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Abstract—In this paper, we present a novel algorithm named
synchronous integral Q-learning, which is based on synchronous
policy iteration, to solve the continuous-time infinite horizon
optimal control problems of input-affine system dynamics. The
integral reinforcement is measured as an excitation signal in this
method to estimate the solution to the Hamilton–Jacobi–Bellman
equation. Moreover, the proposed method is completely model-
free, i.e. no a priori knowledge of the system is required. Using
policy iteration, the actor and critic neural networks can simul-
taneously approximate the optimal value function and policy.
The persistence of excitation condition is required to guarantee
the convergence of the two networks. Unlike in traditional policy
iteration algorithms, the restriction of the initial admissible policy
is relaxed in this method. The effectiveness of the proposed
algorithm is verified through numerical simulations.

Index Terms—Synchronous integral reinforcement learning,
Policy iteration, Persistence of excitation, Adaptive control.

I. INTRODUCTION

OPTIMAL control [1] and adaptive control [2] are two
important concepts in modern control theory. The main

goal of the optimal/adaptive controller is to reach the control
objective with the minimal performance index/the unknown
system structures or parameters. The method that combines the
advantages of both methods is called reinforcement learning
(RL, [3]) in the computational intelligence field or adaptive
dynamic programming (ADP, [4]) in control theory (also
known as approximate dynamic programming [5], neuro-
dynamic programming [6] and adaptive critic design [7]), and
it has been widely studied (See [8] for the latest survey on
ADP).

The key problem of optimal control/ADPRL methods is
how to solve the Hamilton–Jacobi–Bellman equation (HJBE)
or Bellman equation, which is the discrete-time (DT) version
of the HJBE and often used in the RL literature. The optimal
policy and the corresponding representation of its quality, i.e.
the value function (VF), can be solved from the HJBE. Owing
to the phenomenon known as “curses of dimensionality”
[9], the exact solution of the HJBE is usually difficult to
find. The approximation method is often used, e.g. iterative
methods using neural networks (NNs) [10]. The well-known
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actor-critic structure is generally used in ADPRL methods to
simultaneously approximate the optimal policy and its VF.

Meanwhile, model-based methods may be difficult to imple-
ment in real-world control problems owing to the difficulties
in mechanism modelling and the uncertainties of the dynam-
ics system, which are called “curses of modelling” [6]. In
studies on DT Markov decision process, model-free methods
in ADPRL and deep RL based on deep NNs have achieved
considerable success [11]–[13]. In the continuous-time (CT)
domain, however, the effective methods in DT systems, e.g.
action-dependent heuristic dynamic programming [14] or Q-
learning [11], are difficult to implement because a priori
knowledge and partial difference forms are required in the
CT HJBE. [15] proposed an advantage updating algorithm to
approximately compute the derivative of the VF. A model-
free estimation method of the VF was also proposed in [16];
however, an approximation or measurement of the differential
term in these two methods is needed.

To solve the aforementioned problem, [17] proposed the
concept of integral RL (IRL) and an algorithm to solve the
CT optimal control problem of linear systems. The temporal
difference (TD, [18]) estimation was introduced into the IRL
algorithms by solving the integral form of the HJBE. The
requirement that the system dynamics must be fully known
is relaxed in [17]. Under the persistence of excitation (PE,
[2]) condition, the VF of the current policy can be estimated
in a model-free manner, and the drift dynamics of the system
are not used in policy updates. However, satisfaction with the
PE requirement cannot be guaranteed during the estimation
of the parameters. [19] added the exploration signal to the
input to excite the system and removed the restriction of the
a priori knowledge of the input gain matrix. For nonlinear
problems, [20] used an exploration method that was extended
and improved in [21].

These aforementioned IRL algorithms are based on policy
iteration (PI), which is an iterative method of dynamic pro-
gramming (DP). The latest summary of the PI algorithms in
ADP field can be found in [22]. To guarantee the convergence
of the weights in NNs, the PI algorithm require an admissible
controller at the beginning of the iteration. However, it is
difficult to design one if the dynamics of the system are com-
pletely unknown. Furthermore, the weight updating method
is in the least-squares sense, bringing a DT weight controller
into the actual CT dynamics systems. [23] used the gradient
descent method to solve the integral-TD (I-TD) equation and
update the weights in NNs. The algorithm in [23] is called
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synchronous IRL, and it is a partially model-free algorithm for
solving nonlinear optimal control problems. Synchronous IRL
is based on the concept of synchronous PI [24], which can be
regraded as an extended implementation of general PI (GPI,
[3]) (the value iteration method [25], [26] is also a special
case of GPI). The initial admissible policy is not required
in synchronous IRL; however, full information of the input
gain matrix is still required. In [27], a Q-learning method for
CT linear systems was proposed. This is a completely model-
free method that is implemented by estimating the Q function
instead of the original VF.

For the optimal control problems of input-affine nonlinear
systems, the application of the IRL algorithms is limited by
several shortcomings. Focusing on these limitations, we pro-
pose a novel algorithm called synchronous integral Q-learning
as a solution. Because of the combination of the exploration
term and the synchronous learning structure, the actor and
critic NNs can simultaneously and continuously update their
weights to approximately solve the exploration-HJBE and
guarantee the closed-loop stability and the convergence of NNs
under the PE condition. The main contributions of this study
are summarised as follows:
• The proposed algorithm is a completely model-free

method that can estimate the parameters without requiring
any a priori knowledge (except for the information that
the system dynamics should be input-affine) or using an
identifier NN [28].

• The initial admissible control policy in traditional PI
methods is not needed owing to the characteristics of the
synchronous IRL algorithm.

