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Abstract

Automatic recognition of facial images showing erotic expressions can help
to understand our social interaction and to detect non-appropriate images
even when there is no nakedness present in them. This paper contemplates,
for the first time, to exploit facial cues applied to automatic Sexual Facial
Expression Recognition (SFER). With this goal, we introduce a new dataset
named Sexual Expression and Activity Faces (SEA-Faces-30k) for SFER,
which contains 30k manually labelled images under three categories: erotic,
suggestive-erotic and non-erotic. Deep Convolutional Neural Networks re-
quire large-scale annotated image datasets with diversity and variations to
be properly trained. Unfortunately, gathering such massive amount of data is
not feasible in this area. Therefore, we present a new semi-supervised GAN
framework named Triple-BigGAN, which learns a generative model and a
classifier simultaneously. It learns both tasks in an end-to-end fashion while
using unlabelled or partially labelled data. The Triple-BigGAN framework
shows promising classification performance for the SFER task (i.e., 93.59%)
and other three benchmark datasets, i.e., MNIST, CIFAR-10 and SVHN.
Next, we evaluated the quality of samples generated by Triple-BigGAN with
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a resolution of 256 x 256 pixels using Inception Score (IS) and Frechet Incep-
tion Distance (FID). Our approach obtained the best FID (i.e., 19.94%) and
IS (i.e., 97.98%) scores on SEA-Faces-30k dataset. Further, we empirically
demonstrated that synthetic erotic faces images generated by Triple-BigGAN
could also help in improving the classification performance of deep supervised
networks.

Keywords: Facial Expressions, Pornography, Not Safe For Work (NSFW),
Obscene Image Retrieval, Deep Learning, Emotion Detection

1. Introduction

Automatic facial expression is an active field with multiple applications,
from video surveillance to emotion-based photo capturing and tagging [70,
4, 1, 80, 23|. In the research related to facial expression recognition, the
existing annotated datasets and state-of-the-art methods mostly cover the six
discrete emotions proposed by [22]: anger, disgust, fear, happiness, sadness,
and surprise. Ekman and Friesen stated that these emotions are shared across
different cultures and people. However, subsequent studies argued that these
six basic emotions are culture-specific and, thus, not universal [34].

Nowadays, in digital forensic, Law Enforcement Agencies (LEAs) use
Multimedia-Forensic Analysis Tools (M-FAT) and Facial-Forensic Analysis
Tools (F-FAT) to deal with the growing volume of data seized from cyber-
crimes [64, 65]. Crimes where Child Sexual Exploitation Material (CSEM)
is involved are specially sensitive, due to the nature of the handled data.
One of the strategies that are used to detect CSEM automatically [25] is to
detect images that contain pornography and to estimate the age of people
on such images. The goal is to find out obscene images where minors are
present, which would be categorized as possible CSEM. Nevertheless, some
images contain only faces (e.g. in close up photos), making the retrieval of
such material a challenging task for pornography and, subsequently, CSEM
detectors.

This paper focuses on detecting sexual expressions on faces by means of
automatic sexual facial expression recognition, which would make possible to
verify if the image has erotic nature. This may also improve the performance
of pornography detectors and, therefore, enrich the Facial-Forensic Analysis.

Deep neural networks have yielded dramatic performance gains in recent
years on Computer Vision tasks [27, 71, 30]. However, these successes are



heavily dependent on large training sets of manually annotated data [3, 26].
As far as we know, there are not any publicly available large collections
of labelled data suitable for training a deep learning model for sexual facial
expression detection. Hence, first we created a manually labelled dataset con-
taining erotic, suggestive-erotic, and non-erotic facial images. We observed
that the labelling procedure in the task of sexual facial expression is much
more difficult and time-consuming than normal image labelling. Motivated
by aforementioned issues, in this paper we propose a Semi-Supervised Learn-
ing (SSL) framework based on Generative Adversarial Networks (GANs) [27],
which can learn image representation from data from which only a small part
is labelled.

In regard to learn better representations, researchers have been exploiting
different methods to utilize unlabelled or partially labelled data for many
years [73]. The reason is that the network can learn embedded informative
patterns hidden in the data, and then this learning can be transferred to
the classifiers, which are trained on the available limited labelled data. That
way, such classifiers can then generalize better.

Recently, GANs have achieved an impressive success for various types of
computer vision problems such as image synthesis [43], style transfer [75], im-
age super-resolution [63] and classification [29]. In general, the conventional
GANSs are specific neural networks in which the training is performed under
an unsupervised setting. Their main goal is to generate synthetic samples
with a data distribution similar to the input data distribution. During the
training of GANs, an adversarial objective is set between a discriminator
network and a generator network. The discriminator performs the task of
detecting whether the input sample is drawn from the true data or the fake
sample synthesized by the generator. The objective of the generator is set to
synthesize images that look as if drawn from actual data to the discriminator.
The adversarial learning and a competitive game between the discriminator
and generator help in protecting the discriminator from over-fitting on the
input data, especially when the training data size is small. Finally, the syn-
thetic images generated by the generator can be utilized for various purposes,
including data augmentation for improved training of classifiers [16].

One interesting extension of GAN is Conditional GAN (CGAN) [48]
where a condition variable can control the generated image. In an alter-
native approach proposed in [57], the authors build auxiliary classifier GANs
(AC-GANSs), where the side information is reconstructed by the discriminator
instead. Irrespective of the specific approach, this line of research focuses on



the supervised setting, where it is assumed that all the images have attribute
tags.

Further, the GAN models have been used with semi-supervised learn-
ing [73, 56, 12, 77, 29]. Also, [78] and [73] used GANs to perform semi-
supervised classification by using a generator-discriminator pair to learn an
unconditional model of the data and fine-tune the discriminator using the
small amount of labelled data for prediction. Given that labelled data is
expensive, it is interesting to explore semi-supervised settings where only a
small fraction of the images have class labels. In contrast, a majority of the
images are unlabelled.

The key contributions of this paper are summarized as follows:

e We present a novel end-to-end semi-supervised GAN framework named
Triple-BigGAN. It is capable of (i) learning a discriminative classifier,
as well as (ii) generating high-quality synthesized images from partially

labelled data.

e We introduce the task of Sexual Facial Expression Recognition (SFER).
It consists on detecting automatically whether a face is showing an
expression related to sexuality, either explicit or suggesting. To the
best of our knowledge, this is the first work in which this task is tackled.

e We introduce a new image dataset, named SEA-Faces-30k, with 30k
manually-labelled facial images. This is the first dataset of images of
Sexual Expression and Activity Faces. It can be accessed through our
website upon request for research purposes only!.

e We empirically demonstrate that Triple-BigGAN provides the state-
of-the-art classification accuracy on the MNIST [39], CIFAR-10 [38],
SVHN [54] and SEA-Faces-30k datasets. We also show that Triple-
BigGAN provides high-quality and high resolution synthetic samples.
Furthermore, we show that adding images generated by Triple-BigGAN
to a dataset improves the accuracy of supervised learning-based meth-
ods for the task of SFER.

