
ar
X

iv
:c

on
d-

m
at

/0
21

15
03

v2
  [

co
nd

-m
at

.d
is

-n
n]

  1
5 

M
ar

 2
00

4

Impact of deviation from precise balance of STDP 1

Impact of deviation from precise balance of

spike-timing-dependent plasticity

Narihisa Matsumoto1,2,3 and Masato Okada2,3

1Graduate School of Science and Engineering, Saitama University,

Saitama 338-8570, Japan

2Lab. for Mathematical Neuroscience, RIKEN Brain Science Institute,

Saitama 351-0198, Japan

3PRESTO, Japan Science and Technology Agency, Saitama 351-0198, Japan

Corresponding author

Narihisa Matsumoto,

Lab. for Mathematical Neuroscience, RIKEN Brain Science Institute,

2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

Phone: +81-48-467-9664

Fax: +81-48-467-9693

E-mail: xmatumo@brain.riken.go.jp

http://arxiv.org/abs/cond-mat/0211503v2


Impact of deviation from precise balance of STDP 2

Impact of deviation from precise balance of spike-timing-dependent plasticity

Abstract

Recent biological experimental findings have shown that synaptic plasticity de-

pends on the relative timing of pre- and post-synaptic spikes and this is called

spike-timing-dependent plasticity (STDP). Many authors have claimed that a

precise balance between long-term potentiation (LTP) and long-term depression

(LTD) of STDP is crucial in the storage of spatio-temporal patterns. Some au-

thors have numerically investigated the impact of an imbalance between LTP and

LTD on the network properties. However, the mathematical mechanism remains

unknown. We analytically show that an associative memory network has the ro-

bust retrieval properties of spatio-temporal patterns, and these properties make

the network less vulnerable to any deviation from a precise balance between LTP

and LTD when the network contains a finite number of neurons.

Keywords

spike-timing-dependent plasticity; long-term depression; long-term potentiation;

retrieval properties; spatio-temporal patterns; statistical neurodynamics
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1 Introduction

Recent biological experimental findings have indicated that synaptic plasticity

depends on the relative timing of pre- and post-synaptic spikes. This relative

timing determines whether long-term potentiation (LTP) or long-term depres-

sion (LTD) is induced (Bi and Poo, 1998; Markram et al., 1997; Zhang et al.,

1998). LTP occurs when presynaptic firing precedes postsynaptic firing by no

more than about 20 ms. In contrast, LTD occurs when presynaptic firing fol-

lows postsynaptic firing. A rapid transition between LTP and LTD takes place

within a few milliseconds. A learning rule of this type is called spike-timing-

dependent plasticity (STDP) (Song et al., 2000) or temporally asymmetric Heb-

bian learning (TAH) (Abbott and Song, 1999; Rubin et al., 2001). The func-

tional role of STDP has been investigated by many authors (Gerstner et al.,

1996; Kempter et al., 1999; Abbott and Song, 1999; Munro and Hernandez, 2000;

Rao and Sejnowski, 2000; Song et al., 2000; Rubin et al., 2001; Levy et al., 2001;

van Rossum et al., 2001; Song and Abbott, 2001; Yoshioka, 2002; Fu et al., 2002;

Karmarkar and Buonomano, 2002; Matsumoto and Okada, 2002). Some of these

authors have claimed that the precise balance between the LTP and LTD of STDP

is crucial in the storage of spatio-temporal pattterns (Munro and Hernandez, 2000;

Yoshioka, 2002; Matsumoto and Okada, 2002). In our previous work, we analyti-

cally showed that STDP has the same qualitative effect as the covariance rule when

the balance is precisely maintained (Matsumoto and Okada, 2002). In the brain,

though, it is inconceivable that such a balance will be precisely maintained. Some

authors numerically have investigated the impact of an imbalance between LTP
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and LTD on network properties (Song et al., 2000; Munro and Hernandez, 2000;

Yoshioka, 2002). Munro and Hernandez showed that spatio-temporal patterns

cannot be retrieved in a noisy environment when there is no LTD (Munro and Hernandez,

2000). However, the mathematical mechanism that accounts for this remains un-

known.

