
Interactive Image Data Labeling Using
Self-Organizing Maps in an Augmented Reality

Scenario
Holger Bekel, Gunther Heidemann and Helge Ritter

Neuroinformatics Group
Bielefeld University

P.O. Box 10 01 31, D-33501 Bielefeld, Germany
E-mail: {hbekel,gheidema,helge}@techfak.uni-bielefeld.de

Neural Networks, Vol. 18, No. 5/6, 2005

Abstract— We present an approach for the convenient labeling
of image patches gathered from an unrestricted environment. The
system is employed for a mobile Augmented Reality (AR) gear:
While the user walks around with the head-mounted AR-gear,
context-free modules for focus-of-attention permanently sample
the most “interesting” image patches. After this acquisition phase,
a Self-Organizing Map (SOM) is trained on the complete set
of patches, using combinations of MPEG-7 features as a data
representation. The SOM allows visualization of the sampled
patches and an easy manual sorting into categories. With very
little effort, the user can compose a training set for a classifier,
thus, unknown objects can be made known to the system. We
evaluate the system for COIL-imagery and demonstrate that a
user can reach satisfying categorization within few steps, even
for image data sampled from walking in an office environment.1

I. INTRODUCTION

The increase of computational power accompanied by ever
continuing miniaturization has made mobile systems become a
part of the everyday life. One of the main challenges in mobile
computing is the development of user assistance systems
which can support a human in variable and “generic” tasks.
Examples for such tasks in everyday life are the memorization
of faces or the retrieval of lost objects. In this paper, we
describe a mobile system which is capable of interactive object
learning from examples and retrieving objects out of view.
The focus of this contribution is on the efficient organiza-
tion and visualization of the online labeling process using
the mobile gear by means of self-organizing maps (SOMs)
[Kohonen, 1982], [Kohonen, 1995].

The mobile system used here is an augmented reality
(AR) gear with two head-mounted cameras and a display by
which the user views the original scene together with overlays
(“augmentations”) of the system (Fig. 1). Our system employs
the view-based approach for object recognition and interactive
object learning.

1An abbreviated version of some portions of this article appeared in
[Bekel et al., 2005], as part of the IJCNN 2005 conference proceedings,
published under the IEEE copyright.

The concept of memorizing views instead of explicit geo-
metric and surface reflectance models offers the well-known
advantage that object knowledge can be conveniently ac-
quired from samples (e.g. [Koenderink and van Doorn, 1979],
[Murase and Nayar, 1995], [Mel, 1997]). However, still sam-
ple views must (i) be labeled, (i.e. the object class must by
supplied by the user in some way), and (ii) be made available
in sufficient number to cover the complete “appearance space”
of the object. While this problem applies to view based
recognition in general, it imposes particular difficulties to
mobile systems, where labeled view acquisition requires user
effort.

In earlier versions of the AR-system presented here, the
user had to present the objects to the system one by one and
isolated on homogeneous background. Using the mobile in-
terface, typically 5–10 sample views were acquired per object
quite conveniently, then the classifier was re-trained internally
[Heidemann et al., 2004a], [Heidemann et al., 2004b]. How-
ever, this procedure still requires considerable effort and is,
moreover, unsatisfying from a cognitive point of view: Chil-
dren do not learn to recognize an object in a one-time process
of memorizing views under a given class label! Instead,
children explore their surroundings by repeated interaction
with many objects and often learn the label (i.e. the class) of
an object much later. I.e., they form the concept of a certain
object much earlier than learning its name.

Led by these considerations, the concept of the mobile
object recognition system presented here can be summarized
as follows: The system samples views from its environment
permanently while the user moves around in a restricted envi-
ronment (e.g. an office). Since it is impossible to memorize the
entire input stream of images, context-free modules for focus-
of-attention provide a selection of possibly “interesting” image
patches, a subset of which hopefully contains the relevant
objects. After a period of sampling, the user can switch into
“labeling” mode. The system then trains a SOM using features
extracted from the sample patches and visualizes prototypes of
the samples in the spatial organization imposed by the SOM.
Thus, the system provides a “pre-categorization” of the viewed
domain, which allows the user to select and label the subset
of relevant objects (e.g. cup, pencil) while discarding others

NEURAL NETWORKS 18 (2005) 566–574 2

(e.g. background structures).
SOMs are particularly well-suited for the combined task

of (i) mapping a high-dimensional and highly non-linear data
distribution to only two dimensions while (ii) conserving local
neighborhood relations for fast and easy-to-use visualization,
see e.g. [Kohonen, 1995], [Martinetz and Schulten, 1994],
[Villmann et al., 2003]. There are numerous applications of
SOMs for unsupervised clustering and visualization, exam-
ples can be found in [Somervuo and Kohonen, 1999] or
[Tokutaka et al., 1999]. Most similar in thought to the present
application is probably the PICSOM system, which organizes
images using tree-structured SOMs to support the user in re-
trieval tasks [Laaksonen et al., 2002]. An overview of the mul-
tifaceted applications of SOMs is given in [Oja et al., 1999].