The rest of the paper is organized as follows: First, a revision of works
related to ours is addressed in Section 2. In Section 3, we introduce the SEA-
Faces-30k dataset. Then, our proposed approach is described in Section 4.

https://gvis.unileon.es/dataset/sea-faces/
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The description of the experiments, their results and a discussion are covered
by Section 5 and, finally, Section 6 includes the main findings of our work.

2. Related Work

2.1. Related work in GANs

The Triple-BigGAN model proposed in this work has been designed as
a GAN framework for joint-distribution matching. There are several exten-
sions of GANs, like Conditional GAN (CGAN) [48], in which a condition
variable controls the generation of the images. Numerous CGANs have been
introduced in the literature to condition the image generation on class labels
48], images [33], and object/image attributes [60].

Researchers have explored different ways to convert standard GAN into
CGAN [48, 73, 60, 20, 20, 57, 50]. The basic type of CGANs requires su-
pervised information related to the condition variable(s). Springerberg [73]
replaced the binary discriminator in standard GAN with a multi-class clas-
sifier and presented categorical generative adversarial networks (CatGAN).
He trained the generator and the discriminator using information theoretical
learning on unlabelled data [73]. Dumoulin et al. [20] and de Vries et al.
[13] presented a modified class conditioning in the input to the generator by
means of class conditional gains and biases in Batch Normalization layers
[32]. In the work carried out by Odena et al. [57], the noise vector input in
the standard generator is substituted by a noise vector concatenated with a
1-hot class vector. The objective is to boost conditional samples to maxi-
mize the respective class probability predicted with the help of an auxiliary
classifier. In [50], the authors modified the discriminator and utilized cosine
distance between its features and a set of learned class embeddings to pro-
vide extra supervision to discriminate between the real and the generated
samples. It resulted in the generation of samples in which the features are
closer to a learned class prototype.

Some authors have also explored completely unsupervised methodologies
to generate samples of a specific type as an alternative to the control variable-
based conditional image generation. The authors in [9] modified the input
in the standard generator by introducing a latent code vector jointly with
the noise vector. The latent codes are then learned by variational mutual
information maximization between the latent code and the generator sample
in an unsupervised manner. The Adversarially Learned Inference (ALI) [19]
method, extended the standard generator, i.e., an encoder, with an additional



decoder network. The decoder takes a data sample as input and outputs a
synthetic latent vector. The objective of the discriminator is also modified,
and it now takes joint pairs —1i.e., the latent vector and the data sample — and
makes the classification if the pair belongs to an encoder or decoder. The
training of the encoder and the decoder modules is performed together to
learn the discriminator. In another work, in BiGAN, or Bidirectional GAN
[18], the authors introduced an encoder module along with discriminator and
generator in the GAN. The encoder module learns a mapping from data to
latent representations. Then, in addition to classifying a real sample rather
than a generated sample, the discriminator also discriminates between the
encoder’s learned representation and the latent space.

Triple-GAN [40] also employs the idea of the conditional generator, but
uses adversarial cost to match the two model-defined factorizations of the
joint distribution with the one defined by paired data. In addition, Triple-
GAN introduced an additional player, i.e., a classifier, in the standard GAN,
containing a discriminator, and a generator, to do semi-supervised learning
with compatible utilities. In another more recent work, Hacque proposed
the model External Classifier GAN (EC-GAN) [29], comprising a generator,
a discriminator, and a classifier. The EC-GAN trains the classifier in an
end-to-end manner along with the discriminator and the generator, however
the major goal of EC-GAN is to utilize synthetic samples generated by the
generator to augment the training data for the classifier. EC-GAN did not
utilize the pseudo-labels generated by the classifier to improve the training
of the generator or the discriminator.

Furthermore, various methods and model architectures have been pro-
posed to enhance and stabilize the training of GANs while generating both
high-resolution (i.e., large) and high-quality images. In [35], Karras et al.
presented a new training methodology and improvements in discriminator
and generator to generate high-resolution (e.g. 1024 x 1024) realistic sam-
ples. They adopted a progressive training strategy in which generator and
discriminator networks with lesser layers are trained on low-resolution im-
ages, such as 4 x 4 pixels in the beginning. Then, incrementally, they kept
adding blocks of layers which allowed growing the size of the output in the
generator and the size of the input to the discriminator. The step-by-step
incriminating of the networks continued until the desired image resolution is
obtained.

Another approach, the Style Generative Adversarial Network or Style-
GAN [36], extended the progressive GAN and explored multiple improve-
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ments to the generator part while keeping the same discriminator and loss
functions. They removed the traditional latent vector input layer in the gen-
erator and replaced it with a non-linear mapping network (i.e., an 8-layer
Multilayer Perceptron (MLP)) which maps a latent code to an intermedi-
ate latent space. The intermediate latent space is then used to guide the
style at each point in the generator through a new layer called “Adaptive
Instance Normalization” (AdalN). The authors also included another refer-
ence of randomness in the form of noise affixed to the whole feature maps
after each convolution layer to introduce stochastic variation in the synthetic
images. Similar to StyleGAN, Brock et al. presented the BigGAN model [6].
It is another ground-breaking GAN model designing and training strategy to
generate high resolution 512 x 512 realistic images with high quality. More
details about BigGAN are provided in Section 4.1.3.

Our work extends the Triple-GAN, EC-GAN, and BigGAN frameworks;
however, there are significant differences with them. TripleBig-GAN follows
the adversarial training methodology of Triple-GAN, however, we have re-
designed the classifier, generator, discriminator and loss functions to generate
high fidelity class-conditional data distributions as well as a improved clas-
sifier. The major objective of the Triple-GAN approach is to train a strong
discriminator, and the EC-GAN aims mainly to train an improved classifier
exploiting GAN part. Differently than both of them, our proposed approach
focuses on training a strong classifier as well as a strong discriminator in
an end-to-end manner. Our work differs from BigGAN since this mainly
focuses on unsupervised image synthesis, whereas Triple-BigGAN aims at
semi-supervised joint distribution matching. Our network can utilize labelled
and unlabelled data and learns classification and synthesis, both together.

2.2. Related work in Facial Fxpression Recognition

Existing approaches for FER can be divided into two categories. On
the one hand, methods that extract features from a facial image, and use the
encoded spatial information for expression classification among seven classes:
the six basic emotions proposed by [22] (i.e., anger, disgust, fear, happiness,
sadness, and surprise), and a neutral one [55, 84, 72, 70, 23]. The other type of
approaches for FER [83] involves the use of the Facial Action Coding System
(FACS), which describes facial muscle movement using 44 different Action
Units (AU) [21]. Each AU corresponds to a specific facial substructure,
and the six basic emotions can be categorized combining multiple AUs. The



Emotional Facial Action Coding System is a subset of FACS, which considers
only the relevant AUs responsible for such expressions.