In this paper, we analytically investigate the retrieval properties of spatio-

temporal patterns in an associative memory network where there is an imbal-

ance between the LTP and LTD of STDP by using a method of the statistical

neurodynamics (Amari and Maginu, 1988; Okada, 1996; Matsumoto and Okada,

2002). Using this theory, we discuss the macroscopic behavior of the network

at a thermodynamic limit: the number of neurons is infinite. When the bal-

ance is precisely maintained, sequential patterns can be stored in the network

(Matsumoto and Okada, 2002). Also, when the mean deviation from the precise

balance is 0 and the fluctuation is finite, patterns can be stored at a thermody-

namic limit (Matsumoto and Okada, 2003). This implies that when the balance

is maintained on average, patterns can be stored. We also showed that when

the mean is not 0, patterns cannot be stored since a cross-talk noise diverges at

a thermodynamic limit. However, previous work using computer simulation has

shown that the stored limit cycle is stably retrieved when the number of neurons

is finite (Munro and Hernandez, 2000; Yoshioka, 2002). In the brain, the number

of neurons is considered to be finite. Therefore, it is important to discuss this

situation, although no analytical works regarding this has been reported. The

purpose of the work reported in this paper was to analytically investigate the re-

trieval properties when the number of neurons is finite. We found that a network
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containing a finite number of neurons becomes robust regarding this deviation

from a precise balance between the LTP and LTD of STDP. Since the number

of neurons in the brain is considered to be finite, our results might apply to the

brain.

We introduce our model for the storage of spatio-temporal patterns in section

2. In section 3, we analytically discuss our model as it applies when the balance

between the LTP and LTD of STDP is precisely maintained and when it is not

precisely maintained, and in section 4 we investigate the properties of our model.

In section 5, we summarize this paper. The Appendix presents a detailed deriva-

tion of the model’s dynamical equations of the model when the balance is precisely

maintained.

2 Model

The model contains N binary neurons with reciprocal connections. Each neuron

takes a binary value: {0, 1}. We define discrete time steps and the following rule

for synchronous updating:

ui(t) =
N
∑

j=1

Jijxj(t), (1)

xi(t + 1) = F (ui(t)− θ), (2)

F (u) =











1. u ≥ 0

0. u < 0,

(3)

where xi(t) is the state of the i-th neuron at time t, ui(t) is the internal potential of

that neuron, and θ is a uniform threshold. If the i-th neuron fires at t, its state is

xi(t) = 1; otherwise, xi(t) = 0. Jij is the synaptic weight from the j-th neuron to
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the i-th neuron. Each element ξµi of the µ-th memory pattern ξµ = (ξµ1 , ξ
µ
2 , · · · , ξµN)

is generated independently by

Prob[ξµi = 1] = 1− Prob[ξµi = 0] = f. (4)

The expectation of ξµ is E[ξµi ] = f ; thus, f is considered to be the mean firing

rate of the memory pattern. The memory pattern is sparse when f → 0, and this

coding scheme is called sparse coding.

The synaptic weight Jij follows the form of synaptic plasticity, which depends

on the difference in spike times between the i-th (post-) and j-th (pre-) neurons.

This difference determines whether LTP or LTD is induced. Such a learning

rule is called spike-timing-dependent plasticity (STDP). Biological experimental

findings have shown that LTP or LTD is induced when the difference between

the pre- and post-synaptic spike times falls within about 20 ms (Zhang et al.,

1998) (Figure 1(a)). There are also other types of STDP (Abbott and Nelson,

2000). The STDP type of Figure 1(a) has often been used in theoretical work

(e.g., Song and Abbott (2001); Rao and Sejnowski (2000)). We transformed this

type of window function into the time window shown in Figure 1(b). This time

window shows that LTP is induced when the j-th neuron fires one time step before

the i-th neuron fires, i.e., ξµ+1
i ξµj = 1, while LTD is induced when the j-th neuron

fires one time step after the i-th neuron fires, i.e., ξµ−1
i ξµj = 1. We define a single

time step in equations (1–3) as 20 ms, and any duration of less than 20 ms is

ignored. A synaptic plasticity obeying this time window is described by

∆Jij = ξµ+1
i ξµj − (1 + ǫ)ξµ−1

i ξµj . (5)
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After memory patterns are embedded by STDP, the synaptic weight is written as

