
of the DSAGCN method is 0.92%, 24%, 18.81%, and
40.61%, more accurate than the highest.

2) In one of the most challenging transfer tasks, G→E
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transfer, the DSAGCN method has 0.84% and 34.06%
better accuracy than the maximum and minimum di-
agnosis accuracy in comparative methods, respectively.
When there is a significant distribution gap among
domains, this high accuracy indicates the effectiveness
of the DSAGCN approach.

3) The explanation for reduced fault diagnosis accuracy
in some tasks, such as F→E, compared to other tasks
is a change in working conditions and more severe
differences in distribution between domains. In four
tasks, the average accuracy of the DSAGCN approach
was less than 90%.

4) The mean accuracy of the DSAGCN method and other
comparison methods for the Paderborn dataset is much
lower than the results obtained for the CWRU dataset
in Fig. 6. The suggested DSAGCN method’s average
accuracy for the Paderborn dataset is 6.7% lower than
the CWRU dataset due to the Paderborn dataset’s greater
complexity than the CWRU and the significant distribu-
tion differences between domains in the Paderborn tasks.
In the CWRU dataset, only the load changes, and the
rotational speed is relatively constant. In contrast, in the
Paderborn dataset, there is the possibility of changing
the rotational speed and radial force, which causes
more differences between distributions and reduces the
accuracy of fault diagnosis under different operating
conditions.

In addition to analyzing numerical results to examine the ef-
fectiveness of the proposed method, this part provides a visual
representation of t-SNE in five different layers, including input
data, CNN layer, FC1 layer, TAGCN layer, and classifier layer.
The H→G diagnostic task is randomly chosen, and the t-SNE
is displayed in Fig. 10. As can be seen, the gap between the
source and target domains gets less as we get closer to the
end layers, and data of the same class in the two domains get
closer to each other in latent space. Due to domain adaptation
modules in the end layers, the difference between the domains
is reduced, and the domains are better aligned. However, a
small amount of data are wrongly placed near another class.
For example, some data of the k001 class are mixed up with
the k003 class, lowering the accuracy of this task’s fault
diagnosis.

E. Model Discussion

1) degree of graph’s polynomial filter : One of the cru-
cial parameters of the suggested approach is the value of
k, which is the polynomial degree of the graph filter in
the proposed DSAGCN model. In this subsection, k values
of {1,2,4,5,10,25,100} were considered, and the criterion of
greatest accuracy and lowest training time was studied to
achieve the ideal value of k. Table V illustrates the accuracy
and training time for CWRU and PU datsets for various values
of k in a single epoch. the B→D and H→G tasks are shown as
selected task in TableV, respectively. The model was trained
ten times for each value of k to decrease randomness, and the
average accuracy and training time were considered. Accord-
ing to Table V, 100% accuracy is achieved for k = 2, 4, 5, 10

Fig. 10. t-SNE feature visualization of proposed DSAGCN method for task
H→G of Paderborn dataset in different layers: (a) input layer, (b) CNN layer,
(c) FC1 Layer, (d) TAGCN layer, (e) classifier layer.

TABLE V
INVESTIGATION OF POLYNOMIAL DEGREE SELECTION OF GRAPH FILTER
IN DIAGNOSIS ACCURACY AND TRAINING TIME OF DSAGCN METHOD

FOR B→D AND H→G TASKS IN TWO DATASETS

CWRU Dataset
K 1 2 4 5 10 25 50 100

Accuracy (%) 70.44 100 100 100 100 99.8 83.4 66
Time (S) 391 396 427 444 536 815 1273 2176

PU Dataset Accuracy (%) 84.44 98.63 87.42 85.55 68.34 50.6 25.33 16.25
Time (S) 1414 1458 1523 1603 2018 3071 4772 6023

to diagnose the fault in the CWRU dataset; however, as the
value of k increases, the training time increases owing to the
increasing complexity and computational burden. Because of
the rising complexity, diagnostic accuracy decreases dramat-
ically for k = 50, 25. Table V demonstrates that the highest
accuracy of fault diagnosis is obtained for k = 2. As the value
of k increases, the accuracy declines substantially, reaching
an accuracy of 16.25% for k = 100, which is less than the
accuracy of all comparison approaches. As a result, the optimal
selection of the k value in the suggested model is crucial.
According to the results obtained on both datasets, k = 2 is
the best choice for the suggested model, with the maximum
accuracy and a short training time.

2) Convergence performance: Fig. 11 depicts a represen-
tation of the total loss function and diagnostic accuracy per
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Fig. 11. Convergence performance of the proposed model in terms of the total loss function and diagnosis accuracy; (a) task B→D of CWRU dataset (b)
task H→G of PU dataset

Fig. 12. Comparison of fault diagnosis results in the B→D transfer task for
different values of the loss function’s penalty coefficients

epoch in the B→D and H→G tasks on test data for the
CWRU dataset and PU dataset, respectively. In this figure,
the suggested DSAGCN method is compared to the three
techniques GC-MMD, GC-MKMMD, and GC-CORAL to
assess the effectiveness of the LMMD method. As can be
observed, as the number of epochs rises, the total loss rate

drops while the accuracy rate improves. Furthermore, the
DSAGCN method converges to its lowest loss function faster
than other approaches, indicating that this model is better and
more efficient than other methods in terms of convergence.
In terms of fluctuations, the DSAGCN method has the lowest
fluctuations compared to other methods, and it has a smoother
curve, demonstrating the approach’s high stability. In conclu-
sion, Fig. 11 demonstrates the superiority of the suggested
approach and the perfect performance of the LMMD technique
when contrasted to CORAL, MMD, and MKMMD.

3) coefficient of the loss function:: Six distinct values
{0,0.01,0.05,0.1,0.5,1} were used as β and µ coefficients to
investigate the influence of the coefficients of two adversarial
and LMMD Loss functions on the fault diagnosis outcomes.
Fig. 12 shows an example of the B→D transfer task from
the CWRU dataset. As can be observed, the model has high
accuracy for different values of µ at β = 0.5, β = 1, indicating
the strong influence of the LMMD approach. β= 0.5 and µ =
1 are the most optimal values of β and µ. For values of β= µ
= 0, the domain adaptation modules have no impact, and the
mode is equivalent to the baseline method.

V. CONCLUSION

This paper presents a novel end-to-end DSAGCN approach
and a new framework for bearing fault diagnosis under diverse
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operating conditions based on crucial information such as
data geometry. Adversarial domain adaptation and structured
subdomain adaptation are employed to decrease the distri-
bution discrepancy. Also, the geometric structure of data is
obtained using graph theory in this study. The suggested
model’s graph, which has a lower computing complexity than
the spectrum technique and no linear approximation in its
calculation, considers the geometric structure of the data under
different working conditions and aids in diagnosing bearing
faults. On the other hand, the adversarial domain discriminator
is used to align the domains, and the LMMD loss function is
utilized to match subdomains with the same class. Experiment
results on the CWRU and Paderborn datasets demonstrate that
the DSAGCN method outperforms other approaches in terms
of fault diagnosis accuracy under various operating conditions.
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