Most traditional FER methods are based on hand-crafted image descrip-
tors such as Local Binary Patterns (LBP) [70], Scale Invariant Feature Trans-
form (SIFT) [44] or Histogram of Oriented Gradients (HOG) [58] followed by
a classifier such as Support Vector Machine (SVM) [11], Decision Trees (DT)
[67] or Artificial Neural Networks (ANN) [15]. State-of-the-art approaches for
FER are based on Deep Learning, especially Convolutional Neural Network
(CNN) [1, 80, 23, 72].

The hand-crafted features give good accuracy in a constraint environ-
ment, such that the subject pose expression under fixed head pose and light-
ing conditions are also stable. However, a significant accuracy drop happens
when there is no control on the illumination and head pose angle.

Recently, deep neural networks have been employed to increase the ro-
bustness of FER to real-world scenarios. However, the learned deep repre-
sentations used for FER are often influenced by large variations in individual
facial attributes such as ethnicity, gender or age of subjects involved in train-
ing. The major limitation of this methodology is that it reduces the general-
ization of the model on the unknown identities. Despite a noticeable research
in the field, modelling inter-subject differences in FER is still persisting as
an open challenge.

Following this, various techniques [41, 8] have been proposed in the litera-
ture to increase the discriminative power of extracted features for FER by in-
creasing the inter-class differences and reducing intra-class variations. More
recently, Identity-Aware CNN (IACNN) [47] was presented and to reduce
individual identity specific information, the authors exploited expression-
sensitive contrastive loss and an identity-sensitive contrastive loss. However,
it is also reported that the influence of contrastive loss is compromised by
large data expansion, and that happens because in contrastive learning the
training data is provided in the form of image pairs [8].

[8] presented an Identity-free conditional Generative Adversarial Network
(IF-GAN) to minimize the impact of identity-related information by generat-
ing a synthetic sample having a facial expression similar to the input sample.
This resultant synthetic sample is then utilized for FER to minimize the
impact of subject-level variations in the data. However, such scheme has a
challenge, which is that since FER is based on the synthetic data, its perfor-
mance is influenced not only by the quality of the generated data, but also
on the performance of the expression transfer between the input sample to

8



the synthetic sample. In [79], the authors proposed De-expression Residue
Learning (DeRL) to learn subject-independent facial expression representa-
tions.

More recently, StarGAN [10] was presented to edit the facial expression
and attributes. It is a multi-domain approach which learns generation of
facial expressions and transfer of facial attributes simultaneously. The system
has been designed to control the target facial expression according to the
facial expression fed along with the input face to edit.

As an extension to prior work, [17] introduced ExprGAN, a facial ex-
pression editing GAN which can learn the potency of the facial emotion by
exploiting special encoding of the expression label. They do not require
intensity level values; however, various desired expression styles can be gen-
erated. The intensity of synthesized emotion can also be controlled from low
to high through an expression controller module. However, the approach is
not capable enough to generate facial emotions such as compound expres-
sions. Pumarola et al. [61] presented a system based on the coupling GAN
and Action Units (AUs) to synthesize facial emotions drawn to form a more
extensive dataset continuously. Nevertheless, the approach requires a large
amount of labelled data especially, AUs.

Success in various computer vision classification problems relies heavily
on the availability of the annotated datasets. Literature related to FER
presents a significant number of publicly available datasets, summarised in
Table 1. However, to the best of our knowledge, none of the existing datasets
contain facial images with sexual expressions.

Table 1: A summary of publicly available datasets for FER

Dataset Num. images/ videos Num. Expressions

CK+ [45] 593 images 6 basic + neutral 4+ contempt
FER-20132 35,887 images 6 basic + neutral

MMI [59] 740 images, 2900 videos 6 basic+ neutral
Multi-PIE[28] 755,370 images 6 basic

EmotioNet [3] 1M images 23 basic or compound
AffectNet [52] 450K images 6 basic+ neutral

ExpW [82] 91,793 images 6 basic+ neutral

In this work, we propose the Sexual Expression and Activity Faces (SEA-
Faces-30k) dataset, the first publicly available dataset related to erotic facial
images.



2.3. Related Work in Sexual Facial Expression Recognition

Even though the automatic analysis of sexual expressions in faces have
significant importance, this subject has been explored very little so far (prob-
ably due to the sensitive nature of this domain). The study carried out by
Rosemary Basson [2] is still considered the most exhaustive observational
study of facial expressions of sexual excitement. This analysis is based on
data collected from 382 women and 312 men and through 10000 cycles of
sexual arousal and orgasm. They analysed some common behaviour dur-
ing sexual activity contraction of the musculature surrounding the mouth,
the opening of the mouth, clenched jaws or flared nostrils, among others.
Fernandez-Dols et al. [24] observed the facial expressions in 100 video clips
containing an episode of sexual excitement that concluded in an orgasm by
volunteers. They coded the facial regions using FACS, and reported that
there were nine combinations of muscular movements produced by at least
5% of the video senders. These combinations were consistent with facial
expressions of sexual excitement described in [2].

The aforementioned researches studied the correlation between sexual
activities and facial expressions. However, in our work, our goal is to use
the facial region as a global feature, and to analyse if erotic facial images —
i.e., those related to sexual activities — can be discriminated from not-erotic
facial images from people without any sexual activity.

3. Sexual Expression and Activity Faces Dataset (SEA-Faces-30k)

SEA-Faces-30k contains 30,817 images collected from the Internet in
which the faces show any kind of sexual expression. The dataset has three
categories based on the intensity of adult content: erotic, suggestive-erotic,
and non-erotic. Face information changes depending on the age, sex, face
shape, skin or colour, significantly impacting facial expression analysis. To
control these changes and to have enough diversity in data, images in SEA-
Faces-30k have variations in terms of age, ethnicity, gender, expression, scene
complexity, sexual activity, illumination, head orientation, image resolution,
and artefacts on the face such as glasses, hats, beards, or jewellery. Apart
from these challenges, sometimes it has been observed that seized images
related to pornography or CSEM have low resolution and, hence, in SEA-
Faces-30k, we also kept some low-resolution images in the dataset. The main
features of SEA-Faces-30k are summarized in Table 2. Figures 1, 2 and 3 de-
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pict some examples of the erotic, suggestive-erotic, and non-erotic categories,
respectively.

Table 2: Categories and number of images for each category in the SEA-Faces-30k dataset

Category Num. images
Erotic 10,399
Suggestive-Erotic 10,160
Non-Erotic 10,258
TOTAL IMAGES 30,817

‘f";)

Figure 1: Examples of images from the class “erotic” of SEA-Faces-30k.

SEA-Faces-30k has been created through a five-stage process: (i) data
crawling from the Internet, (ii) removal of duplicated images, (iii) face de-
tection and alignment, (iv) manual filtering of wrong faces and (v) manual
labelling and categorisation. Fach step is described in detail in the next
paragraphs.