However, pre-categorization achieved by the SOM can only
be as good as the underlying data representation. There-
fore, features for the characterization of the extracted im-
age patches have to be found which not only reduce data
dimensionality but also generate descriptions of high vari-
ance, a well-balanced cluster structure and high discrimina-
tive power. Only if feature extraction fulfills these criteria,
is there a chance to obtain semantically meaningful cate-
gories by clustering techniques. In the context of compres-
sion, refs. [Manjunath et al., 2001] and [Sikora, 2001] pro-
pose MPEG-7 features to encode efficiently the majority of
image characteristics. Since it is well known that combining
different types of features helps to fulfill the above criteria
[Deselaers et al., 2004], the combinations of MPEG-7 features
have been analyzed statistically in [Eidenberger, 2003]. In this
work, SOMs are used to analyze contributions of different
MPEG-7 features to variance and cluster formation. Because
of the good results MPEG-7 features have achieved, we
employ part of the feature set in combination with a SOM
for fast clustering, visualization and interactive labeling in the
mobile system.

After this short outline of the idea, we will describe first
the scenario and the interactive functionality of the system
in section II, then the features sets (section V) and the
iterative SOM training (section III). The system is evaluated in
section VI on the COIL-dataset, an example for the efficiency
achieved by iterative SOM projections is given in a “real
world” scenario in section VII. Results and future lines of
development are discussed in section VIII.

II. SYSTEM DESCRIPTION

A. Scenario

The experimental setup is part of the VAMPIRE project
(Visual Active Memory Processes and Interactive REtrieval).
The work is aimed at the development of an active memory
and retrieval system in the context of an augmented reality
scenario. An important subtask is the recognition of objects
and simple actions in an office environment. Here, a user
sits in front of a desk or moves around in his office (Fig.1).
Two head-mounted cameras observe the scene in front of the
user, the images are permanently visualized in a “see-through-
loop” to the head-mounted display, together with overlayed
“augmentations” of the system. Such augmentations are e.g.

Fig. 1. User with head mounted cameras and display. The input is looped
back into the display and enhanced by visual augmentations.

classifications of recognized objects, as well as tools for
interaction like buttons and menus (Fig. 3). The long term
goal of the project is a “personal assistant”, which acquires
knowledge about the environment and can answer queries for
information about objects or retrieve “lost” objects.

The system brings up questions of multi-modal interaction
with mobile systems [Heidemann et al., 2004a], online cate-
gorization and learning, and active memory architectures. No
effort was spent on miniaturized hardware: The user wears
a backpack with a laptop for frame grabbing, early image
processing, visualization, audio in/output and communication
tasks. Additional processing units are connected via WLAN.

B. System architecture and control flow

The system consists of several independently running mod-
ules which are organized in a flat architecture. There are
basically three types of components: Input modules for pro-
cessing of vision and speech, output modules for display of
augmentations and menus as well as auditory feedback, and a
control module (Fig. 2).

The input modules are independent of each other and
provide a continuous stream of processing results. The control
module is realized as a finite state machine. Its state depends
on the current task, e.g. “acquisition of object samples”, “struc-
turing image data”, or other menu interaction. Depending on
the state, the control module selectively evaluates the currently
relevant data from the input modules, switches between states,

NEURAL NETWORKS 18 (2005) 566–574 3

State machine
for control

MenusAugmentations Auditory
feedback

Fingertip
recognitionrecognition

Object

Skin color
segmentation

Saliency maps

Speech
processing

Attention map

SOM
training

Fig. 2. System architecture: Input modules running in parallel are evaluated
by a central control module, realized as a state machine. State transitions
reflect varying modes or tasks. The state machine is the “client” of the visual
and auditory output servers, to which it directs its output.

and sends data to the output modules. The latter display
augmentations, give auditory feedback, and show appropriate
menus, highlighting, etc. The output modules are in the role
of servers, which act on requests of the client, i.e. the control
module. For efficiency, the control module deactivates input
modules currently not needed.

