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Abstract—Many researchers have argued that combining cannot guarantee that the residuals of the linear component
many models for forecasting gives better estimates than single may comprise valid non-linear patterns. Nevertheless, a sin-

time series models. For example, a hybrid architecture compris- g1a” component is able to model such seasonal series if the
ing an autoregressive integrated moving average model (ARIMA)

and a neural network is a well-known technique that has recently M0deling procedure is carried out properly. In this paper, we
been shown to give better forecasts by taking advantage of Present a comparison of the performance of these approaches,
each model's capabilities. However, this assumption carries the expanding upon our preliminary work (Taskaya-Temizel &
danger of underestimating the relationship between the model's Ahmad, 2005).

linear and non-linear components, particularly by assuming |, gaction Il we first discuss the hybrid techniques designed
that individual forecasting techniques are appropriate, say, for

modeling the residuals. In this paper, we show that such combina- 07 time series analysis. In Section Ill we present single
tions do not necessarily outperform individual forecasts. On the Models to analyze seasonal time series. Section IV describes

contrary, we show that the combined forecast can underperform the experimental model design, whilst Section V details the

significantly compared to its constituents’ performances. We experiments and results. Finally, we conclude this work and
demonstrate this using nine data sets, autoregressive linear and discuss our future work in Section VI

time-delay neural network models.

II. MODEL COMBINATION TECHNIQUES

|. INTRODUCTION There are a range of combination techniques that can be

Research in time series forecasting argues that predictieplied to forecasting that attempt to overcome the deficiencies
performance improves in combined models (Bishop, 1994f single models. The difference between these combination
Clemen, 1989; Hansen & Nelson, 2003; Hibbert, Pedreira, @chniques can be described using terminology developed
Souza, 2000; Terui & van Dijk, 2002; Tseng, Yu, & Tzengfor the classification and neural network literature (Sharkey,
2002; Weigend, Mangeas, & Srivastava, 1995; Zhang, 20802). Here we focus upon cooperative ensembles and more
Zhang & Qi, 2005). The motivation for combining modelgeneral cooperative and competitive architectures.
comes from the assumption that either one cannot identifyln an ensemble architecture, the aim is to reduce the risk
the true data generating process (Terui & van Dijk, 200®f using an inappropriate model by combining several to
or that a single model may not be sufficient to identifyeduce the risk of failure. Typically this is done because the
all the characteristics of the time series (Zhang, 2003). Fénderlying process cannot easily be determined (Hibon &
example, a time series may exhibit both linear and non-linegr¥geniou, 2005). Ensemble architectures comprise several
patterns during the same time interval. In such cases, neithéedundant models designed for the same function, where the
linear nor non-linear model is able to model both componerdéversity of the components is thought important (Brown,
simultaneously. Wyatt, Harris, & Yao, 2005). An overall forecast is produced

Using a hybrid technique that decomposes a time serf®$ combining the models’ outputs, say by an average or
into its linear and non-linear form has recently been showR@ajority vote. Ensemble models can be homogeneous, such
to be successful for single models (Zhang, 2003; Zhang & Using differently configured neural networks (all multi-
Qi, 2005). In particular, it has been argued that for seasofdyer perceptrons) (Zhang & Berardi, 2001), or heterogeneous,
time series, the seasonal component is first required to $¢h as with both linear and non-linear models (Terui & van
removed by a linear model, such as a seasonal autoregresBifl, 2002; Wichard & Ogorzalek, 2004). However, these
process, before any further analysis takes place (Tseng et &ichitectures do not always lead to better estimates when
2002; Zhang & Qi, 2005; Nelson, Hill, Remus, & O’Connorcompared to single models. For example, it has been shown
1999; Virili & Freisleben, 2000). However, this assumptiofhat combined forecasts do not necessarily dominate for all
carries the danger of underestimating the relationship betweepA _ , _ . ,
the components as there may not be any additive associaq'g n abbreviated version of some portions of this article appeared in

! ) > kaya-Temizel and Ahmad (2005), as part of the IJCNN 2005 conference
between the linear and non-linear elements. In addition, op@ceedings, published under the IEEE copyright.