During the data crawling, we gathered around 50k pornographic images
from two popular pornographic websites. Due to the varied content of the
images, e.g. from a single clothed model posing to nude group sexual ac-
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Figure 2: Examples of images from the class “suggestive-erotic” in SEA-Faces-30k.

tivity, we applied the Yahoo open NSFW pornography detector®, which as-
signs a score to each image depending on the pornographic content (i.e., the
higher the score, the higher the pornographic content). Then, the crawled
images are classified as: erotic (score € [0.85,1.0]), suggestive-erotic (score
€ (0.35,0.85)) and non-erotic (score € [0,0.35]). The possible classification
errors were corrected manually in further stages.

We also noticed that in the crawled data the many images were from
similar people and captured in controlled environment. Therefore, in order
to have more variability and general web images in the data, we used Google
search engine to retrieve 10k additional images in each of the three cate-
gories. For the erotic class, we used the following keywords: “fellatio”, “blow
job”, “cunnilingus”, “anilingus”, “cum facial”, “orgasm”, “pussy-licking”,
“kissing”, “fucking”, “cum shot” and “masturbation”. For the suggestive-
erotic class, we used the words: “sexy model”, “sexy face”, “genital posing”,
“sexual posing”, “sexy lady”, “erotic face”, “porn stars”, “horny”. Finally,

3https://github.com/yahoo/open_nsfw
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Figure 3: Examples of images from the class “non-erotic” in SEA-Faces-30k.

to enhance the non-erotic facial data, we added images crawled with the
following queries: “mouth open”, “human pose”, “men with pose”, “girls
with pose”, “women with pose”, “happy face”, “crying face”, “men play-
ing sports”, “women playing sports”, “girls playing sports”, “face covering”,
“surprise”, “men in pain”, “boys in pain”, “women in pain”.

We observed that in the crawled data, there were many images with
different versions of the same image, e.g. the same image with different
resolutions or with different names. To remove such duplicated images, in
the stage of removal of duplicated images, we used a perceptual hashing [5]
method, i.e. pHash?® to delete all the images with a dis-similarity score, i.e.
Hamming distance, lower than four. The hamming distance of the pHash
codes with 64 bits length ranges between 0 and 64, with 0 means completely
similar and towards 64 represents more dissimilarity. We empirically found
that a threshold of four is good enough to detect duplicate or near-duplicate
images in our data.

‘https://www.phash.org
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Next, in the step of Face detection and alignment, we used the RetinaFace
detector®, for detecting the faces on the images, as well as for getting the
following landmark points: left and right eye centres, left and right mouth
corners and nose tip. These landmark points are used for face alignment.
We only selected the face images with resolution higher than 50 x 50 pixels.

During the Manual filtering step, we removed all the images in which
either a human face was not present (i.e. due to an error of the face detector),
or it was not recognizable by a human due to very bad quality, occlusions,
or large pose.

Finally, we started the manual labelling and categorization stage, where
the facial images belonging to the respective category were selected through
visual inspection. It should be noted that the facial images in which expres-
sions were not visible properly to decide them as erotic or suggestive-erotic
were kept in the non-erotic category.

4. Proposed approach

The GAN framework introduced in this paper is an extension of pre-
viously proposed GANs: Conditional GAN (CGAN) [48], Semi-Supervised
GAN (SSL-GAN) [73, 56, 12, 77], Triple-GAN [40], EC-GAN [29], and Big-
GAN [6]. Hence, we will first review briefly these network architectures and
then introduce our proposed Triple-BigGAN network.

4.1. Preliminaries
4.1.1. GAN and Conditional GAN

A basic GAN framework contains two neural networks trained in oppo-
sition to one another. Let X denote the real samples and G denote the
generator which takes as input a random noise vector z € R* sampled from
a prior noise distribution P,, uniform or normal, and outputs a synthesized
image 7 = G(z) € R% Let D denote the discriminator, which receives an
image x as input, which may be either real or synthesized by the generator,
and yields a probability distribution, i.e. D(z) = P(S|x). Ideally, D(z) =1
when x € X and D(x) = 0 when z is a synthetic image, i.e. © =% = G(z).
The GAN objective function is given by:

E,p, [10gD(2)] — Eavp. [log(1 — D(G(2)))) (1)

"https://github.com/deepinsight/insightface/tree/master/RetinaFace
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where E, represents the expected value over all the data samples. The con-
ditional generative adversarial network [48] is an extension of the GAN in
which both D and G receive an additional vector of information y as input.
The conditional GAN objective is given by:

Ey)~r,.,, [logD(z,y)] — E.<p.[log(1 — D(G(2,y),y)] (2)

4.1.2. Semi-Supervised GAN and Triple-GAN

A common approach to semi-supervised learning is to combine a super-
vised and unsupervised objective function during training [73]. As a result,
unlabelled data can be leveraged to learn a good representation. In [62],
authors have demonstrated that during GANs training, the discriminator
learns image representations hierarchically, which may be helpful for object
classification. Following this, a simple and useful semi-supervised learning
approach can be created by combining unsupervised and supervised GAN
objectives.

Let us assume that there are K classes in the labelled data. In most
previous works, to extend standard GANs to semi-supervised GAN (i.e. to
utilize labelled and unlabelled data), the discriminator output is modified
to have K outputs corresponding to real classes [73]. In some works, an
additional (K + 1) class corresponding to the fake data generated by the
generator is added [66, 19], and the discriminator learns by classifying the
data among K + 1 classes.

Despite the success of the technique, it has limitations. For example, the
generator does not have much control in deciding the semantics of the gener-
ated synthetic samples. Moreover, it may not be possible to have a generator
and a discriminator which is also a (K + 1)-class classifier, both optimal at
the same time [53]. The problem appears because when the generator is op-
timal, it must generate a sample exactly similar to some class among the K
non-fake classes. At the same time, an optimal discriminator will have two
conflicting objectives: to classify this synthetic sample as fake or to classify
the same sample among some class among the K non-fake classes. Thus,
even if the generator was not optimal and the generated sample was similar
to some class, the optimal discriminator would still have to contradict objec-
tives to classify it as belonging to some class or as fake. This contradiction
justifies that a robust and accurate classifier can not be guaranteed with this
kind of generator-discriminator setting.
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To overcome these issues, authors in [40], introduced another module
along with a conditional generator in GAN called a classifier (i.e. a condi-
tional network). The task of the generator is to generate pseudo samples
using the true labels. On the other hand, the classifier has been designed to
generate pseudo labels for the true input samples. In the Triple-GAN archi-
tecture, the role of the discriminator is only to decide if the sample is real or
fake. The classifier performs the task of classifying samples among K classes.
To train the discriminator, the authors utilized the labels obtained by the
classifier for unlabelled data and also the supervision from the classification
loss on the labelled samples. This way, the discriminator is able to guide the
generator in an improved way, to generate samples for the respective classes.

4.1.3. BigGAN

When Brock et al. designed BigGAN [6], they adopted a very large-scale
generator and discriminator as a class-conditional GAN with a lot of trainable
parameters to be able to capture fine details in the synthesized samples. The
major focus of the BigGAN was to find a bag-of-tricks based on the best
practices in the literature, increasing the batch size (i.e. up to eight times)
and the number of parameters (i.e., two to four times). The ultimate goal
was to generate realistic high-resolution and high quality synthetic images.
Through various experiments, the paper demonstrates that the strategies of
increasing the batch size and use more model parameters yield better results
than the previous state-of-the-art.