• The hybrid system structure is avoided in this algorithm
because the weights are updated continuously.

The remainder of this paper is organized as follows. In
Section II, the infinite horizon optimal control problem in CT
input-affine nonlinear systems is formulated. The performance
index used to evaluate the quality of a controller is presented,
and the basic offline PI method and the model-free PI algo-
rithm based on IRL and exploration are also introduced in
this section. Section III provides the VF approximation design
of our method and the online weight tuning law based on
the actor-critic NNs. Then, the closed-loop stability and the
convergence of NNs are proved. Numerical simulations that
show the effectiveness of the proposed method are described
in Section IV. Finally, Section V presents the conclusions of
the study.

For the notations, we use ‖𝑋 ‖ to denote the Euclidean norm,√
𝑋>𝑋 , of the vector or the Frobenius norm,

√︁
𝑡𝑟 (𝑋>𝑋), of

matrix 𝑋 . 𝑋 ⊗𝑌 denotes the Kronecker product of matrices 𝑋
and 𝑌 . The function of time, 𝑥(𝑡), is also written as 𝑥𝑡 or 𝑥,
and the function of other variables, 𝑓 (𝑥), can be written as 𝑓

in short.

II. OPTIMAL CONTROL PROBLEM AND PI ALGORITHMS

A. Problem formulation

Let us consider a CT input-affine nonlinear system:

¤𝑥 = 𝑓 (𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡) 𝑥(0) = b, (1)

where 𝑥 ∈ R𝑛 and 𝑢 ∈ R𝑚 are the fully observable state and
the control input, respectively. b is the initial state of the
system. Let us assume that 𝑓 (𝑥) + 𝑔(𝑥)𝑢 is Lipschitz on
compact set Ω and satisfies 𝑓 (0) = 0.

We define the integral form of the infinite horizon perfor-
mance index as

𝐽 (𝑥, 𝑢) =
∫ ∞

0
𝑟 (𝑥, 𝑢)𝑑𝜏, (2)

where 𝑟 (𝑥, 𝑢) = 𝑆(𝑥) + 𝑢>𝑅𝑢 with 𝑆(𝑥) > 0 and 𝑅 > 0. In
this study, our goal is to design an optimal control law 𝑢∗ that
stabilizes the system at 𝑥 = 0 and minimizes the index (2).
We use the following VF to represent the quality of a policy:

𝑉 ` (𝑥) = 𝐽 (𝑥, 𝑢) |𝑢=` (𝑥) , 𝑉 ` (0) = 0, (3)

where `(𝑥) is a feedback control law with `(0) = 0, and in
the remainder of the paper, it is also called policy. With the
admissibility of the policy, the VF of the policy is well-defined.

Definition 1: ( [10], Admissible control) Policy `(𝑥) is said
to be admissible on Ω, denoted by ` ∈ A(Ω), iff the following
are satisfied:

1) This policy stabilizes (1) on Ω, i.e.

lim
𝑡→∞
( 𝑓 + 𝑔`)𝑑𝜏 = 0. (4)

2) 𝑉 ` (b) is bounded for any state b ∈ Ω.
Here, Ω and A(Ω) are the admissible region of (1) and the

admissible control set, respectively.
Let us assume that the admissible control set A(Ω) of

system (1) is not empty and 𝑉 ` ∈ C1 (Ω). According to
Definition 1, it is easy to conclude that there exists an optimal
control law, `∗ (𝑥), such that

𝑉 `∗ (b) = min
` (𝑥) ∈A(Ω)

∫ ∞

0
𝑟 (𝑥(𝜏), 𝑢(𝜏))𝑑𝜏

≤ 𝑉 ` (b),∀b ∈ Ω.

It can be seen clearly that the optimal VF satisfies 𝑉∗ (b) =
𝑉 `∗ (b). In Section II-B, we introduce several methods for
solving the optimal VF. Without special instructions, the
problem discussed in this paper is limited to a compact set,
𝑥 ∈ Ω.

B. HJBE and PI
According to the definition of the VF, the infinitesimal

version of (3) can be obtained as

0 = 𝑟 (𝑥, `(𝑥)) + (∇𝑉 `)> ( 𝑓 (𝑥) + 𝑔(𝑥)`(𝑥)), (5)

where ∇𝑉 ` denotes the gradient of 𝑉 ` and (5) is called the
Lyapunov equation of the system (1). From (3) and (5), we
can infer that

𝑉 ` (𝑥) ≥ 0, (6)

¤𝑉 ` (𝑥) = −𝑟 (𝑥, `) ≤ 0. (7)

Here, 𝑉 ` (𝑥) is regarded as the Lyapunov function of system
(1). The optimal control problem can be converted to an op-
timization problem under the constraint of the state equation.
We define the Hamiltonian as follows:

𝐻 (𝑥, 𝑢,∇𝑉 `) = 𝑟 (𝑥, 𝑢) +
(
∇𝑉 `)> ( 𝑓 (𝑥) + 𝑔(𝑥)𝑢

)
, (8)
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Algorithm 1 Offline PI
1. Initialization
Given the initial admissible policy, `0 (𝑥), set 𝑖 ← 0.
2. Policy Evaluation
Solve the Lyapunov equation according to `𝑖 (𝑥):

𝐻 (𝑥, `𝑖 (𝑥),∇𝑉 `𝑖 ) = 0
𝑉∗ (0) = 0.