series; sometimes a linear model still produces better resutiedule, thus causing overall performance degeneration.
(Terui & van Dijk, 2002).
In a cooperative modular combination, the aim is to fuse I1l. M ODELS FORSEASONAL TIME SERIES

mcl)dtg-ls tosb#"dka ngg)pzletihplcwre fro?] a.mtjrr]nt;)er of cpj)alrtlal Many conventional statistical techniques decompose a time
solutions (Sharkey, )- The assumption is that a mode M&ies into trends, seasonalities, cycles and irregular fluctua-

not be sufficient to represent the complete behavior of a Uf8ns. such decomposition facilitates forecasting by providing

series, for example if the time series exhibits both linear ar ights regarding the nature of the time series. The decom-

non-linear features, neither linear models nor non-linear mo Gsition process comes from the idea that economic theories
els alone are capable. A good exemplar are models that f

. : St are relevant in the long run are different to the theory one
ARIMA with neural networks. An ARIMA process combines ishes to apply in the short run (Harvey, 1997).

three different processes comprising an autoregressive (A\% yclic patterns are oscillations that generally have a fixed

function regressed on past values of the process, moving aver-. Lo .
riod. Seasonality is regarded as a special case of cycles

age (MA) function r.egressed on a.purely random process W\f/%vﬁwose periods are calendar fixed. In economic data, there is
mean zero and varianes, and an integrated (I) part to make. ; id hat busi | .

the data series stationary by differencing. In such hybriamcreafSlng evidence that business cycles are not symmetric
' hatfield, 2004). Asymmetric cyclic behaviors in the econ-

whilst the neural network model deals with non-linearity, th : : . .
. . . my can be explained as the rate of change in recession, being
ARIMA model deals with the non-stationary linear componen;. : ; ;
ifferent to the rate of change in emerging from recession.

(Tseng et al., 2002; Zhang, 20035 Zhang & Q." 2005). Su ell-known data sets such as the sunspot and Canadian lynx
models are generally constructed in a sequential manner, with

the ARIMA model first applied to the original time series, an crnes (R?O & Sabr, 192.34) s.hpw evidence of iasy”_‘met”c
) . . cycles, with such behavior difficult to model with linear
then its residuals modeled using neural networks.

. ; hni .
Different hybrids of ARIMA and neural networks haveteC ques. . .
If the cyclic patterns are not of direct interest, one can
also been constructed. For example, ARIMA parameters have ) . L
. : : remove them by seasonal differencing conditional on the
been used as a window to build a neural network architecture . L . .
tochastic variation present in the data. Trend and seasonality
(Hansen & Nelson, 2003), whereas neural networks have also o
rqmoval processes are referred as pre-whitening methods. If

been trained with past obser'vations, comprising the origir}%e cyclic patterns are of interest, one can apply seasonal
data and ARMA forecasts (Hibbert et al., 2000). However, | dels. In the case of cycles tr;at are symmetric, linear

is typically assumed that the residuals of a linear componern . : )
. . . . model variants can be employed, whereas a time series
are always going to include valid non-linear patterns that can o S :
) . at exhibits multiplicative seasonality can be transformed
be modeled using neural networks (Zhang, 2003; Zhang . o . : .
. . . info additive form using functional transformations such as
Qi, 2005). Such assumptions are likely to lead to unwant .
. . A ogarithms (Box & Cox, 1996).
degeneration of performance if the opposite situation occurs.N n-linear models (Kantz & Schreiber. 1999 " al
In a competitive architecture the aim is to build appropriate 0 ear models (Ka : chreioer, ) ca &S0
used to explain, and give forecasts for, data exhibiting

modules to represent different parts of the time series, and . . :
Sgular cyclic behaviors and are an alternative to the use of

be able to switch control to the most appropriate. For examplg, . o S )
rmonic components, especially if the behavior is asymmetric

a time series may exhibit non-linear behavior generally, b . . .
this may change to linearity depending on the input condition 'hatﬁeld., 2004.)' Howgver, a linear AR model can be app|.|ed
a non-linear time series such as to the sunspot data set if the