Since the focus of this paper is the categorization
and semi-automatic labeling of image data, we refer to
[Heidemann et al., 2004a] for a more detailed description of
the control flow and the modules.

C. Menu based control

For communication with the system, on the right hand side
of the image displayed in the AR-gear a semi transparent menu
is overlayed. Fig. 3 shows the “SOM” sub-menu, which is
displayed to label image data interactively. There are three
types of menu buttons: triggers, which cause a certain action
to be carried out, check-buttons, which can be turned “on”
or “off”, and sets of exclusively coupled radio-buttons. E.g.,
as long as the check-button “Show Examples” is active, the
examples matched on a selected node are being displayed.
The trigger “Retrain Som” retrains the SOM (after selection
of new feature weights, see section V).

For reliable menu communication, buttons must be first
selected, then pressed. Selection can be carried out by speech,
naming the label of the button, or by gesture (user indicates
a button with his/her finger). After selection by gesture, the
button can be pressed either using speech (“Yes”), or by
moving the finger inwards. If a button was selected by speech,
it must also be “pressed” using speech. Menu operation is
accompanied by visual and auditory feedback for selection and
pressing. In principle, eye-tracking would be another suitable
method for fast menu control, however, here we prefer a
method which is intuitively simple for the user and does
not require additional apparatus. Of the various functionalities

Fig. 3. Menu control by fingertip: The user carries out a “pressing” gesture
on a button. The system analyzes the position and the movement trajectory
to recognize ”Selected” and ”Pressed” events. Here the user wants to display
the best match examples of a selected node of the overlaid SOM.

controlled by menus, here only the interactive acquisition of
image data and the subsequent labeling using SOMs will be
explained in the following.

III. IMAGE ACQUISITION

The acquisition of image patches is controlled by the
“Record” sub-menu. In this mode, the system permanently
records image patches supposed to be salient by the attention
module. Selection of the most salient patches not only restricts
the amount of data to be memorized, but is in itself part of
the recognition and categorization system: Only such local
patterns which can be reliably detected by the attention module
are promising candidates for labeling and training.

The attention module is therefore an important com-
ponent of the system. It consist of several indepen-
dently working modules for interest point (IP) detec-
tion, specialized on different structures such as edges and
corners [Harris and Stephens, 1988] or color symmetries
[Heidemann, 2004]. Here, we can only outline the most simple
but highly effective IP-detector. It draws on principles realized
in human visual system [Treue, 2001]: The image stream
of one camera is convolved with a 3 × 3 Laplacian filter.
The output is multiplied pixel-wise (not convolved) with a
Gaussian kernel, which is centered in the image and has a
variance of half the image size. Thus, the focus is set on
the center of the image. Subsequently, the image is smoothed
by convolution with a 5 × 5 Gaussian kernel. Variance of
this kernel is chosen such that object borders obtained by
the Laplace-filtering become connected (Fig. 4). Connectivity

NEURAL NETWORKS 18 (2005) 566–574 4

Fig. 4. Left: Image patch of the camera input. Right: Output of the attention
module. The white frame surrounds the computed salient regions marked by
a cross at the center.

analysis of a binarized version yields IPs centered on salient
regions, around which patches of pre-defined size are recorded
to an intermediate memory.

The acquisition of patches suffers from two types of dis-
ruptions: Blurring by motion, and the recording of identical
patches if there is no movement for some time. Therefore, we
employ a motion suppression algorithm to stop recording dur-
ing strong movements. The algorithm computes the location
of corresponding IPs over the last frames. An IP I ti is defined
to correspond to I t−1

j if It−1
j = mink d(Iti , I

t−1
k) < t1, where

d(·, ·) is the distance in the image plane, and t1 is a proximity
threshold. To discard unstable IPs caused by flicker or other
disruptions, the operator starts motion computation only if
the correspondence for an IP can be established for at least
three frames. Motion is assumed “strong” and patch recording
suppressed if

1

n

n∑

j=1

| 1

∆t

∆t∑

i=1

Itj − It−ij | > t2, (1)

holds, where n is the number of stable pursued IPs and t2 a
threshold for the strength of the tolerated movement. Once a
period of strong motion ends, IP-centered patches are recorded
only once to avoid multiple sampling of static scenes. So,
samples are recorded after each movement, then the system
waits for the next movement.