Jij =
1

Nf(1 − f)

p
∑

µ=1

(ξµ+1
i ξµj − (1 + ǫ)ξµ−1

i ξµj ), (6)

where the value 1
Nf(1−f)

is a scaling factor and the number of memory patterns is

p = αN where α is defined as the loading rate. If both the i-th neuron and the

j-th neuron fire simultaneously, neither LTP nor LTD occurs because equation (6)

does not include the term of ξµi ξ
µ
j . Since the relative LTP and LTD magnitudes

are more critical than the absolute magnitudes, the LTD magnitude changes while

the LTP magnitude and the time duration are fixed. ǫ denotes deviation from a

precise balance. When ǫ = 0, the balance is precisely maintained and this model

is equivalent to the previous one (Matsumoto and Okada, 2002). A sequence of p

memory patterns is stored by STDP: ξ1 → ξ2 → · · · → ξp → ξ1 → · · ·. In other

words, ξ1 is retrieved at t = 1, ξ2 is retrieved at t = 2, and ξ1 is retrieved at

t = p + 1. There is a critical value αC of the loading rate, so that a loading rate

higher than αC causes retrieval of the pattern sequence to become unstable. αC

is therefore called the storage capacity.

3 Theory

3.1 The Case where Balance is Precisely Maintained

Here, we briefly discuss the case where the balance is precisely maintained, which

we previously discussed in detail (Matsumoto and Okada, 2002). This discussion

will help explain the case where the balance is not precisely maintained.

First, we consider a simple situation where there are very few memory patterns
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relative to the number of neurons; i.e., p ∼ O(1). Let the state at time t be

equivalent to the t-th memory pattern: x(t) = ξt. The internal potential ui(t) of

equation (1) is then given by

ui(t) = ξt+1
i − ξt−1

i . (7)

ui(t) depends on two independent random variables, ξt+1
i and ξt−1

i . The first term

ξt+1
i is the signal term for the recall of the pattern ξt+1, which is intended to be

retrieved at time t+ 1, and the second term ξt−1
i may interfere with the retrieval

of ξt+1. According to equation (7), ui(t) takes a value of 0, −1 or +1. The

probability distribution of ui(t) is given by Figure 2(a); i.e.,

Prob(ui(t)) = (f−f 2)δ(ui(t)−1)+(1−2f+2f 2)δ(ui(t))+(f−f 2)δ(ui(t)+1). (8)

If the threshold θ is set between 0 and +1, the probability of ui(t) = 0 is 1− 2f +

2f 2, that of ui(t) = +1 is f − f 2, and that of ui(t) = −1 is f − f 2. The overlap

between the state x(t+ 1) and the memory pattern ξt+1 is given by

mt+1(t+ 1) =
1

Nf(1− f)

N
∑

i=1

(ξt+1
i − f)xi(t+ 1) = 1− f. (9)

At a sparse limit, the overlap mt+1(t + 1) approaches 1. In other words, the

memory pattern ξt+1 is retrievable.

Next, we consider the case where there is a large number of memory patterns,

i.e., p ∼ O(N). The i-th neuronal internal potential ui(t) at time t is given using

the periodic boundary condition of ξp+1
i = ξ1i and ξ0i = ξpi by

ui(t)=
1

Nf(1− f)

N
∑

j=1

p
∑

µ=1

(ξµ+1
i ξµj − ξµ−1

i ξµj )xj(t) (10)

= (ξt+1
i − ξt−1

i )mt(t) + zi(t), (11)

zi(t)=

p
∑

µ6=t

(ξµ+1
i − ξµ−1

i )mµ(t). (12)



Impact of deviation from precise balance of STDP 9

The first term in equation (11) is the signal term for the recall of pattern ξt+1.