Early work on threshold autoregressive models (TAR) used L L
Wo ydifferent linear AR procesges each of Whi(Ch c)han ge series is short (Rao & Sabr, 1984). Some empirical results

control among themselves according to the input values (To ow that linear models dominate in the short run and non-

1990). An alternative is a mixture density model (BishoﬂI ear models perform well in the long run (Terul & van Dijk,

1994), also known as non-linear gated expert (Weigend et 902). Moreover, some results show that seasonal series cannot

1995), which comprises neural networks integrated with ¢ modeled successfully with neural networks (Zhang & Qi,

feedforward gating network. Mixture models have been a|33’°5?. Tseng et ‘."‘l" 2002; Nelson et al., 1999). Howeyer, no
extended to comprise Gaussian AR components (Wong & gn|f|cant attention has been s_how_n to model selection for
2000), which work in-situ and are often homogeneous. Wh"g{eural networks and preprocessing in these results.

each mixture network learns to specialize on different proba-
bility density functions of the targets, the gating network learns
to switch to the appropriate component based on the inputin this paper, our main aim is to investigate whether the
(Jacobs, Jordan, Nowlan, & Hinton, 1991). Such models gperformance of hybrid models shows consistent improvement
thought superior because they can model general conditionaér single models. For this purpose, we compute linear AR,
densities (Bishop, 1994), whereas conventional neural networ&ural network and ARIMA neural network hybrid models,
approaches approximate the conditional average of the targehstructed using a range of parameters to determine the best
data by minimizing the sum-of-squares error function. Tharchitecture. Our main goal is to evaluate the use of hybrid
major drawback of such architectures is that there may be umedels and to achieve this, we set out to answer the following
wanted effects if control is switched to a less well-performinguestions:

IV. MODEL DETAILS



A) How important is preprocessing for neural networks®herea are the AR parameterg, is the mean of the series
How does detrending affect the performance? and Z, is a random process with mean 0 and variange

B) Are neural networks able to model seasonality? If they As a model selection criterion, we employed Akaike’s
are, how can we construct optimal architectures? Information Criterion (AIC), which takes into account the

C) Compared to linear autoregressive models, how succesgmber of parameters fitted. AIC chooses the best fit, as

ful are neural networks? measured by the likelihood function subject to a penalty
D) Are ARIMA neural network hybrids better than singleterm (Chatfield, 2004). However, as AIC is biased for small
models? samples, we preferred the bias-corrected version of AICC
In this section, we present details of the models used ¢gurvich, Simonoff, & Tsai, 1998):
answer these questions. AICC, = —2In(67) +2p+2p(p+1)/(T—p—1) (3)
A. Neural Network Design whereT is the sample sizei? = (I'—p—1)~" ZtT:p ¢2 and

Temporal data can be modeled using neural networks @mare the model residuals. The AICC value was calculated for

two ways. The first way is to provide recurrent connectiorfders between 1 and 20. Then the lowest value was selected
from output nodes to the preceding layer (Elman, 1990). TREONY the results.
second way is to provide buffers on the output of the nod€s Autoregressive and Neural Network Hybrid Design

(see Haykin (1999) for a detailed survey on neural networks o hybrid model comprising a linear and a non-linear com-

for temporal data modeling). A time-delay neural networkonent has been employed in the experiments (Zhang, 2003):
(TDNN) is a well-known exemplar for the latter models that

has been employed throughout our experiments. In a TDNN, Yo = Le + Ne )
each layer is connected to its preceding layer’s buffered outpwhereL; is the linear AR component amdl; is the non-linear
and is therefore able to relate current input to past valuesmponent. First, we model the linear part by fitting an AR
(Waibel, Hanazawa, Hinton, Shikano, & Lang, 1989). A subsginction to the data series. Then, the residuals are modeled
of the TDNN architecture is the input delayed neural networksing neural networks. Let be the residual of the linear
(IDNN), in which the memories are only provided in thecomponent, then:

input layer (Clouse, Giles, & Horne, 1997). Their simplicity re =y — Ly (5)

of implementation has made them widely used in time Sergs e i, is the estimate of the linear AR component. For

analysis (Zhang & Berardi, 2001; Zhang, 2003; Zhang & QI. _ " . .
2005: Tseng et al., 2002; Weigend et al., 1995). ron-linear patterns, we use neural networks:

The activation function for nodéat time¢ of a TDNN is: Pt = f(Tt—1,Tt—2, s Tt—g) (6)
M T whereq is the number of input delays anfis the non-linear
yi(t) = £ | D) wij(t — d)y;(t — d) (1) function. So the combined forecast will be
J=td=t Yt = Li+#+e (7)

where y;() is the output of node at time ¢, w;;(t) is the wheree¢, is the error of the combined model. Since linear
connection weight between nodeand j at timet, T" is the AR models cannot model non-linearity, we assume that the
number of tapped delays/ is the number of nodes connectedesiduals of the linear component will contain non-linear
to nodei from preceding layer, anflis the activation function, patterns, which a non-linear component, such as a neural
typically the logistic sigmoid. In this paper, we consider th@etwork, should be able to model. In this way, the hybrid

case when we have tapped delays in the input layer only. model is exploiting the strength of both components.
We consider TDNN configurations @t : 25 : 1, wherel <

i,7 < 16 andi, j € Z*. Each configuration was tested with 30 ] : ] ]
different random initial conditions to provide an average root /N this section, we describe the experiments and results
mean square error (RMSE) on the test data. Here we fod{idertaken to answer the questions set in Section IV. We
on RMSE only for model comparison, rather than using oth&glécted nine monthly time series as used by Zhang and Qi
error criteria. Details of the training procedure used can §@005) for the experiments. Monthly series were selected as
found in Taskaya-Temizel and Ahmad (2005). Note that tﬁgey exhibit stronger segsonallty than that of quarterly time

neural networks are trained on normalized data formed usifgfies- None of the series are seasonally adjusted, but do

V. EXPERIMENTS AND RESULTS

the z-score of the original data. comprise trends (see Table I). All data series end at December
2001. The last 12 values have been reserved for testing, the
B. Linear Autoregressive Process Design preceding 12 values for validation, whilst the rest are used

A linear AR process has been employed throughout tfi@r training. This low number of test and validation samples

experiments. A proces¥; is said to be an AR process ofvas selected because of the small size of the data sets. It
orderp if: is recognized that this is less than ideal, but is used for

comparison with Zhang and Qi (2005), as is one-step-ahead
Xe=p+ar(Xy—p)+ ... +0op(Xop — 1) + Z4 (2) forecasting.



TABLE |
DATA SETS USED IN EXPERIMENTS THE SECOND COLUMN SHOWS THE
START DATE OF THE DATA SERIES THE LAST COLUMN SHOWS THE TOTAL
NUMBER OF DATA POINTS IN THE DATA SETS

trained using data preprocessed with differencing or first order
polynomial trend fitting, as per Zhang and Qi (2005). The
mean result is shown based on training 256 different TDNN
architectures for 30 trials, each starting with different random
initial conditions. Eight out of nine data sets preprocessed

Data Set Start Date| Data Point o : o .
Uggc E;ta” O?;lggaze a ?zoom S with differencing performed significantly better than with trend
USBC Hardware 01/1992 120 fitting. However, we can conclude that one should consider
USBC Clothing 01/1992 120 both detrending techniques for modeling with neural networks
USBC Furniture 01/1992 120 and choose the best-performing from the results because this
USBC Bookstore 01/1992 120 . . .

FR Durable Goods | 01/1947 660 will typically depend upon the data set. For the nine data sets,
FR Fuels 01/1947 576 differencing appears to give better results, and hence we use
FR Consumer Goods 01/1970 384 this in the subsequent experiments.