As a baseline model, the BigGAN adopted the Self-Attention Genera-
tive Adversarial Networks (SAGAN) architecture [81], and it also adopted
hinge loss [74, 42] as adversarial loss function, which is similar to SAGAN.
Furthermore, the authors adopted the Truncation Trick, originally proposed
in [46], and Off-Diagonal Orthogonal Regularization, which is a variant of
the Orthogonal Regularization proposed in [7]. To utilize class information
in the generator, the BigGAN exploited the class-conditional batch normal-
ization [14], and to utilize it in the discriminator they adopted projection
discriminator [51]. The BigGAN optimization follows the SAGAN guidelines
[81] and employs the Spectral Normalization [49], however, different from
SAGAN, BigGAN took two steps of discriminator per generator step. To
initialize the latent vector z, the orthogonal initialization approach [68] has
been used, which has been demonstrated in previous works to be better than
the uniform and the Gaussian initialization for Fully Connected (FC) layers.
BigGAN utilized a variant of hierarchical latent spaces, and chunks of z are
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added at multiple layers of the generator as a conditioning vector at different
depths to help the generator make better decisions on what to synthesize.

Finally, they show that their proposal can generate high resolution (i.e.
256 x 256 and 512 x 512) with high quality too. In summary, the major con-
tributions of the authors are the design strategies for the discriminator and
generator network architecture and their training process to finally develop
a larger conditional GAN to learn much finer details in the data.

4.2. Proposed Triple-BigGAN

We will first formulate the semi-supervised learning setting adopted in
this paper. We denote the images in the dataset as X = {xy,...,zn}, 2; €
R"™¢, Let us assume our dataset contains N images, out of which N images
contain ground-truth class labels y; € {1,2, ..., K}, whereas Ny images do
not contain class labels, i.e., N = Ny, + Ny. In our SFER problem, just a
small portion of the data is labelled, i.e. Ny > 0 and N << Nyp.

Let the distribution of real samples be  ~ Py, the distribution from
which the latent vector z is sampled be z ~ P,, the joint distribution of im-
ages and their labels be P(x,y), the marginal distribution of images be P(x),
the conditional distribution of the class labels given to images be P(y|x) and
the conditional distribution of images given by class labels be P(x|y).

In this paper, we propose the Triple-BigGAN framework, an extension
of the BigGAN network, for both image classification and generation of
class-conditional images with high quality through Semi-Supervised Learning
(SSL). The major goal of SSL is to use easily available large amount of un-
labelled data (e.g. faces extracted from pornographic and non-pornographic
images unlabelled for facial expressions) to improve the performance of the
model for the target problem when the labelled data is not enough to learn
representations which are robust and can generalize to unseen samples. The
network architecture of the proposed Triple-BigGAN is depicted in Figure 4.
As it is shown, Triple-BigGAN is composed of three parts: a class-conditional
generator G, the discriminator D, and a classifier C. The training scheme
of our model follows an adversarial learning similar to BigGAN. However,
we have redesigned the training strategy according to the network modules
present in our approach, i.e., discriminator, classifier, and the generator.

The goal of the generator G is to produce synthetic samples, which are
conditioned on the class labels in the target data. During the training we
utilize the complete dataset i.e., labelled as well as unlabelled data (Pju,)
to learn G(z,y), which can generate samples similar to P(z|y), and for this
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Figure 4: Illustration of the proposed Triple-BigGAN. Triple-BigGAN has a generator,
discriminator, and a classifier. The classifier is trained on the image-label pairs in real
labelled data set as well as generated by the generator. The discriminator’s job is to detect
image-label pairs in real labelled data set as real and image-label pairs obtained from the
classifier and generator for the unlabelled dataset as fake.

(%, ¥) ~ PyaralX,y)

Real labelled data L
Real un- — e Supervised loss
labelled  x.~P(x) C
data (Xc, yc) ~ PC(X;Y)
Supervised loss
r L, M
Real/
> D — fake
J
G

(Xg ’ yg)"‘ Pg(xry)

we provide as input a latent vector z ~ P, and a class label y ~ P(y).
The output generated by G can be considered as x|y ~ P,(x|y) for some
given y ~ P(y). We can consider this pseudo input-label pair output as
(g,Yg) ~ Pylz,y).

The inputs to the classifier C are both labelled and unlabelled data. The
labelled data will be used to provide supervision for the classifier, whereas
the unlabelled data will be used to draw (z.,y.) ~ P.(x,y), which can be
considered as pseudo input-label pairs.

Finally, the job of the discriminator D is to differentiate the real image-
label pairs (z;,y;) € Piaa(z,y) from the fake sample-label pairs obtained
by the generator’s fake samples i.e., G ie., (z,,v,) ~ P,(z,y) or the labels
estimated by the classifier for the unlabelled input images i.e., (z¢, y.) ~
P.(z,y).

The overall objective of the combined network modules is to learn a clas-
sifier which can output labels for the data accurately enough to consider
them equivalent to the ground truth labels, i.e. P.(x,y) ~ Piua, and to
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learn a generator which can generate synthetic call-conditional samples sim-
ilar to the true data distribution, i.e. P,(z,y) ~ Paua- The whole network
attain convergence when the objects of the classifier and the generator are
achieved successfully. In the proposed architecture, the labels predicted by
the classifier for the unlabelled images help the generator to learn a class
conditional representation similar to true data distribution. Similarly, the
high-fidelity samples synthesized by the generator help the classifier to yield
better classification performance on the unlabelled data. Therefore, the pro-
posed Triple-BigGAN model is able to improve both instance synthesis and
classification in the semi-supervised setting.

Concretely, the discriminator loss Lp, the generator loss Lg, and the
classifier loss L. are defined as follows:

‘CD = E(zvy)NPdata [mzn(()’ _1 +D<x7 y))] - (1 - ’y) ' EzNP27yNPdatg, [mfln(07 _1 -

D(G(2,9),u)] = 7 Banpi[min(0, =1 = D(z,C(x))]
(3)

(4)

Lg=—E. p. y~Pi.. D(G(2,9),y))

'CC = E(ﬂﬁvy)NPdam [mln(()? —1 + C(ZL’, y))] - EZNPZ,yNPdam [mm(O, —1 -

C(G(2,9).9))l;

(5)
where v is a parameter that assigns relative weights to generator and classi-
fier. In our experiments, we assigned the same weights to the classifier and
generator.

5. Experiments and Results

5.1. Experimental Setup

To verify the proposed model, first, we empirically verified the image syn-
thesis capabilities of Triple-BigGAN using the SEA-Faces-30k dataset (see
Section 3) to investigate the quality of the synthesized human face images.
Then, we evaluated the performance of Triple-BigGAN in semi-supervised
image classification on the FER task, using the SEA-Faces-30k dataset. Fi-
nally, we evaluated the classification performance on three general-purpose
benchmark datasets, i.e., MNIST [39], CIFAR-10 [38] and SVHN [54]. Fur-

thermore, we also performed an additional experiment to evaluate the use-
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fulness of synthetic images generated by Triple-BigGAN to improve the ac-
curacy of deep CNN networks by augmenting the training data.