The second term is the cross-talk noise term that represents the contributions

of non-target patterns other than ξt−1, and prevents the retrieval of the target

pattern ξt+1. The cross-talk noise is assumed to obey a Gaussian distribution

with mean 0 and time-dependent variance σ2(t). We derive the recursive equation

for the overlap mt(t) between the state x(t) and the target pattern ξt by using

the method of the statistical neurodynamics (Amari and Maginu, 1988; Okada,

1995; Matsumoto and Okada, 2002) to calculate the overlap mt(t). The recursive

equation is given by

mt(t) =
1− 2f

2
erf(φ0)−

1− f

2
erf(φ1) +

f

2
erf(φ2), (13)

where φ0 = θ√
2σ(t−1)

, φ1 = −mt−1(t−1)+θ√
2σ(t−1)

, φ2 = mt−1(t−1)+θ√
2σ(t−1)

. Since φ0, φ1, and φ2

include σ(t− 1), mt(t) depends on σ(t). The recursive equation for σ(t) is

σ2(t) =

t
∑

a=0

2(a+1)C(a+1)αq(t− a)

a
∏

b=1

U2(t− b+ 1). (14)

The recursive equations for U(t) and q(t) are given by

U(t) =
1√

2πσ(t− 1)
{(1− 2f + 2f 2)e−φ2

0 + f(1− f)(e−φ2

1 + e−φ2

2)}, (15)

and

q(t) =
1

2

(

1− (1− 2f + 2f 2)erf(φ0)− f(1− f)(erf(φ1) + erf(φ2))
)

, (16)

where erf(y) = 2√
π

∫ y

0
exp (−u2)du, bCa = b!

a!(b−a)!
, a! = a × (a − 1) × · · · × 1.

The details of this derivation are given in the Appendix. To obtain the storage

capacity αC , we calculate the overlap in the steady state. We set the initial state

of the network at the first memory pattern: x(1) = ξ1. Setting the initial values at
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m1(1) = 1, σ2(1) = 2αf , U(1) = 0, and q(1) = f and using the recursive equations

(13-16), we obtain the overlap in the steady state. There is a critical value αC of

the loading rate, so that the loading rate higher than αC causes retrieval of the

pattern sequence to become unstable. In computer simulation, when the overlap

in the steady state is smaller than 0.5, the critical loading rate is regarded as the

storage capacity αC .

3.2 The Case Where Balance is not Precisely Maintained

The case where balance is not precisely maintained is difficult to treat because the

mean of the cross-talk noise is not 0. However, previous work using computer sim-

ulations has shown that the stored limit cycle is stably retrieved when the number

of neurons is finite (Munro and Hernandez, 2000; Yoshioka, 2002). However, this

mathematical mechanism has remained unknown. To investigate this unknown

mechanism, we will use the theory derived in section 3.1.

First, let the state at time t be equivalent to the t-th memory pattern: x(t) =

ξt. The i-th neuronal internal potential ui(t) at time t is then given using the

periodic boundary condition of ξp+1
i = ξ1i and ξ0i = ξpi by

ui(t) =
1

Nf(1− f)

N
∑

j=1

p
∑

µ=1

(ξµ+1
i ξµj − (1 + ǫ)ξµ−1

i ξµj )xj(t) (17)

=
1

Nf(1− f)

N
∑

j=1

p
∑

µ=1

(ξ̄µ+1
i − ξ̄µ−1

i )ξ̄µj xj(t)

− ǫ

Nf(1− f)

N
∑

j=1

p
∑

µ=1

ξµ−1
i ξµj xj(t), (18)

where ξ̄µj = ξµj − f . Here, we evaluate the second term; that is, the compen-

sation term in equation (18). The average of this term is αf

1−f
ǫNq(t) where
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q(t) = 1
N

∑N

j=1 xj(t) = f when x(t) = ξt. A typical value of this term is 0.19

for N = 5000, α = 0.067, ǫ = 0.05 and f = 0.1, which are typical values used

in the following analysis. This value is small enough for the overlap mt(t) ≃ 1.