FR Total Production | 01/1947 660

For neural networks, preprocessing helps to make the data
have a constant mean and variance. One should expect good
forecasts if the data set has been properly adjusted according
A. Experiment 1: How does detrending affect the performante the nature of the series before training. The experiments
of neural networks? indicate that the trends in the data sets cannot be adequately

Althouah neural networks are said to be universal a rocg;\ptured by straight lines, which means a deterministic trend is
9 Pprogs restrictive, which is also inline with the Harvey’s (1997)

. R o)
imators, they have certain limitations. It has been shown that . . . ‘
. . . result. However, we note that if the time series evolves in

neural networks are not able to model a time series containin . o .
onential or multiplicative form, the first step should be

trend, since non-linear transfer functions, such as the logis IC polv transformations such as taking the looarithm of the
sigmoid, constrain the model to the input range values (Co?— PPy 9 9

) . series.
trell, Girard, Girard, Mangeas, & Muller, 1995). Therefore, it
is important to eliminate trend before training, where ideallg. Experiment 2: How can we construct optimal neural net-
a stationary time series that has constant mean and variameek architectures for seasonal time series?

should be used for modeling. Non-stationarity in the mean |p, this experiment, we investigated whether neural networks
attributed to trend can be removed either by differencingre apble to model seasonal time series. For each data set, we
(stochastic trends) or polynomial fitting (deterministic trendsge|ected the TDNN configurations that produced the best mean
However, there is no successful method that determines Whi%‘rformance (lowest RMSE) out of 256 (see Table Ill), and
detrending method is suitable for a given series (Zhang &mpared these with Zhang and Qi's (2005) TDNN model,
Qi, 2005). Although the importance of detrending is knowyho determined the number of the input nodes and delays
for neural networks, this has yet to be fully investigated. Thgecording to the nature of the autocorrelation in the time series.

forecasting ability of neural networks can be helpful in unyote that their results report the best-fit model among 5 trials
derstanding whether differencing or trend fitting can be mogg 9g architectures only.

appropriate in order to make the time series stationary in the

mean. TABLE Il

COMPARISON OFTDNN ARCHITECTURES THE SECOND COLUMN SHOWS
THE BESTTDNN CONFIGURATION OBTAINED FROM256 MODELS. THE
THIRD COLUMN PRESENTS THE MEAN AND STANDARD DEVIATION OF
RMSERESULTS OF CORRESPONDING MODELS BASED OBO TRIALS. THE
LAST COLUMN (*) SHOWS THE BEST FIT RESULTS OZHANG AND QI

TABLE Il
TDNN MEAN AND STANDARD DEVIATION RMSEFOR TESTING DATA
SETS PREPROCESSED WITH DIFFERENCING AND TREND FITTING

Data Sets Differencing Trend Fitting (2005)

USBC Retail 1446.78-457.84 | 2177.04:542.28

USBC Hardware 73.26+ 20.99 | 111.06+ 31.30

USBC Clothing 1148.58-427.17 | 848.59-207.98 Data Sets Model TDNN TDNN *

USBC Furniture 27994 4420 | 285.974 24.09 USBC Retail 16:2:1 | 628.70£28.27 | 1785.77

USBC Bookstore 224.86E 36.97 | 296.08t 38.18 USBC Hardware 14:4:1 | 35.70t 6.90 105.12

FR Durable Goods 431+ 053 7.83+ 1.27 USBC Clothing 14:2:1 | 372.50£50.66 | 1117.72

FR Fuels 2.28+ 0.30 251+ 054 USBC Furniture 16:2:1 | 173.10£31.10 | 226.68

FR Consumer Goods 1.80+ 0.22 2.58+ 0.52 USBC Bookstore 12:2:1 | 91.5110.41 170.49

FR Total Production 1.95+ 0.19 342t 1.42 FR Durable Goods | 12:16:1 2.914+ 0.34 5.98
FR Fuels 32:2:1 1.64+ 0.13 1.83
FR Consumer Goods 24:2:1 1.0+ 0.20 1.48
FR Total Production | 28:2:1 1.074 0.05 1.62

In the literature, both detrending techniques have been
applied regardless of observing their performances on testing
data sets. For example, whilst Virili and Freisleben (2000) The TDNN trained on first-order differenced data sets
adopted differencing, Zhang and Qi (2005) employed treqmtoduced lower RMSE than the TDNN* for all data sets,
fitting. Table Il shows the TDNN testing data set RMSE whewith improvement on USBC retail (64%), hardware (66%),



USBC Bookstore Testing Data Set Error

clothing (66%), furniture (24%), bookstore (46%), FR durable
goods (51%), fuels (10%), consumer goods (28%), and total = :

r -300
r 280

@@ b At
& |

production (34%).