MNIST dataset has 50,000 and 10,000 images for training and validation,
respectively. There are another 10,000 images for test purposes. The images
in the dataset are handwritten digits of 28 x 28 pixels resolution. The Street
View House Numbers (SVHN) dataset contains 73,257 training and 26,032
test images, respectively. Each one is an RGB sample with a resolution of
32 x 32 of numbers with varying backgrounds. In the CIFAR-10 dataset there
are RGB images from 10 different classes: automobile, aeroplane, bird, cat,
deer, dog, frog, horse, ship and truck. It consists of 50,000 training and 10,000
test images, each one with a resolution of 32 x 32. Since a separate validation
set is not given in SVHN and CIFAR-10 datasets, it can be extracted from
the training set, if required.

In case of the MNIST, SVHN and CIFAR-10 datasets, we adopted the
same settings that have been adopted by many previous works [77, 40, 76,
19, 73, 12]. Specifically, we performed experiments for the cases in which
there are 100, 1000, and 4000 randomly selected labelled test instances, re-
spectively. On each of these cases, the random sampling has been carried out
ten times, and we reported the mean and standard deviation of the test error
rates for the classification task. Moreover, we have compared Triple-BigGAN
with several methods by taking their results on these three datasets from the
existing literature. These methods are: EnhancedTGAN [77], Triple-GAN
[40], CT-GAN [76], ALI [19], CatGAN [73] and GoodBadGAN [12].

In the case of the novel SEA-Faces-30k dataset, for a fair comparison of
the SFER classification performance, we trained models using four inference-
based GANSs, i.e., Triple-GAN, CatGAN, ALI, and GoodBadGAN. First, we
divided the dataset into train, validation, and test sets by randomly taking
70%, 15%, and 15% images, respectively. Then, the results for inference
GANSs are calculated using two different sizes of training datasets: (i) ran-
domly selecting 5000 labelled images from the training set to understand its
capabilities with lesser amount of training data and (ii) using the complete
train set.

Apart from the GAN-based methods, we also fine-tuned a state-of-the-art
face recognition approach, i.e. FaceNet [69], and two famous deep CNN; i.e.,
VGG-16 [71] and ResNet-50 [30]. FaceNet is based on the Inception-ResNet
vl network trained with triplet loss, and we utilized the publicly available
weights (i.e., the network pre-trained using face datasets). In the case of the
VGG-16 and ResNet-50 networks, we utilized the models pre-trained with
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the ImageNet dataset, which we further fine-tuned with a large-scale face
dataset, i.e., CASIA-WebFace®, for the face classification task. Then, for
the SFER task, we first extracted features from the average pooling layer in
Inception-ResNet vl and ResNet-50 networks, and, in the case of VGG-16,
we extracted the features from the last max-pooling layer. Next, using the
extracted features as input, we trained a Multi-Layer Perceptron (MLP) for
each of the above three networks, using the train and validation sets of SEA-
Faces-30k. The MLP network is designed with two residual blocks with skip
connections, i.e., four layers in total.

Furthermore, we also evaluated a recent Deep Learning-based approach:
CovPoolFER [1], a model specifically designed for facial expression recog-
nition”. In CovPoolFER, the authors initially extracted and flattened deep
features, and then they summarized the second-order information in the fea-
ture set through the computation of a covariance matrix. Finally, they fed the
encoded features to a Symmetric Positive Definite (SPD) Manifold Network
(SPDNet) Layers for dimensionality reduction and non-linearity on covari-
ance matrices. During the evaluation, we fine-tuned CovPoolFER on the
SEA-Faces-30k train set.

In addition, we evaluated the Triple-BigGAN on the SEA-Faces-30k dataset
to investigate the quality of the synthesized human face images. For the im-
age synthesis task we did a comparison of our approach with three recent
state-of-the-art approaches, i.e., Triple-GAN, BigGAN, and StyleGAN. The
evaluation is performed using the Inception Score (IS) [66] and the Frechet
Inception Distance (FID) [31]. In the case of the IS, the higher it is, the bet-
ter the synthetic image is considered, whereas the lower the FID, the better
the synthetic image.

All the experiments have been carried out using Python 3.6, Keras 2.3.0,
PyTorch 1.5, and TensorFlow 1.14, with four Tesla K40 (12GB) and two
Tesla K80 GPUs (24GB).

5.2. Implementation and Network Training

The generator and discriminator in Triple-BigGAN closely follow the net-
work structures in BigGAN, and their architecture details, adopted in the
experimental analysis of this paper, are given in Tables 3 and 4, respectively.

Shttp://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
"https://github.com/d-acharya/CovPoolFER
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Tables 5 and 6 show the architecture details of the Residual blocks used in
Triple-BigGAN, i.e., ResBlock up in generator and ResBlock down in dis-
criminator, respectively. In the Tables, H and W represents the height and
width of the input, and C;, and C,,; are the number of input and output
channels. The ResBlock in the last layer of the discriminator (i.e., without
down sampling) does not contain the skip connection layer. In the classifier,
the network adopted is ResNet-50 [30] and at its global average pooling out-
put layer, an MLP network is attached which is created using two residual
blocks with skip connections, i.e., four layers in total.

Table 3: Architecture for Triple-BigGAN’s Generator. Note that “ch” is the channel width
multiplier (i.e. ch = 128 in Triple-BigGAN). “BN” stands for the batch normalization and
“SN” denotes the Spectral Normalization.

Layer/Block SN #output
z € R¥?® ~ N(0,1) - 128
Embed(y) € R28 - 128

Dense (128 4+ 128) — 16 - ch - 4x4x16-ch
ResBlock up 16 - ch — 16 - ch Y 8 x8x16-ch
ResBlock up 16 - ch — 8 - ch Y 16 x 16 x 8- ch
ResBlock up 8 - ch — 8 - ch Y 32x32x%x8-ch
ResBlock up 8 -ch — 4 - ch Y 64 x 64 x 4-ch
ResBlock up 4-ch — 2 - ch Y 128 x 128 x 2 - ch
Non-Local Block 128 x 128 x 2 - ch
ResBlock up 2-ch — 1-ch Y 256 x 256 x 1-ch
BN, ReLU, 3 x 3 Conv ch -+ 3 - 256 x 256 x 3
Tanh - 256 x 256 x 3

The training of our Triple-BigGAN network follows the guidelines for the
SAGAN [81] and BigGAN [6] networks. The weights in Triple-BigGAN’s
generator, discriminator, and classifier networks are initialized through or-
thogonal initialization [68]. We used the Adam [37] optimizer (momentum
parameters 8; = 0, 3, = 0.999) with the learning rates 5 - 10™° for the gen-
erator, 2 - 107 for the discriminator, and 2 - 10~* for the classifier. We also
utilized spectral normalization [49] and Orthogonal Regularization [7] in the
generator and discriminator (but not in the classifier) for training stability.
In the discriminator, the spectral normalization is used in all weight layers.
The random noise as input to the generator is drawn from the normal distri-
bution N(0, ). During training, we performed two discriminator steps for
each generator and classifier step and training is done for 500k steps with a
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Table 4: Architecture for Triple-BigGAN’s Discriminator network. Note that “ch” is the
channel width multiplier (i.e. ch = 128 in Triple-BigGAN). “y” stands for the class labels,
and “h” denotes the previous layer’s output.