IV. IMAGE FEATURES

MPEG-7 defines a standard for image analysis and compres-
sion [MPEG-7, 2001], including the definition of color, edge
and texture features. Based on a study of [Eidenberger, 2003],
we employ a combination of three of these features to cover
as much as possible of the image characteristics: (i) The edge
histogram which represents the distribution of edges (tailored
version of the algorithm), (ii) the color layout descriptor,
and (iii) the scalable color descriptor. The descriptors can be
outlined only in short, see [Manjunath et al., 2001] for details.

A. Edge Histogram

The spatial distribution of edges is captured by the edge
histogram descriptor. First, the image patch is subdivided
in 4 × 4 sub-images. In the standard MPEG-7 descriptor,
for each of these sub-images an edge histogram is com-
puted. The edge directions are sorted into five prototypical

Number of Blocks 128 256 512 1024 2048
Edge Length of Block 12 8 6 4 2

TABLE I
BLOCK SIZES AND CORRESPONDING EDGE LENGTHS OF THE BLOCKS FOR

EDGE FEATURE COMPUTATION OF THE TEST DATASETS.

directions: horizontal, vertical, 45 deg, 135 deg, and non-
orientation specific. To compute these histograms, the sub-
images are divided into a desired number of blocks. Each
of these blocks is treated as a 2 × 2 pixel image, where
the new pixel gray values are computed by averaging the
values of the corresponding pixels. The edge strength of
each block is computed by convolution with 2 × 2-filters
for each direction, for details see [Manjunath et al., 2001].
In the standard MPEG-7 descriptor, the dominant edge type
of this block contributes to the corresponding histogram if
its strength exceeds a given threshold. The behavior of this
descriptor depends on the block size. Tab. I depicts the block
size for different numbers of blocks for COIL images of size
128 × 128. To avoid loss of information for small images,
a modified descriptor was applied which evaluates all five
values for the local edge strength to gain a continuous value
for each edge type per sub-image. Thus, for both descriptors
the image partitioned in 16 sub-images results in 80 values.
Additionally, performance is increased using for each edge
type a global average value which is appended to the feature
vector, as proposed in [Park et al., 2000]. The performance for
both descriptors with different numbers of blocks is compared
in section VI-A.

B. Color Layout

To take into account the spatial color distribution, the
“compact color layout descriptor” is applied. First, RGB color
values are transformed to YCrCb. Then the image is divided
into 64 blocks (on an 8 × 8 grid) and the average color
computed for each block. On the 8 × 8 grid of average
color values, a discrete cosine transform is computed. For
the combined feature vector used here, the low-frequency
coefficients are selected by zig-zag scanning. As proposed in
[Manjunath et al., 2001], we use six Y, three Cr and three Cb
coefficients.

C. Scalable Color

The “scalable color descriptor” is a global color feature. It
is based on a histogram of HSV color values and a subsequent
Haar transform for efficiency and to make the histogram
scalable.

The basic steps of this algorithm are as follows. The HSV
space is quantized to 256 bins, which include 16 levels in
H, 4 levels in S, and 4 levels in V. Bin values are non-
uniformly quantized to a value ranging from 0 to 211. Before
performing the Haar transform, all bin values are further
normalized by a nonlinear quantization to 4-bit values, giving
higher significance to the small values with higher probability.

NEURAL NETWORKS 18 (2005) 566–574 5

Finally, a Haar transform calculates high-pass (realized by
a difference operation on adjacent bins) and low-pass (real-
ized by a sum-up operation on adjacent bins) coefficients.
Regarding the histogram as a 16 × 16 matrix, a histogram
with half the number of bins is obtained by summing pairs of
adjacent histogram lines. Performing this step iteratively, the
Haar transform results in a histogram of 128, 64, 32, . . . bins.
Thus, the scalability is given by the number of iterations.
This process is also used to encode the histogram using the
high-pass coefficients which can be seen as its fine resolution
representation. Due to the expectation that adjacent colors vary
only slightly, they usually have small values which can be
mapped to 8-bit values by a linear quantization. The feature
vector contains these integer values of the desired number of
bins. Here, a quantization of 64 bins is applied.

V. ITERATIVE LABELING

After sample patches have been memorized over a period
of time as outlined in section III, the features described in
section IV are extracted. The patches sampled from the office
environment comprise highly different structures, such as parts
of shelves, edges of tables as well as objects on the desk.
So, only part of the patches are samples of relevant objects.
Since labeling the huge amount of patches manually is a
cumbersome task, in a first step (“pre-screening”) the samples
are mapped onto a SOM to discard irrelevant patches. Then,
iterative mapping of the remaining sample patches to (new)
SOMs allows labeling. We will first describe the standard
SOM, then the iterative labeling procedure using SOMs with
changeable weights for individual feature blocks.