The fluctuation in the compensation term can be eliminated since the order of the

variance of this term is smaller than that of the average. Therefore, the average

term of the compensation term adds to the signal term in equation (11).

Next, we will discuss a mechanism that enables memory patterns to be re-

trieved in the small ǫ and finite N case. The internal potential with x(t) = ξt is

given by

ui(t) = ξt+1
i − ξt−1

i − αf 2

1− f
ǫN. (19)

When ǫ 6= 0, each distribution of ui(t) shifts by αf2

1−f
ǫN as shown in Figure 2(b).

For the typical case at N = 5000, α = 0.067, ǫ = 0.05, f = 0.1, and θ = 0.52,

each distribution of ui(t) would shift left by 0.19. Since the threshold is 0.52, the

probability of ui(t + 1) = +1 is little changed. In other words, for the small ǫ

and finite N case, retrieval of the next pattern ξt+1 is successful. Otherwise, the

retrieval fails.

Since the average term of the compensation term adds to the signal term in

equation (11), the i-th neuronal internal potential ui(t) at time t is given by

ui(t) = (ξ̄t+1
i − ξ̄t−1

i )mt(t) +

p
∑

µ6=t

(ξ̄µ+1
i − ξ̄µ−1

i )mµ(t)− αǫfN

1− f
q(t). (20)

Here, the first term is the signal term and the second is the cross-talk noise term.

The third term is the compensation term. Statistical neurodynamics enables us

to derive dynamical equations. These equations are almost the same as those

in section 3.1 other than φ0, φ1 and φ2. In φ0, φ1 and φ2, θ is replaced by
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θ + αǫfN

1−f
q(t− 1).

4 Results

We used statistical neurodynamics and computer simulation to investigate the

properties of our model and examine its behavior.

Figure 3 shows the dependence of the overlap mt(t) on the loading rate α when

the mean firing rate of the memory pattern is f = 0.1 and the threshold (optimized

to maximize the storage capacity) is θ = 0.52. The solid line denotes the steady-

state values of the overlap mt(t) at ǫ = 0.0 in (a) and ǫ = 0.05 in (b). We obtained

mt(t) by setting the initial state of the network at the first memory pattern:

x(1) = ξ1. The storage capacity is αC = 0.27 in (a) and αC = 0.067 in (b). The

data points and error bars (with the former indicating median values and the latter

indicating 1/4 and 3/4 deviations) show the computer simulation results from 11

trials with 5000 neurons (N = 5000). The discrepancy between the values of mC

obtained from the computer simulations and the analytical results was caused by

the finite size effect of the computer simulations (Matsumoto and Okada, 2002).

Figure 4(a) shows the storage capacity αC as a function of ǫ. In the computer

simulaton, when the overlap in the steady state is smaller than 0.5, the critical

loading rate α is regarded as the storage capacity αC . The data points and error

bars (with the former indicating mean values and the latter indicating standard

deviations) show the computer simulation results from 10 trials at f = 0.1, θ =

0.52, and N = 3000 (�) or N = 5000 (◦). The solid line shows the theoretical

results at N = 3000, while the dashed line and the gray solid line show the results
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at N = 5000 and N = 100000, respectively. As |ǫ| increased, αC decreased. When

ǫ = 0.5, the storage capacities for N = 3000 and N = 5000 were 0.017 and 0.011,

respectively. However, the storage capacity for N = 100000 was 0. In other words,

when the number of neurons is finite, αC takes a finite value. These computer

simulation results are consistent with the theoretical results at small ǫ. Figure

4(b) shows the maximum number of storable memory patterns, pmax = αCN , as

a function of ǫ. This is replot of Figure 4(a). The solid line shows the theoretical

results at N = 3000, while the dashed line and the gray solid line show the results

at N = 5000 and N = 100000, respectively. As |ǫ| increased, actual number of

storable memory patterns decreased.