We found that the number of input delays in optimum
TDNN architectures shown in Table Il is highly correlated
with the cycle information obtained from Fourier Analysis
for each data set. We recently reported an algorithm to
configure optimum TDNN architectures for analyzing cyclic
series (Taskaya-Temizel, Casey, & Ahmad, 2005), finding that
the number of input delays should be selected by taking into
consideration the longest cycle information and the number
of input weights in the network. On the five USBC data sets A o
having size of 120, we found that there are no significant =
longer cycles than 12. If we assume a relaxation -ef , o
as per Zhang and Qi (2005), we can approximate the best * ° * Y ime 2 * 0%

performed TDNN input layer design in Table IIl. For longer
USBC bookstore testing data set performance based on average

series such as FR total production exhibiting several C.yc.l glle For each configuration, the mean RMSE is calculated over 30 trials.
such as 24, 37, 42 and 63 months, we undertook a simil@fan RMSE is grouped into discrete bands to show the error landscape
experiment with configurations varying betwen: 25 : 1, corresponding to the different layer sizes.
wherel < 4,5 < 33. We observed that the network gives its
best performance o#3 : 2 : 1, which is close to 42 periods
obtained from Fourier Analysis, but the performance degrades =
in larger input sizes, such as in 63. In addition, the number
of hidden layer nodes should be kept small as generalization % .
performance reduces for networks with larger hidden layers.
This result agrees with the application of a TDNN to S&P
financial time series (Sitte & Sitte, 2000). However, in these
experiments the conclusion was that the input layer does not
play a significant role in neural network design, perhaps due -,
to the selected series following a random walk, in contrast to
our results. These results also disagree with the application of
a TDNN to the exchange rate data between British pound and
US dollar (Zhang & Berardi, 2001). Although the time serial
data exhibits a random walk, they conclude that forecasting
ability of neural networks are not sensitive to the number of 2 S0 M e, 2@
hidden nodes but sensitive to the number of input nodes.

In order to investigate the effect of the input and hiddeFfig. 2. FR fuels testing data set performance based on average RMSE. For
Iayers on the overall performance of TDNNs, we calculate‘ii‘Ch config_uratio_n, the mean RMSE is calculated over 30 trials. Mean RMSE

o IS grouped into discrete bands to show the error landscape corresponding to

the mean RMSE of 30 randomly initialized TDNNs for eackhe gifferent layer sizes.
configuration. Fig. 1 illustrates the testing set performance of
USBC bookstore time series. The x-axis and y-axis show the
hidden and input layer sizes, respectively. The bar on theln addition, we found that there is no significant evidence
right side of the figure shows the correspondence betwegat one should incorporate autocorrelation structures. Zhang
RMSE and shading, with dark depicting lower errors. It iand Qi (2005) included 10 various lag numbers of 1-4, 12-
apparent that the RMSE is significantly large when the inpait, 24, 25 and 36 for the original and detrended data where
layer size is less than 12 (corresponds to a year) and that #e@asonality exists. They attributed this to the observations
best fit results are obtained for a lower number of neurobging 12, 24 and 36 months apart, with high correlation, and
in the hidden layer. The error surface of FR fuels (see Figence it is necessary to include these lags in the input layer.
2) shows similar results. In addition, the performance in théowever, the performances of the neural networks comprising
input layer degrades after 14 in Fig. 1, however not as mug# delays in the input layer did not yield the best results in
as the performance variation between networks having inguir experiments.
layer with size of 12 and less. The other notable result is that ] ) ]
the neural networks give good estimates when the input layer EXperiment 3: Performance comparison of linear autore-
size is close to that of extracted cycle information. In Fig. Bressive and neural networks
the darkest regions are clumped around 12 and 30, which arén this section, we compare the performance of linear mod-
two of the cycles found in the FR fuels data set. els with neural networks. Linear AR models were constructed
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using the AICC criteria as described in Section I\2BThe adversely affects the performance of the AR estimate, resulting
performance of the validation set was used for model selectiam.an overall poorer performance.