A. Self Organizing Map

We apply a standard SOM as proposed by Kohonen
[Kohonen, 1995]. SOMs provide the possibility to project high
dimensional data onto a low-dimensional grid while preserving
topology. One major advantage of the SOM is its ability to
visualize data of high dimensionality [Vesanto, 1999].

The SOM consists of a set of prototype or weight vectors
wi ∈ IRn which are associated with the nodes of a regular low
dimensional grid. After initialization with random weights, the
prototypes are trained iteratively using the learning rule

wi(t+ 1) = wi(t) + α(t) · hc(x),i(t) · (x(t) −wi(t)), (2)

where t is the iteration step index and c(x) denotes the
best matching prototype with the smallest euclidian distance
to a randomly chosen sample x(t) ∈ IRn. The adaption is
controlled by the neighborhood function hc(x),i(t) and the
learning rate function α(t), both decreasing monotonically
with time t. Usually, a Gaussian neighborhood function is
applied:

hc(x),i(t) = exp

(
−||ri − rc(x)||2

2σ2(t)

)
, (3)

with ri and rc(x) denoting the position of the corresponding
grid nodes. The width of the neighborhood function is varied

by the monotonically decreasing function σ(t). In contrast
to other vector quantization algorithms, the constraint of the
neighborhood function leads to preserving topology. Thus,
SOMs are especially well-suited for structuring and visualizing
image data in our approach.

B. Iterative Labeling and Retraining

Data labeling is carried out in iterative steps of training
SOMs, visualization, and labeling. First, the features described
in section IV are used to form the combined feature vector x,
which is a concatenation of the weighted feature blocks:

x? = (we ∗ x1, . . . , we ∗ xm, wc ∗ xm+1, . . . , wc ∗ xn), (4)

with a common weight we for each component of the m-
dimensional edge feature block, and a weight wc for the (n−
m)-dimensional block of color features. For the first step, the
weights we and wc are computed to normalize the variance of
each feature block.

For the sample patches represented by the x?, a two-
dimensional SOM is trained. To visualize the resulting SOM,
both the feature data set and the corresponding image patches
must be kept in memory. For each SOM node, the correspond-
ing image patch to the best match feature vector is displayed
in the AR-gear. Additionally, for each node the number of
the best match feature vectors is depicted, see Fig. 8, top. If
visualization of a SOM node by only its best match sample
patch seems not sufficient to the user, the system can be told to
display the entire subset of patches mapped on a SOM node,
e.g. by the speech command “Show me best match examples
of node (3,5)“ or selecting the corresponding row and column
with the fingertip. Now the user has three possibilities:

(1) In case the image patches show irrelevant patterns or
blurred patches, the user discards these patches, because
it is not useful to classify them.

(2) If all image patches of a node show the same object
(though maybe different views), the user can assign a
class-label and add the samples to the training data base
of the classifier.

(3) If samples mapped to one node stem from different
objects and can thus not be given a class label, the
user can assign a group ID instead to these examples. If
the examples mapped on adjacent nodes show the same
mixture of objects, they get the same group ID.

For the samples of case (1) and (2), the labeling procedure is
finished since they have either been discarded or have received
a class label and can be added to the training data set. For the
yet unlabeled samples of case (3), SOM-training is repeated
to visualize the subset again, now spread out over all nodes
of the SOM for a better visualization. In case group IDs have
been assigned, it is also possible to train individual SOMs
just for the group to achieve a still better visualization. This
iterative process of SOM-training and labeling is accompanied
by adjusting the relative feature weighting we/wc. Thus,
the user can influence the categorization by emphasizing the
feature type (edges or color) which he/she thinks to be more
discriminative. For examples see section VII. Once the training

NEURAL NETWORKS 18 (2005) 566–574 6

set is complete, a suitable classifier can be trained (which is
no subject of this paper, see [Heidemann et al., 2004b]).

VI. EVALUATION ON STANDARD DATASETS

For parameter adaptation and a reproducible evaluation
of system performance, the system was first tested on two
standard data sets:

“Orig”: A subset of 20 objects from the COIL-100 image
library [Nene et al., 1996], with 72 views for each object.
Thus, the dataset contains 1440 RGB-images of 128×128
pixels (Fig. 5).
“Distort”: The images of orig were distorted by random
translation of +/- 5 pixels in x- and y-direction and
random scaling of +/- 10%.