(13)

3. Policy Improvement
Update the control policy

`𝑖+1 = arg min
`∈A(Ω)

𝐻 (𝑥, `,∇𝑉 `𝑖 ). (14)

For input-affine system (1), this policy can be explicitly
represented as

`𝑖+1 = −1
2
𝑅−1𝑔> (𝑥)∇𝑉 `𝑖 (𝑥). (15)

4. Set 𝑖 ← 𝑖 + 1.
5. Repeat step 2–4 until convergence.

where ∇𝑉 ` is also the Lagrange multiplier for this problem.
For the optimal policy and its VF, the following Lyapunov
equation is satisfied:

𝐻 (𝑥, `∗,∇𝑉 `∗ ) = 0. (9)

The optimal policy can be obtained by minimizing the
Hamiltonian:

`∗ = arg min
`∈A(Ω)

𝐻 (𝑥, `,∇𝑉 `∗ ). (10)

Owing to the input-affine characteristic of system (1), the
optimal policy can be explicitly given as

`∗ = −1
2
𝑅−1𝑔> (𝑥)∇𝑉 `∗ (𝑥). (11)

Substituting (9) into (8), we can obtain the well-known
HJBE:

0 = 𝑆(𝑥) + (∇𝑉 `∗ )> (𝑥) 𝑓 (𝑥)

− 1
4
(∇𝑉 `∗ )> (𝑥)𝑔(𝑥)𝑅−1𝑔> (𝑥)∇𝑉 `∗ (𝑥)

𝑉∗ (0) = 0.

(12)

With the linear system dynamics and the quadratic form of the
performance index, i.e. the linear quadratic regulator (LQR)
problem, the HJBE becomes the Riccati equation, which is
relatively easy to solve. However, in the general nonlinear
case, it is usually extremely difficult or even not possible to
find the solution for the HJBE.

PI is a DP algorithm used to iteratively solve the optimal
control problem by alternately taking two steps, namely, policy
evaluation and policy improvement. The procedure for offline
PI is shown in Algorithm II-B.

Remark 1: In the optimal control problem, the convergence
of the PI can be guaranteed if the algorithm starts with an
initial admissible policy. Under this condition, the convergence
to the optimal policy and VF has been proven. See [10] for
the detailed proof.

With regard to the LQR problem of linear time-invariant

systems, Algorithm II-B becomes the Kleinman algorithm
[29]. In the case of high–order and complex nonlinear systems,
the PI algorithm is still difficult to implement. The solution
to (13) is often approximated by NNs [10], Galerkin approx-
imation [30], and other approximation methods. The system
dynamics need to be fully known in this algorithm.

C. IRL with explorations

[17] proposed an algorithm framework called the IRL. By
integrating (7) into time interval [𝑡 − 𝑇, 𝑡], we can obtain the
I-TD equation as

𝑉 `𝑖 (𝑥(𝑡 − 𝑇)) =
∫ 𝑡

𝑡−𝑇
𝑟 (𝑥, `𝑖)𝑑𝜏 +𝑉 `𝑖 (𝑥(𝑡)). (16)

Note that there is no a priori knowledge of the system in
(16); the first term on the right-hand side of this equation
can be collected online. For sufficient groups of integral data,
the critic NN and the least-squares method can be used to
approximate the computation of the solution to (13) and finish
the policy evaluation. The policy can be updated by using (15),
and thus, the requirement of the known system drift dynamics
𝑓 (𝑥) is dismissed.

Unlike in offline PI, the PE condition is required to guar-
antee the uniqueness of ∇𝑉 `𝑖 . However, it cannot re-excite
the system when the state has been stabilized at the origin.
Thus, the convergence to the optimal solution may not be
guaranteed in real-world implementations. [20] improved the
policy evaluation step and solved the input-affine optimal
control problem. By adding a bounded piecewise continuous
nonzero probing signal 𝑒𝜏 , we can transform (1) into

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥) (𝑢 + 𝑒). (17)

The online Lyapunov equation (16) can be obtained as follows
after adding the term with 𝑒𝜏 :

𝑉 `𝑖 (𝑥(𝑡 − 𝑇)) +
∫ 𝑡

𝑡−𝑇
(∇𝑉 `𝑖 )>𝑔(𝑥)𝑒𝜏𝑑𝜏

=

∫ 𝑡

𝑡−𝑇
𝑟 (𝑥, `𝑖)𝑑𝜏 +𝑉 `𝑖 (𝑥(𝑡)).

(18)

Remark 2: Compared with the method in [17], this method
does not require additional information on the system dy-
namics. The designed signal 𝑒𝜏 is added to ensure that the
PE condition is satisfied without generating an estimation
bias. The concept of the probing signal is equivalent to the
exploration [3] in the RL literature.

By further substituting (15) into (18), we can obtain the
following equation:

𝑉 `𝑖 (𝑥(𝑡 − 𝑇)) −
∫ 𝑡

𝑡−𝑇
2`>𝑖+1𝑅𝑒𝜏𝑑𝜏

=

∫ 𝑡

𝑡−𝑇
𝑟 (𝑥, `𝑖)𝑑𝜏 +𝑉 `𝑖 (𝑥(𝑡)).

(19)

Note that (19) can simultaneously evaluate and improve the
present policy. During the iteration, no a priori knowledge of
the system is required. If 𝑒𝜏 ≡ 0, (19) is equivalent to (13).
The exploration signal can both guarantee the PE condition
and relax the requirement of 𝑔(𝑥), making it a completely
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model-free algorithm. However, two issues exist in this algo-
rithm:

• Because of the nature of PI algorithms, both (18) and
(19) still require an initial admissible policy; this might
be difficult to implement when the system dynamics are
partially or even completely unknown.

• The algorithm updates the VF and the policy based on the
batch or recursive least-squares method, which brings a
DT weight tuning controller to the CT system. The hybrid
system structure increases the burden on the computing
unit.