Layer/Block #output

Input image 256 x 256 x 3
ResBlock down 3 — ch 128 x 128 x 1 - ch
ResBlock down ch — ch 64 x 64 x1-ch
Non-Local Block 64 x 64 x1-ch
ResBlock down ch — 2 - ch 32x32x%x2-ch

ResBlock down 2 -ch — 4 -ch 16 x 16 x 4 -ch
ResBlock down 4 - ch — 8 - ch 8x8x8-ch
ResBlock down 8 -ch — 16-ch 4 x4 x 16-ch

ResBlock 16 - ch — 16 - ch 4x4x16-ch
ReLU, Global sum pooling 1x1x16-ch
Embed(y)-h + (dense — 1) 1

Table 5: Architecture of the Residual Block in Triple-BigGAN’s Generator (i.e., ResBlock
up in Table 3).

Layer Kernel  #output
shortcut/skip [1,1,1] 2-H x2-W X Cyyy
BN, ReLU HxW xCy,

Conv 3,3,1] 2-Hx2-W X Cou

BN, ReL.U 2-Hx2-WxCou
Conv 3,3,1] 2-Hx2-W X Cohyu
Addition 2-Hx2-W x Cout

batch size of 256. Due to memory constraint, we could not try larger batch
sizes. The z is concatenated with the class label embedding, and the output
vector is sent to the residual blocks via skip connections.

To overcome overfitting and to have more training samples, we performed
data augmentation with class preserving transformations. First, for data
enlargement, we cropped facial regions with four different margins around
the detected face bounding box: 20, 40, 60 and 80 pixels. After such crops,
the faces are re-scaled to 320 x 320 pixels, resulting in four scales of the input
images. Then, we performed horizontal and vertical translation by 20% and
horizontal flip. All the images are randomly rotated in the range of 4+30°.
Therefore, the number of images obtained are 4 (scales) x 4 (translations) X
2 (flip) = 32 times the original images. Thereafter, the images were resized
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Table 6: Architecture of Residual Block in Triple-BigGAN’s Discriminator (i.e., ResBlock
down in Table 4).

Layer Kernel  #output
shortcut/skip [1, 1, 1]  H/2 x W/2 X Cous
ReLLU - HxW xC;,
Conv 8,3,1] HxW xCout
ReLLU - Hx W x Cout
Conv B,3,1] H/2XW/2X Copu

Addition H/2 x W/2 X Couy

according to the input size of the networks, i.e., 256 x 256.

5.8. Triple-BigGAN for Synthetic Image Generation: SEA-Faces-30k Dataset

First, we evaluated our model for synthetic image generation. It has been
trained using the SEA-Faces-30k dataset, employing the settings mentioned
in 5.2.

Some samples generated by Triple-BigGAN for the “erotic” and “suggestive-
erotic” classes are shown in the Figures 5 and 6, respectively.

It can be noticed that our model can synthesise images with high-quality
and large variety in content. We also report a comparative analysis of the FID
and IS values obtained by our approach and by four recent GAN networks
in Table 7, i.e., Triple-GAN [40], SAGAN [81], BigGAN [6], and StyleGAN
[36]. It can be noticed that our proposed approach either outperformed or
provided results comparable to the other state-of-the-art models in terms of
IS and FID scores.

Furthermore, we also found that all the models generated some wrong
images. Some examples of badly generated images by Triple-BigGAN are
shown in Figure 7. We observed that the significant mistakes in the generated
samples were local, i.e., mainly artefacts, or images consisting of texture
blobs instead of objects. The generation of the suggestive-erotic class images
is more challenging because of not having features as intense as in the erotic
class and some similarity /overlapping with both the erotic and the non-erotic
categories. We also found that the issues in the synthetic images were bigger
when the complexity of the images in the training set was high, e.g., there
were faces with occlusions, highly posed or with low resolution.
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Figure 5: Samples of images from the class “erotic” generated By Triple-BigGAN. Their
resolution was 256 x 256 pixels

Table 7: Comparative Analysis of Frechet Inception Distance (FID) and Inception Score
(IS) scores on SEA-Faces-30k dataset

Approach Resolution FID IS

SAGAN 128 x 128  38.56  52.78
Triple-GAN 64 x 64 42.04  34.89
BigGAN 256 x 256 19.97  97.68
StyleGAN 256 x 256 21.83  89.32

Triple-BigGAN 256 x 256  19.94 97.98

5.4. Triple-BigGAN for Classification: Sexual Facial Expression Recognition

The pipeline for classification of the expressions in facial images comprises
the following stages: (i) face detection, (ii) facial region representation and
(iii) classification of the encoded data in three categories: erotic, suggestive-
erotic, or non-erotic. For the face detection, we used the RetinaFace detector,
as we did during the SEA-Faces-30k generation (see Section 3).

In this experiment, SEA-Faces-30k has been randomly divided into train-
ing, test and validation sets, which have 70%, 20% and 10% of the images of
the dataset, respectively.

For comparative analysis, we utilized three handcrafted descriptor-based
approaches, i.e., LBP [70], HOG [58], SIFT [44], two Deep CNN networks,
i.e., VGG-16 [71] and ResNet-50 [30], a deep learning-based FER approach,
i.e., CovPoolFER [1], and four inference based SSL GANSs, i.e., ALI [19],
CatGAN [73], Triple-GAN [40] and GoodBadGAN [12]. Following the pre-
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Figure 6: Samples of images from the class “suggestive-erotic” generated by Triple-
BigGAN. Their resolution was 256 x 256 pixels

viously adopted protocols in [40, 19, 66], we performed the evaluation under
two settings: a) with 3000 labelled images (i.e., 1000 from each category)
and, b) when using all the labelled images in SEA-Faces-30k dataset.

Table 8 presents the error rate in the classification of sexual expressions
achieved by Triple-BigGAN and the other assessed approaches. We can ob-
serve that Triple-BigGAN obtains the lowest error rate under both the eval-
uation settings, i.e., 15.77% when only 3000 labelled examples were used,
and 6.42% when all the labelled samples were used. It empirically justifies
the better learning capabilities of the proposed network. We can also no-
tice that deep features consistently outperform the results obtained by the
traditional image descriptors. It is also remarkable that the methods that
utilized unlabelled data along with labelled data. i.e. ALI, Triple-GAN and
Triple-BigGAN, provided better performance than the other approaches. We
attribute this performance improvement to the learning of a better represen-
tation because of the capabilities of these methods to exploit information
from the unlabelled data in addition to the labelled data. Amongst the non-
deep features-based methods, HOG combined with MLP achieved the best
error rates, i.e. 45.51% and 28.53%.