A. Adjustment of the edge histogram descriptor

As described in section IV-A, the number of blocks is
an important parameter of the edge histogram descriptor.
While MPEG-7 features are mostly used in image retrieval
applications describing the characteristics of sizable images,
here only small image patches are processed. Hence, the
behavior of the descriptor has to be adjusted to the application.
Therefore, we compare the standard MPEG-7 edge histogram
descriptor with a modified descriptor as described above. For
the modified descriptor, not only the vast majority of the edge
type for a block leads to an entry in the histogram, but all
edge values are processed.

For both datasets and both descriptors, feature vectors were
computed for different edge lengths of the blocks (see Tab. I).
On this feature set, a SOM of 8 × 8 nodes was trained in
15000 steps with exponentially decreasing of step size α from
0.9 to 0.1 and width σ from 2.0 to 1.0 (equation 3). This
parameterization proved to yield good results to embed the
SOM in the feature space with low errors and is kept constant
for the mobile system and further evaluation.

To each SOM node, the class label of the majority of the
matched objects is assigned. All other objects mapped to this
node are counted as errors. Fig. 6 depicts the average error
rates for ten runs for both datasets and five different block
sizes using both features. For the standard edge histogram
descriptor, error rates decrease with decreasing block size.

Generally, the error rates of the modified descriptor are
lower than the error rates of the standard descriptor. They
exhibit a clear minimum at block size 4× 4 pixel. Thus, for
small images the modified descriptor preserves discriminative
characteristics better. For the following evaluation, only the
modified descriptor with this parameterization will be used.

B. System performance evaluation

To judge the manageability of the proposed system, different
aspects are important. Computational cost for the visualization
must be small to facilitate online use. The employed edge-
and color descriptors lead to satisfying times, e.g., training
of a 8 × 8–SOM with 15000 steps on a dataset orig (1440
128 × 128 RGB-images) requires, on average, 5.3 secs on a
standard Pentium IV 2.5 GHz processor.

Fig. 5. Projection of coil imagery onto a SOM, see text.

First Training Retrain
Features Dataset Hit Errors Error Nodes Error Hit
all orig 33.5 1.083 3.1 0.069 13.2
all distort 33.9 1.861 3.9 0.083 19.7
color orig 34.0 2.013 4.3 0.333 18.3
color distort 31.7 2.569 4.5 0.243 19.9
edge orig 56.4 16.736 36.8 – –
edge distort 57.2 16.125 39.0 – –

TABLE II
ERROR RATES AND NUMBER OF ERROR NODES FOR SOM TRAINING (FOR

DETAILS SEE SECTION VI.)

Further, labeling effort must be evaluated. A good measure
is the number of nodes the user has to “touch” for labeling
the dataset, which is equal to the number of nodes to which
samples of more than one class are assigned (such that the user
has to retrain for these samples). Another important quantity
is the total number of errors in the first SOM, since it reflects
the remaining effort (a node with only 1% of wrong samples
is more likely to split up into “pure” nodes already in the next
iteration than a node with 49% of wrong samples).

Tab. II shows the results for a 8 × 8–SOM: The first
column indicates the used feature(s) (all standing for both
edges and color), the second the dataset. Column Hit gives
the percentage of nodes onto which semantically meaningful
samples are mapped (opposed to unusable samples), Errors
gives the percentage of samples mapped to such nodes onto
which different objects are mapped, and Error nodes is the
(absolute) number of nodes out of 64 onto which different
objects are mapped.

Even for the first training, Errors is low, the positive effect
of combining edge and color descriptors is obvious. From
Error nodes, it becomes clear that user effort is manageable

NEURAL NETWORKS 18 (2005) 566–574 7

even considering the constraints of a mobile system — only
3–4 nodes need re-training, the rest undergoes labeling at
once. Fig. 5 shows that, on the whole, the dataset is very
well structured. In contrast, Fig. 7 shows a selection of
objects which are often mapped together onto SOM nodes and
require retraining. The numbers are the sum of the entries of
the corresponding confusion matrix. Retraining these samples
using a 4× 4–SOM leads to error rates below 0.1% (Tab. II,
right part), so, only one additional training/labeling step is
sufficient. Moreover, the number of nodes need to be labeled
was only 13.2–19.7 in this last step (rightmost column).

Summarizing, the combination of edge and color features
leads to good pre-categorization by the SOM and thus low
labeling effort, both in terms of the number of nodes that have
to be handled and the number of retraining steps needed. Ad-
justing relative weighting of edge and color features facilitates
the process, as illustrated also in section VII.

histo (orig) histo (distort) local (orig) local (distort)
15

20

25

30

Feature (dataset)

E
rr

or

block size 12
block size 8
block size 6
block size 4
block size 2

Fig. 6. Error rates for the local edge histogram (histo) and the absolute
local edge values (local) for dataset orig selected from COIL-100 and dataset
distort.