In Section III, we present a novel algorithm that combines
the concepts of IRL, exploration, and synchronous RL to solve
the aforementioned issues. We call this algorithm synchronous
integral Q-learning because it is a GPI implementation of the
algorithm in [21].

III. SYNCHRONOUS INTEGRAL REINFORCEMENT
LEARNING BASED ON EXPLORATIONS

A. Synchronous integral Q-learning

Eq. (19) shows that the optimal policy and its corresponding
VF satisfy

𝑉 `∗ (𝑥(𝑡 − 𝑇)) −
∫ 𝑡

𝑡−𝑇
2`∗>𝑅𝑒𝜏𝑑𝜏

=

∫ 𝑡

𝑡−𝑇
𝑟 (𝑥, `∗)𝑑𝜏 +𝑉 `∗ (𝑥(𝑡)).

(20)

The exploration-HJBE can be approximately solved using
the actor-critic NNs. First, we consider the VF approximation.
We assume that the optimal VF can be denoted as an NN:

𝑉 `∗ (𝑥) = 𝑤∗>𝑐 𝜙𝑐 (𝑥) + Y𝑐 (𝑥), (21)

where 𝜙𝑐 : R𝑛 → R𝑁𝑐 , 𝑤∗𝑐 and Y𝑐 are the activation function,
weight and reconstruction error of the NN, respectively. 𝑁𝑐

is the number of hidden layers in the critic NN. Because Y𝑐
is bounded on a compact set, the activation function can be
selected properly to create a complete set of basis functions
such that 𝑉∗ (𝑥) and its gradient

∇𝑉 `∗ = ∇𝜙>𝑐𝑤∗𝑐 + ∇Y𝑐 (22)

are uniformly approximated [31]. According to the Weierstrass
high order approximation theorem [10], such a set of basis
functions exists if the VF is sufficiently smooth. Moreover, Y𝑐
and its gradient ∇Y𝑐 are bounded when 𝑁𝑐 is a constant and
Y𝑐 → 0 uniformly when 𝑁𝑐 → ∞.

Similarly, the optimal policy can be approximated by an
actor NN:

`∗ (𝑥) = −1
2
𝑅−1𝑔> (𝑥)∇𝜙>𝑐 (𝑥)𝑤∗𝑐 −

1
2
𝑅−1𝑔> (𝑥)∇Y𝑐

= 𝑤∗>𝑎 𝜙𝑎 (𝑥) + Y𝑎 (𝑥),
(23)

where 𝜙𝑎 : R𝑛 → R𝑁𝑎 , 𝑤∗𝑎 and Y𝑎 are similar to the
parameters in the critic NN, which can also enable the actor

NN uniformly approximate the optimal policy. Using the actor
critic NNs, we can define the approximation error of (20) as∫ 𝑡

𝑡−𝑇
(𝑆(𝑥) + 𝑢∗>𝑅𝑢∗)𝑑𝜏

+ 𝑤∗>𝑐 𝜙𝑐 (𝑥(𝑡)) − 𝑤∗>𝑐 𝜙𝑐 (𝑥(𝑡 − 𝑇))

+ col{𝑤∗𝑎}>
∫ 𝑡

𝑡−𝑇
2𝜙𝑎 (𝑥) ⊗ (𝑅𝑒𝜏)𝑑𝜏 ≡ Y𝐵 .

(24)

By defining the integral reinforcement

𝜌(𝑥, 𝑢) =
∫ 𝑡

𝑡−𝑇
𝑟 (𝑥𝜏 , 𝑢𝜏)𝑑𝜏, (25)

we can write (24) as

Y𝐵 − 𝜌 = 𝑊∗>𝛿, (26)

where 𝑊∗ = [𝑤∗>𝑐 , col{𝑤∗𝑎}>]> and

𝛿 = [𝛿>𝑐 , 𝛿>𝑎 ]>

= col
{
𝜙𝑐 (𝑥) |𝑡𝑡−𝑇 ,

∫ 𝑡

𝑡−𝑇
2𝜙𝑎 (𝑥) ⊗ (𝑅𝑒𝜏)𝑑𝜏

}
.

Under the assumption that 𝑓 (𝑥) + 𝑔(𝑥)𝑢 is Lipschitz, the
residual error Y𝐵 is bounded on a compact set.

Remark 3: When 𝑁𝑐 , 𝑁𝑎 → ∞, Y𝐵 → 0 uniformly.

B. Actor-critic networks and the weight tuning law

We use the critic and actor NNs to approximate the optimal
VF and policy, respectively, according to (24), and we define
the approximate exploration-HJBE as∫ 𝑡

𝑡−𝑇

(
− 𝑆(𝑥) − 𝜙>𝑎 (𝑥)𝑤∗𝑎𝑅𝑤∗>𝑎 𝜙𝑎 (𝑥)+Y𝐻𝐽𝐵 (𝑥)

)
𝑑𝜏

= 𝑊∗>𝛿,

(27)

where Y𝐻𝐽𝐵 (𝑥) is the approximation error arising from the
NNs. Because the optimal weights 𝑤∗𝑐 and 𝑤∗𝑎 are unknown,
a parameter estimation method is required. The estimation of
the VF can be obtained as

�̂� (𝑥) = �̂�>𝑐 𝜙𝑐 (𝑥), (28)

and the estimation of the policy is

ˆ̀(𝑥) = �̂�>𝑎𝜙𝑎 (𝑥), (29)

where �̂�𝑐 and �̂�𝑎 are the estimations of the parameters. The
approximation Bellman error can be obtained from (24) as