TABLE IV
AR MODEL PERFORMANCE THE SECOND COLUMN SHOWS THEAR iy —
ORDER IDENTIFIED BY AICC. THE THIRD COLUMN PRESENTS THERMSE — ~— —~ Prediction of Residual
OF THEAR MODEL. THE LAST COLUMN (*) IS THE RMSE OF ZHANG son |

AND QI'S (2005) ARIMA MODEL

Data Set AR Order | Test Error [ ARIMA * N

USBC Retail 11 551.84 1005.41 =

USBC Hardware 2 25.75 100.71 7l

USBC Clothing 14 350.49 519.60

USBC Furniture 13 179.65 124.44

USBC Bookstore 12 111.17 98.17

FR Durable Goods 15 2.72 5.61 -y

FR Fuels 13 1.53 1.62

FR Consumer Goods 13 0.97 3.96

FR Total Production 15 0.85 8.94 =L 5 7 E B 0 0

Tirme Index

Our seven out of nine AR models performed considerabiyy. 3. The residuals of the AR process and the neural network prediction on
better than the ARIMA models constructed by Zhang and AR residuals. Although there is some correlation between the predictions,
(2005) (see Table IV). However the best fit results of th%;igllgl].er time indices, the prediction differs significantly to the actual
TDNN show a lower RMSE was obtained than AR fits of the
USBC retail (6%), hardware (31%), clothing (28%), furniture |n Table V, we compared our hybrid model performances
(29%), bookstore (38%), FR durable goods (28%), fuelgith zhang and Qi's results. In their model construction, they
(45%), and consumer goods (13%) but not on total productigged the X-11 method (current X-12-ARIMA) developed by
(-1%). Our results show that a TDNN can outperform a line@fie Bureau of the Census, which includes several seasonal
model if the TDNN is configured appropriately. adjustment methods. On average, we outperformed on three

out of nine data sets. Recall that all our comparisons in the
Hables are based on mean and standard deviation of RMSE
obtained over 30 trials, whilst Zhang and Qi’s (2005) results

The hybrid architectures we tested were constructed fare based on the best fit. Comparing our best fit results, we
lowing the procedure described in Section IV-C. We firssutperformed on six out of nine data sets: on the USBC
detrended the time series and fitted linear AR to the detrendedail (46%), hardware (63%), clothing (20%), furniture (11%),
data, using the AR model orders shown in Table IV. Themookstore (22%), FR durable goods (46%), but not on fuels
we modeled the residuals of AR using 256 different TDNN-3%), consumer goods (-23%) and total production (-1%).
architectures. Finally, for each data set, we selected the TDNN
configurations that produced the best mean performance over TABLE V
30 trials (Iowest RMSE) from the 256. HYBRID ARCHITECTUREPERFORMANCE THE SECOND COLUMN SHOWS

AR hybrlds performed better than single AR m0d8|S on SiX THE BESTTDNN MODEL ORDER IDENTIFIED FOR THE RESIDUALS OF
out of nine data sets (compare Table IV and V). However-'NEAR AR. THE THIRD COLUMN IS THE MEAN RMSE OF THE HYBRID
we Observed a degeneration in performance in the USB\@DEL AND THE FOURTH COLUMN(*) IS THE BESTFFIT HYBRID RESULTS
retail and clothing data sets. In the hybrid model, while the OF ZHANG & Q1 (2005)
linear component is estimated by the AR model, the residual