46

all

color

all

color

color

all

color

all

color

0

43

141

191

all 17

112

55

174

158

Fig. 7. Object pairs often mapped together on SOM nodes with the number
of confusions as sum of the values in the confusion matrix for a combination
of all features in comparison to the combination of the two color features.

Fig. 8. Top: Displayed best match examples of a SOM trained with 15000
steps with equal weighting of color and edge features. The digits in the edge
of each example present the number of image patches matched on this node.
The displayed SOM is overlayed on the image stream while the user works
in the office. In the background the poster of the frog also projected onto the
SOM can be seen. The user just selected the bottom “Show Example” by the
fingertip. Bottom: Displayed examples matched on the selected node (7,7).

Fig. 9. 5× 5 SOM picture retrained on best match examples of four nodes
of Fig. 8 depicted in the display. Already in the second step the objects are
separated by training the subset with higher weight of the edge feature.

NEURAL NETWORKS 18 (2005) 566–574 8

VII. EXAMPLE FROM AN OFFICE ENVIRONMENT

To illustrate the functionality for real imagery, a user has
been moving about with the AR-gear in an office for five
minutes, sampling 670 patches from 220 frames which have
passed the motion filter. The office contains a desk, lamps,
plants, posters etc. Fig. 8, top, shows the corresponding SOM
(first training). E.g., bright objects without distinctive edges
are mapped onto nodes in upper left region. Green patches of
a poster of a frog are mapped to the middle right, adjacent
to image patches displaying parts of plants. The lower middle
region of the SOM depicts parts of shelves, including folders,
books etc. dominated by edge features. Due to the dominant
color of the desk, the upper right part shows different objects
lying on the desk.

Since the objects on the desk are of interest to the user, he
displays all image patches mapped onto node (7,7) (Fig. 8,
bottom). These patches are now shown overlaid on the SOM,
highlighted in the display by a blue frame. The image patches
mapped onto this node now obtain the same group ID. To
improve discrimination of the different objects of this group,
edge features are supposed to be more discriminative than
color features. Therefore, the user shifts the feature weighting
in favor of the edge features and trains a new SOM on this
subset. The resulting SOM is depicted in Fig. 9. Already in
this second step, the objects are completely spread out onto
different nodes and can be easily labeled.

VIII. CONCLUSION AND OUTLOOK

We have presented an augmented reality system capable of
acquiring image data for online object learning in a natural
and easy to use way. Training images are acquired simply by
walking about, modules for focus-of-attention select the most
relevant patches. Subsequently, the sampled patches can be
clustered, visualized and labeled using SOMs in iterative steps.
Using two qualitatively different types of features between
which the user can adjust weighting, the effort for labeling
huge numbers of training data is small enough for use in a
mobile system. If the acquired database covers a sufficient
variety of views, objects can be recognized in arbitrary pose.

The most promising line of future development appears to
be improving the self-organization capabilities of the system.
So far, the approach works semi-automatic, since the system
forms categories based on low-level features, which hope-
fully correspond to real world semantics. But wherever this
assumption does not apply, the user has to intervene. In future
work, we are planning a supervising module, which learns
from the users interventions. This module should learn to know
(i) typical cases where low level similarities or dissimilarities
are misleading, and (ii) the corrections of the user. Thus, it
should be possible to learn an additional distance measure,
which can gradually improve the up to now purely low-level
distance measure.

ACKNOWLEDGMENT

We would like to thank Stefanie Schwassmann for her
assistance in the implementation of the system. — This work

was supported within the project VAMPIRE, which is part of
the IST program (IST-2001-3401).

REFERENCES

[Bekel et al., 2005] Bekel, H., Heidemann, G., and Ritter, H. (2005). SOM
Based Image Data Structuring in an Augmented Reality Scenario. In
Proceedings of the International Joint Conference on Neural Networks,
Montreal, Canada.

[Deselaers et al., 2004] Deselaers, T., Keysers, D., and Ney, H. (2004).
Features for image retrieval: A quantitative comparison. In DAGM-
Symposium, pages 228–236.

[Eidenberger, 2003] Eidenberger, H. (2003). How good are visual MPEG–
7 features. In Proceedings SPIE Visual Communications and Image
PRocessing Conference, pages 5150:476–488, Lugano.