𝐸 = �̂�>𝛿 + 𝜌, (30)

where �̂� = [�̂�>𝑐 , col{�̂�𝑎}>]>. To minimize the squared
residual error

𝐾 =
1
2
𝐸>𝐸, (31)

we can use the gradient-based methods to update the weights
of both the two NNs. By using the normalized gradient descent
algorithm [2] and (27), we can obtain the weights tuning law
as

¤̂𝑊 = −𝛼 𝜕𝐾
𝜕�̂�

= −𝛼 𝛿

(1 + 𝛿>𝛿)2
𝐸, (32)



PREPRINT SUBMITTED TO ARXIV.ORG 5

Fig. 1. Control scheme of synchronous integral Q-learning algorithm.

where 𝛼 > 0 is the learning rate that determines the conver-
gence speed of the parameters. The entire control scheme of
the algorithm is shown in Fig. 1.

We define 𝛿 = 𝛿/(1 + 𝛿>𝛿). Before analyzing the conver-
gence of the parameters, we need to review the PE conditions
in this section.

Definition 2: ( [2], PE) At any given time, signal 𝛿 is said
to be persistently excited over interval [𝑡 − 𝑇, 𝑡] if there exist
constants 𝛽1 > 0 and 𝛽2 > 0, such that

𝛽1𝐼 ≤
∫ 𝑡

𝑡−𝑇
𝛿(𝜏)𝛿> (𝜏)𝑑𝜏 ≤ 𝛽2𝐼, (33)

The PE condition is widely used in adaptive control and
system identification methods to guarantee the convergence of
the parameters.

Defining the estimation error of the weights as �̃� := 𝑊∗−�̂� ,
we can express the error dynamics as

¤̃𝑊 = −𝛼𝛿 · 𝛿>�̃� + 𝛼𝛿 Y𝐵
𝑚𝑠

𝑦 = 𝛿
>
�̃�

, (34)

where 𝑚𝑠 = 1+𝛿>𝛿. According to (34) and (33), we can obtain
the following lemma.

Lemma 1: Assume that the control policy is admissible and
that 𝛿 is persistently excited for all 𝑡 > 0. If the residual error
satisfies ‖Y𝐵 ‖ ≤ Ymax, the norm of the estimation error ‖�̃� ‖
converges exponentially to a residual set:

�̃� ≤
√
𝛽2𝑇

𝛽1
{[1 + [𝛽2𝛼]Ymax}, (35)

where [ is a positive constant of the order of 1.
Proof. See [24].

Lemma 1 proves that, under the admissible control condi-
tion, the weights can converge exponentially to a neighbor-
hood of the optimal weights when the reconstruction error
exists. This is important for evaluating the performance of the
algorithm.

We assume the following.
Assumption 1: For a given compact set Ω ∈ R𝑛:
a. 𝑓 (·) is Lipschitz and 𝑔(·) is bounded by a constant

‖ 𝑓 (𝑥)‖ < 𝑏 𝑓 ‖𝑥‖, ‖𝑔(𝑥)‖ ≤ 𝑏𝑔 .

b. The reconstruction error of the NNs and the gradient of
the critic NN error are bounded so that

‖Y𝑐 ‖ < 𝑏Y𝑐 , ‖Y𝑐 ‖ < 𝑏Y𝑐 ,
‖∇Y𝑐 ‖ < 𝑏Y𝑐𝑥 .

c. The activation functions of the NNs and the gradients of
the critic NN activation functions are bounded so that

‖𝜙𝑐 (𝑥)‖ < 𝑏𝜙𝑐
, ‖𝜙𝑎 (𝑥)‖ < 𝑏𝜙𝑎

,

‖∇𝜙𝑐 (𝑥)‖ < 𝑏𝜙𝑐𝑥
.

d. The optimal weights of the NNs are bounded so that

‖𝑊∗‖ < 𝑊∗max.

Theorem 1: Let all the assumptions in this paper hold, and
let the tuning law and the parameters be selected as detailed
in the proof. Then, there exists a number 𝑁0 such that, for the
number of hidden layer units of both the two NNs 𝑁𝑐 , 𝑁𝑎 >

𝑁0, the closed loop system state and the NN approximation
error �̃� are uniformly ultimately bounded (UUB).
Proof. See Appendix A.

C. Implementation of the algorithm for LQR problems
Let us consider the widely studied CT LQR problem, i.e.

𝑓 (𝑥) = 𝐴𝑥, 𝑔(𝑥) = 𝐵, where 𝐴 and 𝐵 are matrices that do not
depend on 𝑥. Specially, we define the performance index as
𝐽 = 𝑥>𝑆𝑥 + 𝑢>𝑅𝑢 with 𝑆 > 0. According to the basic LQR
theory, the optimal VF is quadratic to 𝑥 and the optimal policy
is the linear feedback control of 𝑥

𝑉∗ = 𝑤∗>𝑐 𝜙𝑐 (𝑥) = 𝑥>𝑃∗𝑥,

`∗ = 𝑤∗>𝑎 𝑥 = −𝑅−1𝐵>𝑃∗𝑥,

where 𝜙𝑐 (𝑥) = 𝑥 ⊗ 𝑥. The exploration-HJBE (20) in the LQR
problem becomes∫ 𝑡

𝑡−𝑇
(−𝑥>𝑆𝑥 − 𝑥>𝑤∗𝑎𝑅𝑤∗>𝑎 𝑥)𝑑𝜏 = 𝑊∗>𝛿. (36)

Note that the approximation error Y𝐻𝐽𝐵 (𝑥) does not occur in
(36). Similarly, the approximation NNs can be written as

�̂� (𝑥) = �̂�>𝑐 (𝑥 ⊗ 𝑥), ˆ̀(𝑥) = �̂�>𝑎𝑥.