Concerning the features obtained by CovPoolFER, the error rates ob-
tained when combining it with MLP, i.e. 28.85% and 11.95%, outperform
the results obtained by traditional descriptors, but are lower than the as-
sessed GANs.

It should also be noted that, on average, the deeper CNN architectures
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Figure 7: Samples of wrong images generated by Triple-BigGAN. Their resolution was
256 x 256 pixels

provided an improvement in the performance by up to 100% compared to
local image descriptors: the best error rates obtained by CNN features are
27.36% and 11.65% against the best descriptor errors of 45.51% and 28.53%.

Table 8: Comparative analysis of Triple-BigGAN for Sexual Facial Expression Recognition.
ULD refers to whether the method uses unlabelled data (Y) or not (N)

Test error rate (%) with # labels

Approach ULD 3000 labels All Tabels

LBP + MLP N 58.23 + 5.54  40.10 + 3.88
HOG + MLP N 45.51 + 4.89  28.53 + 2.87
SIFT + MLP N 62.30 + 5.67  45.30 + 3.34
VGG-16 + MLP N 27.36 £ 2.39 1165 + 1.20
ResNet-50 + MLP N 2971 + 2,56 13.10 + 1.28
CovPoolFER + MLP N 28.85 £ 280 11.95 + 1.32
CatGAN N 25.24 £ 2.34 1788 £ 1.22
GoodBadGAN N 26.21 + 2.40  20.76 + 2.03
ALI Y 2373 + 2.83 1579 + 1.12
Triple-GAN Y 19.09 + 1.98  11.98 + 0.99
Triple-BigGAN Y 15.77 + 1.19 6.41 + 0.90

5.5. Triple-BigGAN generated labelled Samples for SFER Training data Aug-
mentation

This analysis aims to study the impact of data augmentation — through
adding synthesized images to the existing dataset — on the SFER accuracy.
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We generated 5,000 synthetic images using Triple-BigGAN for each category
and augmented the SEA-Faces-30k dataset to 45k images. The results of
this assessment are presented in Table 9. It is illustrated that additional
data generated by GAN helps to increase the performance of deep CNNs by
more than 3 percentage points. These results show that Triple-BigGAN can
generate images with good quality and different variations not seen in the
training dataset.

Table 9: SFER Accuracy analysis on SEA-Faces-30k data augmented with synthesized
samples

Test Error Rate (%)

Approach without synthetic images with synthetic images
VGG-16 + MLP 11.65 £+ 1.20 8.25 + 0.96
ResNet-50 + MLP 13.10 £ 1.28 10.11 £+ 1.10
CovPoolFER 11.95 £ 1.33 8.95 &+ 1.02

5.6. Triple-BigGAN for Classification: Benchmark Datasets

Additionally, we compared Triple-BigGAN with state-of-the-art semi-
supervised deep learning models on the MNIST, SVHN and CIFAR-10 datasets,
which are widely used for evaluation of classification. Following the evalu-
ation settings widely adopted [40, 77, 76, 19, 73, 12] on these datasets, i.e.,
100, 1000 and 4000 labels respectively and also all labels, we used the same
methodology for the evaluation of Triple-BigGAN too. The error rates of
the competing methods have been taken from the existing literature, except
for the Triple-GAN model, for which we did compute the results. The er-
ror rates of this classification experiment are presented in Table 10. From
the Table 10, it is evident that the proposed Triple-BigGAN obtains better
performance than all the other approaches. For CIFAR-10, when we used
4000 labels, Triple-BigGAN has shown a significant improvement compared
to Triple-GAN, i.e., the test error rate decreased from 16.99% to 8.90%. It
is also clearly demonstrated that the proposed Triple-BigGAN obtains bet-
ter or comparable accuracy in comparison to all the other state-of-the-art
methods under all different settings on the three datasets evaluated in this
experiment.

6. Conclusion and Future Work

In this work, we have proposed the Triple-BigGAN model to improve
both semi-supervised conditional image synthesis and classification. First,
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Table 10: Comparative analysis of Triple-BigGAN and the competing methods on MNIST,
CIFAR and SVHN datasets

Test error rate (%) with # labels

Approach MNIST SVHN CIFAR-10

100 labels All labels 1000 labels  All labels 4000 labels All labels
CatGAN 1.39 4+ 0.28 - - - 19.58 + 0.58 -
Improved-GAN  0.93 £ 0.07 - 8.11 £+ 1.30 18.63 + 2.32
ALI - - 742 +0.65 - 17.99 + 1.62
Triple-GAN 0.91 + 0.58 - 577 +0.17 - 16.99 + 0.36
GoodBadGAN 0.80 £ 0.10 - 4.25 £ 0.03 - 14.41 £+ 0.03
CT-GAN 0.89 + 0.13 9.98 + 0.21

EnhancedTGAN  0.42 £+ 0.03 0.27 £ 0.03 297 £0.09 2234001 942+0.22 480+ 0.07
Triple-BigGAN 0.39 £ 0.029 0.26 £ 0.02 2.85 + 0.07 2.12 +0.01 8.90 £ 0.21 4.12 + 0.06

we investigated if the facial information can be utilised for the Sexual Facial
Expression Recognition (SFER) task. Since there was no dataset publicly
available for SFER, we introduced a new dataset named as SEA-Faces-30k,
which contains challenging images under three categories: erotic, suggestive-
erotic, and non-erotic. Then, through a series of experiments, we demon-
strated that the proposed framework generates high-quality and high resolu-
tion synthetic images, and also that the synthetic images generated by our
approach can improve the error rates for supervised learning-based methods.

To evaluate the quality of the synthetic images generated by Triple-
BigGAN, we used the FID and IS scores. Using these scores, we compared
Triple-BigGAN with other state-of-the-art competitive approaches, result-
ing that Triple-BigGAN network provided comparable or better results than
these methods. Then we evaluated the strength of Triple-BigGAN for the
novel SFER task using our newly proposed SEA-Faces-30k dataset and for
this comparative analysis we used classical feature extractors as well as mod-
ern CNN and GAN based approached. Our approach not only obtained
a remarkable accuracy of 93.59% for sexual expression detection task, but
also outperformed other methods. This justifies empirically that facial infor-
mation can be exploited for SFER with high accuracy. To the best of our
knowledge, this is the first study to detect automatically sexual facial ex-
pressions. Additionally, we also compared the classification performance of
Triple-BigGAN against inference based GANs on three benchmark datasets,
i.e., MNIST, CIFAR-10, and SVHN. The Triple-BigGAN improved the state-
of-the-art results and obtained the best results on all the three datasets.

In future works, we will extend the SEA-Faces-30k dataset and improve its
limitations, We will also validate the sexual expression recognition methods
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on Child Sexual Exploitation Material (CSEM), and assess if SFER mod-
els are useful for boosting existing pornography and, subsequently, CSEM
detection methods.
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