Figure 5 shows αC as a function of ǫ. The solid line shows the theoretical results

at f = 0.1 and θ = 0.52, while the dashed line shows log10 αC = − log10Nǫ+1.435

at N = 5000, f = 0.1, and θ = 0.52. This figure shows that αC converged to 0 as

the order of 1
Nǫ

(i.e., O( 1
Nǫ

)) at a large Nǫ limit.

5 Summary and Discussion

We have investigated, using an associative memory network, how the balance be-

tween the LTP and LTD of STDP affects the retrieval of spatio-temporal patterns.

Other authors have numerically investigated the impact of an imbalance between

LTP and LTD on network properties. We have analytically investigated the re-

trieval properties by applying statistical neurodynamics. In the case where the

value of LTD deviates from a precise balance the stored limit cycle using STDP

is unstable at the thermodynamic limit. However, the stored limit cycle is sta-
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ble when the number of neurons is finite. Moreover, computer simulation results

were consistent with the theoretical results at small ǫ. Thus, a network contain-

ing a finite number of neurons becomes robust against deviation from a precise

LTP/LTD balance. Since the number of neurons in the brain is considered to

be finite, our results might be applicable to the brain. Furthermore, the storage

capacity converges to 0 as O( 1
Nǫ

) at a large Nǫ limit.
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Appendix. Derivation of Recursive Equations when

Balance is Precisely Maintained

In this appendix, we derive recursive equations for the overlap mt(t) when the

balance between the LTP and LTD of STDP is precisely maintained. We divide

an internal potential ui(t) at time t into two parts, a signal term for a retrieval of

a target pattern and a cross-talk noise term that represents the contributions from

non-target patterns and prevents the target pattern from being retrieved. ui(t) is

derived from equation (6) and the periodic boundary conditions of ξp+1
i = ξ1i and

ξ0i = ξpi in the following way:

ui(t)=
1

Nf(1− f)

N
∑

j=1

p
∑

µ=1

(ξµ+1
i ξµj − ξµ−1

i ξµj )xj(t) (21)

= (ξt+1
i − ξt−1

i )mt(t) + zi(t), (22)

where zi(t) is given by

zi(t) =

p
∑

µ6=t

(ξµ+1
i − ξµ−1

i )mµ(t), (23)

and mµ(t) is the overlap between ξµ and x(t) and which is given by

mµ(t) =
1

Nf(1− f)

N
∑

i=1

(ξµi − f)xi(t). (24)

The first term in equation (22) is the signal term and the second term is the

cross-talk noise term. Since xi(t) in equation (24) depends on ξµi , the distribution

of the cross-talk noise term zi(t) is unknown. The dependence on ξµi is extracted

from xi(t) using the Taylor expansion.

At time t, the pattern ξt is designed to be retrieved. Therefore, we can

assume that mt(t) is order of 1 with respect to N (i.e., mt(t) ∼ O(1)) and
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mµ(t)(µ 6= t) is order of 1/
√
N with respect to N (i.e., mµ(t) ∼ O(1/

√
N)).

Since mµ(t) ∼ O(1/
√
N), mµ−1 and mµ+1 are order of 1/

√
N with respect to N .

At a thermodynamic limit, N → ∞, mµ−1 and mµ+1 are small. To extract the

dependence on ξµ from xi(t), the i-th neuronal state at time t+1 is transformed:

xi(t+ 1)=F (

p
∑

ν=1

(ξν+1
i − ξν−1

i )mν(t)− θ) (25)

=F (

p
∑

ν 6=µ

(ξ̄ν+1
i − ξ̄ν−1

i )mν(t)− θ)

+ξ̄µi (m
µ−1(t)−mµ+1(t))F ′(

p
∑

ν 6=µ

(ξ̄ν+1
i − ξ̄ν−1

i )mν(t)− θ) (26)