[Harris and Stephens, 1988] Harris, C. and Stephens, M. (1988). A Com-
bined Corner and Edge Detector. In Proc. 4th Alvey Vision Conf., pages
147–151.

[Heidemann, 2004] Heidemann, G. (2004). Focus-of-Attention from Local
Color Symmetries. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 26(7):817–830.

[Heidemann et al., 2004a] Heidemann, G., Bax, I., Bekel, H., Bauckhage,
C., Wachsmuth, S., Fink, G., Pinz, A., Ritter, H., and Sagerer, G. (2004a).
Multimodal interaction in an augmented reality scenario. In Proc. Int’l
Conf. Multimodal Interfaces ICMI 2004, pages 53–60. ACM Press.

[Heidemann et al., 2004b] Heidemann, G., Bekel, H., Bax, I., and Ritter, H.
(2004b). Interactive Online Learning. In Proc. PRIA 2004, pages 44–48.

[Koenderink and van Doorn, 1979] Koenderink, J. J. and van Doorn, A. J.
(1979). The internal representation of solid shape with respect to vision.
Biological Cybernetics, 32:211–216.

[Kohonen, 1982] Kohonen, T. (1982). Self-organized formation of topologi-
cally correct feature maps. Biol. Cybernetics, 43:59–69.

[Kohonen, 1995] Kohonen, T. (1995). Self-Organizing Maps. Springer
Verlag.

[Laaksonen et al., 2002] Laaksonen, J., Koskela, M., and Oja, E. (2002).
Picsom–self-organizing image retrieval with mpeg-7 content descriptors.
IEEE Transactions on Neural Networks, 13(4):841–853.

[Manjunath et al., 2001] Manjunath, B. S., Ohm, J.-R., Vasudevan, V. V.,
and Yamada, A. (2001). Color and Texture Descriptors. IEEE Trans. on
Circuits and Systems for Video Technology, 11(6):703–715.

[Martinetz and Schulten, 1994] Martinetz, T. and Schulten, K. (1994). Topol-
ogy representing networks. Neural Networks, 7(3):507–522.

[Mel, 1997] Mel, B. W. (1997). SEEMORE: Combining color, shape, and
texture histogramming in a neurally-inspired approach to visual object
recognition. Neural Computation, 9:777–804.

[MPEG-7, 2001] MPEG-7 (2001). Overview of the MPEG-7 standard
(version 5.0). ISO/IEC JTC1/SC29/WG11 N4031.

[Murase and Nayar, 1995] Murase, H. and Nayar, S. K. (1995). Visual
Learning and Recognition of 3-D Objects from Appearance. Int’l J. of
Computer Vision, 14:5–24.

[Nene et al., 1996] Nene, S. A., Nayar, S. K., and Murase, H. (1996).
Columbia Object Image Library: COIL-100. Technical Report CUCS-
006-96, Dept. Computer Science, Columbia Univ.

[Oja et al., 1999] Oja, M., Kaski, S., and Kohonen, T. (1999). Bibliography
of self-organizing map (som) papers: 1998-2001 addendum.

[Park et al., 2000] Park, D. K., Jeon, Y. S., and Won, C. S. (2000). Efficient
use of local edge histogram descriptor. In MULTIMEDIA ’00: Proceedings
of the 2000 ACM workshops on Multimedia, pages 51–54, New York, NY,
USA. ACM Press.

[Sikora, 2001] Sikora, T. (2001). The mpeg-7 visual standard for con-
tent description-an overview. IEEE Trans. Circuits Syst. Video Techn.,
11(6):696–702.

[Somervuo and Kohonen, 1999] Somervuo, P. and Kohonen, T. (1999). Self-
organizing maps and learning vector quantization for feature sequences.
Neural Processing Letters, 10(2):151–159.

[Tokutaka et al., 1999] Tokutaka, H., Yoshihara, K., Fujimura, K., Iwamoto,
K., and Obu-Cann, K. (1999). Application of self-organizing maps (som)
to auger electron spectroscopy (aes). Surface and Interface Analysis,
27(8):783–788.

[Treue, 2001] Treue, S. (2001). Neural correlates of attention in primate
visual cortex. Trends in Neurosciences, 24(5):295–300.

[Vesanto, 1999] Vesanto, J. (1999). Som-based data visualization methods.
Intelligent Data Analysis, 3(2):111–126.

[Villmann et al., 2003] Villmann, T., Merenyi, E., and Hammer, B. (2003).
Neural maps in remote sensing image analysis.