D. Experiment 4: Are ARIMA neural network hybrids bett
than single models?

error (that is the error between the AR estimate and the [Data Sets Model | AR+TDNN ARIMA+
orlglnal data) is esprnated by a neural ngtwork. Howeve_r, this USEC Rt A BB R A N BE e
residual error exhibits randomness, lacking the properties for Gsgc Hardware >10:1 | 25.39F 3.80 | 49.17
a successful estimate by neural networks. The residual error [USBC Clothing 2:4°1 | 381.76£10.70 | 315.43
and the residual error predicted by the neural network are b'ggg Eumk'“:fe 251160511 1;3-;%12-3; gg-‘?‘i
: . . . . 0okKstore o . . .
shovyn in Flg._ 3. This plot |nd|p§tes tha_t the error between the =55 Goods T 221 > 71L 0.05 363
predicted residuals and the original residuals is greater than the ER Euels 18 41 152F 0.12 081
error between zero (representing the case of no prediction, or [FR Consumer Good$ 4:2:1 | 0.9& 0.03 | 0.68
just AR) and the residuals. This means that the neural network R Total Production| 2:2:1] 083f 002] 085

2The Matlab programs to build autoregressive models and neural networks, ther int ti Itis that th fi fi ti
as well as the autoregressive coefficients of the models, can be obtained fronAno er interesting result Is that the optmum coniigurations

http:/Awww.computing.surrey.ac.uk/personal/st/T. Taskaya/ of five out of nine of the TDNNs in the hybrid models have



similar input layer sizes. The tapped delays reveal that tAmalysis (Taskaya-Temizel et al., 2005) and the hidden layer
AR models successfully removed the cyclic components frosize is small, relating to the generalization capabilities of the
the differenced series, whilst the residuals appeared to follm&twork.

a non-linear random walk model. For the three sets USBCC) Compared to linear autoregressive models, how success-
retail, furniture and FR fuels, the TDNN configurations show ful are neural networks?

that AR models could not successfully remove the long timghen the mean RMSE of the TDNNs are compared to linear
cycles from the time series. _ AR processes, they outperform in two out of the nine data sets.

Fig. 4 shows the percentage performance improvement {gen the best fit results are compared, the TDNNs outperform
the mean and best fit of the TDNN, best fit of the AR neurghe AR processes in eight out of nine data sets. However, to

network hybrid and AR single models as compared t0 thihtain these better results requires effort in configuring the
mean of hybrid architecture. For four out of the nine data sefgtwork appropriately.

the mean hybrid outperforms the single model. However, for,
five of the data sets, either the linear AR or TDNN model * 405

outperforms the hybrid. Of these improved single models, .. : .
three significantly outperform the hybrid. These improvemen%sOr five of the nine data sets, the linear AR and TDNN models

. . outperform the ARIMA neural network hybrids, albeit with
appear to be related to model configuration, where selection ™. .
- similar levels of performance for two of these data sets. This
for generalization performance allows for better results.

demonstrates that, despite the popularity of hybrid models,
which rely upon the success of their components, single mod-
els themselvesan be sufficient. Perhaps the danger in using
ARIMA neural network hybrids is that there is an assump-
tion that the relationship between the linear and non-linear
components is additive and this may degrade performance if
the relationship is different (for example multiplicative). In
addition, one may not guarantee that the residuals of the linear
component may comprise valid non-linear patterns.

These results show that hybrids are not always better,
and hence that the model selection process still remains an
important step despite the popularity of hybrid models. We
have focused on a limited subset of hybrid models, and
therefore further work is required to assess the generated
performance of hybrid models in comparison to single models.
- - -, Following on from these results, there are still some questions
Percentage Performance ] BestRyoria to be answered. For example, we also plan to work on model

[ Best TDNN
[ Mean TDNN

B Lincar AR selection procedures for TDNN architectures. In our earlier

work, we found that there is a strong relationship between

Fig. 4. Percentage performance improvement for the mean and best fitjgk cycle information obtained from Fourier Analysis and the
the TDNN, best fit of the AR neural network hybrid and AR single models b f ights in th | ks. Wi il furth

as compared to the mean for the hybrid architecture. number of weights In the neural networks. We will further

investigate the impact that this has on generalization capability.

D) Are ARIMA neural network hybrids better than single
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