=x
(µ)
i (t+ 1) + ξ̄µi (m

µ−1(t)−mµ+1(t))x
′(µ)
i (t + 1), (27)

where ξ̄µi = ξµi − f , x
(µ)
i (t + 1) does not include ξµi , and x

′(µ)
i (t) is the differential

of x
(µ)
i (t). Using this relationship, we derive the cross-talk noise at time t:

zi(t) =

p
∑

µ6=t

(ξµ+1
i − ξµ−1

i )mµ(t) (28)

=
1

Nf(1− f)

p
∑

µ6=t

N
∑

j=1

(ξ̄µ+1
i − ξ̄µ−1

i )ξ̄µj x
(µ)
j (t)

+

p
∑

ν 6=t

U(t)(ξ̄ν+1
i mν−1(t− 1)− 2ξ̄ν−1

i mν−1(t− 1) + ξ̄ν−1
i mν+1(t− 1)),(29)

where U(t) = E[x
′(µ)
i (t)]. Therefore, the square of zi(t) is given by

(zi(t))
2=

(

1

Nf(1− f)

)2 p
∑

µ6=t

N
∑

j=1

(ξ̄µ+1
i − ξ̄µ−1

i )2(ξ̄µj )
2(x

(µ)
j (t))2

+

p
∑

ν 6=t

U(t)2(ξ̄ν+1
i mν−1(t− 1)− 2ξ̄ν−1

i mν−1(t− 1)

+ξ̄ν−1
i mν+1(t− 1))2 (30)

= (12 + (−1)2)αq(t) + (12 + (−2)2 + 12)αq(t− 1)U2(t)

+(12 + (−3)2 + 32 + (−1)2)αq(t− 2)U2(t)U2(t− 1) + · · · (31)
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=
t

∑

a=0

2(a+1)C(a+1)αq(t− a)
a
∏

b=1

U2(t− b+ 1), (32)

where p = αN , q(t) = 1
N

∑N

i=1(x
(µ)
i (t))2, bCa = b!

a!(b−a)!
and a! is a factorial with

positive integer a. We applied the relationship
∑b

a=0(bCa)
2 = 2bCb in this deriva-

tion. At a thermodynamic limit, N → ∞, mµ(t) tends to be deterministic. There-

fore, x
(µ)
i (t) is independent of ξµi . This enables us to assume that the cross-talk

noise term obeys a Gaussian distribution with a mean of 0 and time-dependent

variance σ2(t): E[zi(t)] = 0,E[(zi(t))
2] = σ2(t). Since the distribution of the cross-

talk noise term is known, recursive equations for mt(t) and σ2(t) are obtained. We

get the recursive equation for σ2(t):

σ2(t) =

t
∑

a=0

2(a+1)C(a+1)αq(t− a)

a
∏

b=1

U2(t− b+ 1). (33)

The overlap between the state x(t) and the target pattern ξt is given by

mt(t) =
1

Nf(1− f)

N
∑

i=1

(ξti − f)xi(t) =
1

Nf(1− f)

N
∑

i=1

(ξti − f)F (ui(t)) (34)

=
1

Nf(1− f)

N
∑

i=1

(ξti − f)F ((ξti − ξt−2
i )mt−1(t− 1) + zi(t− 1)− θ). (35)

Since ui(t) is independent and identical distribution (i.i.d.), by the law of large

numbers, we can replace the average over i by an average over the memory patterns

ξµ and the Gaussian noise term z ∼ N (0, σ2). Then, the recursive equation for

the overlap mt(t) is transformed:

mt(t) =
1

f(1− f)

1√
2πσ

∫ ∞

−∞
dze−

z
2

2σ2 〈〈(ξt − f)

×F ((ξt − ξt−2)mt−1(t− 1) + z − θ)〉〉 (36)

=
1

f(1− f)

1√
2π

∫ ∞

−∞
dz̃e−

z
2

2 〈〈(ξt − f)
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×F ((ξt − ξt−2)mt−1(t− 1) + σ(t− 1)z̃ − θ)〉〉 (37)