Then, using the weight tuning law (32), we can solve the
LQR problem online. The policy is also globally optimal for
linear systems, and the approximation error is guaranteed to
converge exponentially to zero owing to the non-existence of
the reconstruction error of the NNs.

Remark 4: For Linear systems, the exploration can be
chosen as a sum of sinusoidal signals that have sufficient
richness (the number of the frequency components must be
larger than or equal to the number of estimated parameters)
to satisfy the PE condition. However, in nonlinear problems,
no verifiable method exists to ensure that [23].

Remark 5: After the exploration signal is added, both the
actor and the critic NN can update their weights by solving the
same equation and the state-value function is approximated in
this algorithm instead of directly estimating the Q function.
Thus, the proposed method is different from the Q-learning
approaches in [27], [32], [33].
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IV. NUMERICAL SIMULATIONS

To show the effectiveness of the proposed method, we set a
second order nonlinear system as a benchmark, which has been
used in several studies [21], [24], [28]. The system dynamics
are as follows:

𝑓 (𝑥) =
[

−𝑥1 + 𝑥2
−0.5𝑥1 − 0.5𝑥2 (1 − (cos(2𝑥1) + 2)2)

]
, (37)

𝑔(𝑥) =
[

0
cos(2𝑥1) + 2

]
. (38)

The cost function is selected as

𝑆(𝑥) = 𝑥2
1 + 𝑥

2
2, 𝑅 = 1.

According to the converse HJB approach [34], the optimal
VF and policy can be respectively obtained as

𝑉∗ (𝑥) = 1
2
𝑥2

1 + 𝑥
2
2 (39)

and
`∗ (𝑥) = −(cos(2𝑥1) + 2)𝑥2. (40)

Here, we present two cases of this example to show the
approximation performance of the two NNs.

A. Case 1: exact parameterization

Now, let us assume that the VF and the policy are parame-
terized exactly. In this case, the algorithm is used to estimate
the parameters in a grey-box fashion. We choose the activation
function as follows:

𝜙𝑐 (𝑥) = [𝑥2
1, 𝑥1𝑥2, 𝑥

2
2]
>,

𝜙𝑎 (𝑥) = [𝑥1 cos(2𝑥1), 𝑥1, 𝑥2 cos(2𝑥1), 𝑥2]>.
The optimal weights can be obtained from (39) and(40) and
are

𝑤∗𝑐 = [0.5, 0, 1]>,
𝑤∗𝑎 = [0, 0,−1,−2]>.

(41)

We choose the initial state as 𝑥(0) = [0, 0]> and the initial
weights of the NNs as �̂�𝑐 (0) = [1, 1, 1]> and �̂�𝑎 (0) =

[0.5,−0.5− 0.5,−0.5]>. The learning rate is set as 𝛼 = 1000.
The design of the exploration signal determines the level of

excitation, which also affects the performance of the algorithm.
In this case we choose the exploration signal as

𝑒(𝑡) =
100∑︁
𝑘=1

sin(𝜔𝑘 𝑡),

where 𝜔𝑘 is uniformly sampled from [−50, 50]. The explo-
ration is added to 𝑡 ∈ [0, 90]. After 90 s, the exploration is
ended and the simulation stops at 𝑡 𝑓 = 100 s. The length of
the sampling interval is 𝑇 = 0.025 s. The trajectories of 𝑥1
and 𝑥2 are shown in Fig. 2. After the exploration is stopped,
the state can be stabilized near the origin.

As shown in Figs. 3 and 4, all the weights in the critic
and actor NNs are close to the optimal value. After 100 s of
training, the weights of the two NNs converge to

�̂�𝑐 (𝑡 𝑓 ) = [0.5000,−0.0001, 1.0000]>,
�̂�𝑎 (𝑡 𝑓 ) = [0.0000, 0.0001,−1.0000,−2.0000]>,
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Fig. 2. Case 1: trajectories of (a) 𝑥1 and (b) 𝑥2.
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Fig. 3. Case 1: evolution of the critic weights.

which are extremely close to the optimal value (41). Figs.
5 and 6 show the approximation errors of the critic and
actor NNs, respectively. In the region of 𝑥1, 𝑥2 ∈ [−1, 1], the
maximum approximation error of the VF is approximately
10−4 and that of the policy is approximately 5×10−5, indicating
the excellent approximation performance of the trained NN.

B. Case 2: fully unknown dynamics

In case 1, the policy is assumed to satisfy the condition
of the exact parameterization, which cannot be generalized to
the case in which the information on the system is completely
unknown. In case 2, we choose the following activation
function to approximate the optimal policy:

𝜙𝑎 (𝑥) = [𝑥1, 𝑥
2
1, ..., 𝑥

5
1, 𝑥2, 𝑥1𝑥2, ..., 𝑥

4
1𝑥2]>.

In the neighborhood of the origin, the optimal weight of the
policy can be obtained as

𝜙𝑎 (𝑥) = [0, 0, 0, 0, 0,−3, 0, 2, 0,−2/3]>
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Fig. 4. Case 1: evolution of the actor weights.

Fig. 5. Case 1: approximation error of the critic network.

because the Taylor expansion of cos(2𝑥1) + 2 at 𝑥1 = 0 is

cos(2𝑥1) + 2 = 3 − 2𝑥2
1 +

2
3
𝑥4

1 + O(𝑥
6
1).

After the training, the weights converge to

�̂�𝑐 (𝑡 𝑓 ) = [0.5007, 0.0011, 0.9997]>,
�̂�𝑎 (𝑡 𝑓 ) = [−0.0021,−0.0007, 0.0040, 0.0016,−0.0001,
− 3.0011, 0.0023, 1.9986, 0.0040,−0.5758]>.

The approximation errors of the optimal VF and policy are
shown in Figs. 7 and 8, respectively. The errors of both the
NNs are less than 10−2.

Remark 6: Because of the existence of the reconstruction
error and the different structures of the actor NN between case
1 and case 2, the results of case 2 are worse but can show the
convergence of the algorithm.

Remark 7: Compared with similar methods, the algorithm
proposed in this paper does not require an extra identifier NN
[28]. In addition, case 1 shows that our method obtains a

Fig. 6. Case 1: approximation error of the actor network.

Fig. 7. Case 2: approximation error of the critic network.

Fig. 8. Case 2: approximation error of the actor network.
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smaller approximation error than does the method in [24] for
the same training time.

V. CONCLUSIONS

In this paper, we presented a novel algorithm using the
concepts of IRL and synchronous RL to solve the CT optimal
control problems. It does not require any a priori knowledge
or an identifier NN. Moreover, an admissible control is not
needed for its implementation. The design of the exploration to
achieve safe learning is a meaningful future research direction.
In [21], the invariant exploration method is implemented in the
PI algorithm; however, it has not been proven to guarantee
stability in the GPI method. The extension of our method to
multi-agent or nonaffine nonlinear control problems is also
worth investigating. In addition, it is important to explore the
application of the proposed method to real-world high-order
systems, e.g. in designing the controller for robots and aircraft.

APPENDIX
PROOF OF THEOREM 1

We define the approximation errors �̃�𝑐 = 𝑤∗𝑐− �̂�𝑐 and �̃�𝑎 =

𝑤∗𝑎 − �̂�𝑎 and consider the Lyapunov function,

𝐿 = 𝑉∗ (𝑥) + 1
2
�̃�>�̃�, 𝑡 ≥ 0. (42)

The derivative of (42) to time 𝑡 is

¤𝐿 = ¤𝑉∗ (𝑥) + 1
2
�̃�> ¤̃𝑊, (43)

Substituting the error dynamics (34), we can obtain the deriva-
tive as

¤𝐿 = ∇𝑉∗> (𝑥) ( 𝑓 (𝑥) + 𝑔(𝑥)�̂�>𝑎𝜙𝑎 (𝑥) + 𝑒) − 𝛼�̃�>𝛿 · 𝛿
>
�̃� . (44)

Eq. (44) can be written as two terms, i.e. ¤𝐿 = 𝐿1+𝐿2, where

𝐿1 = ∇𝑉∗> (𝑥)
(
𝑓 (𝑥) + 𝑔(𝑥)�̂�>𝑎𝜙𝑎 (𝑥) + 𝑒

)
, (45)

𝐿2 = −𝛼�̃�>𝛿 · 𝛿>�̃� . (46)

The first term is

𝐿1 = 𝑤∗>𝑐
(
∇𝜙𝑐 (𝑥) 𝑓 (𝑥) + ∇𝜙𝑐 (𝑥)𝑔(𝑥)𝑤∗>𝑎 𝜙𝑎 (𝑥))

−∇𝜙𝑐 (𝑥)𝑔(𝑥)�̃�>𝑎𝜙𝑎 (𝑥) + ∇𝜙𝑐 (𝑥)𝑔(𝑥)𝑒
)
+ Y1 (𝑥),

(47)

where

Y1 (𝑥) = ∇Y>𝑐
(
𝑓 (𝑥) + 𝑔(𝑥)𝑤∗>𝑎 𝜙𝑎 (𝑥) + 𝑔(𝑥)𝑒

−𝑔(𝑥)�̃�>𝑎𝜙𝑎 (𝑥)
)
.

(48)

By substituting the exploration-HJBE (20), we can obtain

𝐿1 =
(
−𝑆(𝑥) − 𝜙>𝑎𝑤∗𝑎𝑅𝑤∗>𝑎 𝜙𝑎 + Y𝐻𝐽𝐵

−𝑤∗>𝑐 ∇𝜙𝑐 (𝑥)𝑔(𝑥)�̃�>𝑎𝜙𝑎 (𝑥)
)
+ Y1 (𝑥).

(49)

Because 𝑆(𝑥) > 0, there exists matrix 𝑞 on Ω such that
𝑥>𝑞𝑥 < 𝑆(𝑥). Substituting 𝑞 and the relationship between the
two NNs, we can write the first term of ¤𝐿 as

𝐿1 ≤
(
−𝑥>𝑞𝑥 − 𝜙>𝑎𝑤∗𝑎𝑅𝑤∗>𝑎 𝜙𝑎 + Y𝐻𝐽𝐵

+(2𝜙>𝑎𝑤∗𝑎𝑅 + 2Y>𝑎𝑅 + ∇Y>𝑐 𝑔(𝑥))�̃�>𝑎𝜙𝑎
)
+ Y1 (𝑥).