=
1− 2f

2
erf(φ0)−

1− f

2
erf(φ1) +

f

2
erf(φ2), (38)

where erf(y) = 2√
π

∫ y

0
exp (−u2)du, φ0 =

θ√
2σ(t−1)

, φ1 =
−mt−1(t−1)+θ√

2σ(t−1)
, φ2 =

mt−1(t−1)+θ√
2σ(t−1)

,

and 〈〈·〉〉 denotes an average over the memory pattern ξµ. Since x′
i(t)− x

′(µ)
i (t) ∼

O( 1√
N
) and the thermodynamic limit N → ∞ is considered, x

′(µ)
i (t) = x′

i(t). Using

this relationship, we derive U(t):

U(t) =
1

N

N
∑

i=1

x
′(µ)
i (t) =

1

N

N
∑

i=1

x′
i(t) (39)

=
1√
2π

∫ ∞

−∞
dze−

z
2

2 〈〈F ′((ξt − ξt−2)mt−1(t− 1) + σ(t− 1)z − θ)〉〉 (40)

=
1√

2πσ(t− 1)
{(1− 2f + 2f 2)e−φ2

0 + f(1− f)(e−φ2

1 + e−φ2

2)}. (41)

Since xi(t)−x
(µ)
i (t) ∼ O( 1√

N
) andN → ∞, x

(µ)
i (t) = xi(t). Using this relationship,

we derive q(t):

q(t)=
1

N

N
∑

i=1

(x
(µ)
i (t))2 =

1

N

N
∑

i=1

(xi(t))
2 (42)

=
1√
2π

∫ ∞

−∞
dze−

z
2

2 〈〈F 2((ξt − ξt−2)mt−1(t− 1) + σ(t− 1)z − θ)〉〉 (43)

=
1

2

(

1− (1− 2f + 2f 2)erf(φ0)− f(1− f)(erf(φ1) + erf(φ2))
)

. (44)



Figure legends

Figure 1: The time window of spike-timing-dependent plasticity. (a): Results of

the biological experiment (Zhang et al., 1998). (b): STDP in our model. LTP

occurs when the j-th neuron fires one time step before the i-th neuron. LTD

occurs when the j-th neuron fires one time step after the i-th neuron.

Figure 2: Probability distribution of the i-th neuronal potential ui(t) at time t.

(a)The balance between the LTP and LTD of STDP is precisely maintained; i.e.,

ǫ = 0. (b)The balance is not precisely maintained; i.e., ǫ 6= 0. Each distribution

shifts by αf2

1−f
ǫN .

Figure 3: The solid line shows the overlap in the steady state when the firing

rate of stored patterns is 0.1 at ǫ = 0.0 in (a) and ǫ = 0.05 in (b). The storage

capacity is 0.27 in (a) and 0.067 in (b). In both figures, the threshold is 0.52 and

the number of neurons is 5000. The data points indicate the median values and

the ends of the error bars indicate 1/4 and 3/4 derivations, respectively, from 11

computer simulation trials.



Figure 4: (a)The storage capacity αC and (b)the maximum number of storable

memory patterns, pmax = αCN , (b) as a function of ǫ. The data points and error

bars (with the former indicating the mean values and latter indicating standard

deviations) in (a) show computer simulation results from 10 trials at N = 3000

(�) or N = 5000 (◦). The solid line, dashed line and gray solid line show the

theoretical results at N = 3000, N = 5000, and N = 100000, respectively. All

results were obtained at f = 0.1 and θ = 0.52. As |ǫ| increased, αC and pmax

decreased.

Figure 5: Storage capacity αC as a function of ǫ at N = 5000, f = 0.1, and

θ = 0.52. The solid line shows the theoretical results while the dashed line shows

log10 αC = − log10 Nǫ+ 1.435. αC converged to 0 as O( 1
Nǫ

) at a large Nǫ limit.
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