(50)

Using Young’s inequality, we can express (50) as

𝐿1 ≤ − 𝜎min (𝑞)‖𝑥‖2 + 𝜙>𝑎 �̃�𝑎𝑅�̃�
>
𝑎𝜙𝑎 + Y𝐻𝐽𝐵

+ (2Y>𝑎𝑅 + ∇Y>𝑐 𝑔(𝑥))�̃�>𝑎𝜙𝑎 + Y1 (𝑥).
(51)

We select proper 𝑁0 such that sup𝑥∈Ω ‖Y𝐻𝐽𝐵 ‖ < Y. Ac-
cording to (48) and Assumption 1, we can obtain

𝐿1 ≤ − 𝜎min (𝑞)‖𝑥‖2 + 𝜎max (𝑅)‖�̃�>𝑎𝜙𝑎‖2

+ 2𝑏Y𝑎𝜎max (𝑅)‖�̃�>𝑎𝜙𝑎‖ + Y
+ 𝑏Y𝑐

(
𝑏 𝑓 ‖𝑥‖ + 𝑏𝑔𝑏𝜙𝑎

‖𝑤∗𝑎‖ + 𝑏𝑔‖𝑒‖
)
.

(52)

By using the characteristics of the norm, we can write (52)
as

𝐿1 ≤ − 𝜎min (𝑞)‖𝑥‖2 + 𝜎max (𝑅)𝑏2
𝜙𝑎
‖�̃� ‖2

+ 2𝑏Y𝑎𝜎max (𝑅)𝑏𝜙𝑎
‖�̃� ‖ + 𝑏Y𝑐𝑏 𝑓 ‖𝑥‖

+ Y + 𝑏Y𝑐
(
𝑏𝑔𝑏𝜙𝑎

‖𝑤∗𝑎‖ + 𝑏𝑔‖𝑒‖
)
.

(53)

According to the proof of Lemma 1, the second term
satisfies

𝐿2 ≤ − 𝛼
wwww 𝛿

𝑚𝑠

wwww2
‖�̃� ‖2 + 𝛼

wwww 𝛿

𝑚𝑠

wwwwwwww Y2
𝑚𝑠

wwww ‖�̃� ‖, (54)

where

Y2 (𝑥) = ∇Y>𝑐
(
𝑓 (𝑥) + 𝑔(𝑥)𝑤∗>𝑎 𝜙𝑎 (𝑥) + 𝑔(𝑥)𝑒

)
. (55)

We add (53) and (54) and then substitute (55) and inequalitywww 𝛿

𝑚2
𝑠

www < 1 so that

¤𝐿 ≤ − 𝜎min (𝑞)‖𝑥‖2

+
(
𝜎max (𝑅)𝑏2

𝜙𝑎
− 𝛼

wwww 𝛿

𝑚𝑠

wwww2
)
‖�̃� ‖2

+ 𝑏Y𝑐𝑥 𝑏 𝑓 ‖𝑥‖‖�̃� ‖
+ 𝑏Y𝑐𝑏 𝑓 ‖𝑥‖
+

(
2𝑏Y𝑎𝜎max (𝑅)𝑏𝜙𝑎

+ 𝛼𝑏Y𝑐𝑥 𝑏𝑔 (𝑏𝜙𝑎
‖𝑤∗𝑎‖ + ‖𝑒‖)

)
‖�̃� ‖

+ Y + 𝑏Y𝑐
(
𝑏𝑔𝑏𝜙𝑎

‖𝑤∗𝑎‖ + 𝑏𝑔‖𝑒‖
)
.

(56)
Let

𝑎 = 𝜎max (𝑅)𝑏2
𝜙𝑎
− 𝛼

wwww 𝛿

𝑚𝑠

wwww2
,

𝑐 = 𝑏Y𝑐𝑏𝑔
(
𝑏𝜙𝑎
‖𝑤∗𝑎‖ + ‖𝑒‖

)
,

and

𝑑 =

[
𝑏Y𝑐𝑏 𝑓

2𝑏Y𝑎𝜎max (𝑅)𝑏𝜙𝑎
+ 𝛼𝑏Y𝑐𝑥 𝑏𝑔 (𝑏𝜙𝑎

‖𝑤∗𝑎‖ + ‖𝑒‖)

]
.

�̃� =

[
‖𝑥‖
‖�̃� ‖

]
,

Then, (56) becomes

¤𝐿 ≤ − �̃�>𝑀�̃� + 𝑑> �̃� + 𝑐 + Y, (57)

where

𝑀 =

[
𝜎max (𝑞) −

𝑏Y𝑐𝑥 𝑏 𝑓

2
− 𝑏Y𝑐𝑥 𝑏 𝑓

2 −𝑎

]
.

To let 𝑀 be a positive definite matrix, we choose a suffi-
ciently large learning rate 𝛼 if ‖𝛿‖ ≠ 0. The norm of 𝛿 can
easily maintain a non-zero value under the PE assumption and



PREPRINT SUBMITTED TO ARXIV.ORG 9

a proper value of 𝑇 during the learning phase.

𝑑𝑒𝑡 (𝑀) = −𝑎𝜎max (𝑞) −
𝑏2
Y𝑐𝑥
𝑏2
𝑓

4
> 0. (58)

Then (57) becomes

¤𝐿 ≤ − 𝜎min (𝑀)‖ �̃� ‖2 + ‖𝑑‖‖ �̃� ‖ + 𝑐 + Y, (59)

According to (59), the Lyapunov function is negative if

‖ �̃� ‖ > ‖𝑑‖
2𝜎min (𝑀)

+
√︄

‖𝑑‖2
4𝜎2

min (𝑀)
+ 𝑐 + Y
𝜎min (𝑀)

≡ 𝐵𝑍 . (60)

The inequality shows that ¤𝐿 is negative if 𝐿 exceeds a certain
bound. Then, according to the Lyapunov analysis, the state
and the weights are UUB. Under the ideal condition, i.e.
𝑁𝑐 , 𝑁𝑎 → ∞ or both the optimal VF and the corresponding
policy are under the exact parameterization assumption, and
the state and the approximation error are stabilized at the
origin.

This completes the proof.
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