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Abstract

Machine learning methods that can handle variable-size structured data such as
sequences and graphs include Bayesian networks (BNs) and Recursive Neural Net-
works (RNNs). In both classes of models, the data is modeled using a set of observed
and hidden variables associated with the nodes of a directed acyclic graph. In BNs,
the conditional relationships between parent and child variables are probabilistic
whereas in RNNs they are deterministic and parameterized by neural networks.
Here we study the formal relationship between both classes of models and show
that when the source nodes variables are observed, RNNs can be viewed as limits,
both in distribution and probability, of BNs with local conditional distributions that
have vanishing covariance matrices and converge to delta functions. Conditions for
uniform convergence are also given together with an analysis of the behavior and
exactness of Belief Propagation (BP) in “deterministic” BNs. Implications for the
design of mixed architectures and the corresponding inference algorithms are briefly
discussed.
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1 Introduction

Many problems in artificial intelligence, data mining, and machine learning
involve variable-size structured data. By structured data we mean data that
presents itself with an explicit data structure such as strings and sequences,
trees, and directed or undirected graphs. Examples of structured data include:
(a) text and documents in information retrieval; (2) DNA/RNA/protein se-
quences and evolutionary trees in bioinformatics; and (3) molecular structures
in chemical informatics. To extract meaning, patterns, and regularities from
these data requires computational methods that can not only handle struc-
tured data but also leverage structural information. Two classes of machine
learning methods that have been applied to structured data are probabilis-
tic graphical models [14, 10] such as Bayesian networks, and recursive neural
networks [1, 9, 16, 11, 8, 12, 2]. The purpose of this article is to analyze the
mathematical relationship between these two approaches and, in particular,
to show how a recursive neural network can be viewed as a limit of, or a fast
approximation to, a sequences of Bayesian networks.

Bayesian networks (BNs) are probabilistic graphical models which rely on the
global factorization of the joint probability distribution of a set of random
variables into a product of local conditional probability distributions. More
specifically, the random variables are associated with the nodes of a DAG (di-
rected acyclic graph) and the local conditional distributions are the conditional
distributions of a node variable, given the parent node variables. The global
factorization is equivalent to a set of independence assumptions between the
variables which generalizes the standard Markov independence assumptions
for linear chains to more complex DAG structures. Technically speaking, a
BN is defined on a fixed DAG that somehow reflects the structure of the data.
In order to process data of variable size, we must use a dynamic Bayesian net-
work where the basic underlying BN structure–also called a plate–is repeated
multiple times, with a repetition number that depends on the data size and
with parameters that are tied across the repetitions. For simplicity, in what
follows, we use the term BNs in its broadest sense to include also dynamic
BNs. Bayesian networks provide a flexible tool for dealing with structured
data by capturing the structure of the data and of the inferences to be carried
directly into the topology of the underlying DAG. In the case of large graphs
and complex problems, however, the full probabilistic treatment of BNs, in-
cluding information/belief propagation and learning, can be computationaly
challenging.

Recursive neural networks provide an alternative to Bayesian networks for
processing structured data. Recursive neural networks rely also on an under-
lying DAG but replace the probabilistic relationships between parents and
child variables with a deterministic relationship parameterized by a neural
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network. In many applications the regular, translation-invariant, structure of
the DAG allows reusing the same network at different locations in the graph–
the so-called weight-sharing approach–leading to recurrent or recursive neural
networks called DAG-RNNs [2].

It should be clear that the deterministic relationship between parent and child
variables can also be parameterized by other classes of functions and we shall
refer to this general class of models as DAG-F models. It is essential to note
that the DAG nature of the underlying graph allows unfolding of the model
in time or space without introducing any cycles and therefore learning model
parameters from examples can proceed using, for instance, gradient descent
methods (backpropagation through time, space, or structure). The loss in
semantic power resulting from the deterministic relationship in DAG-F models
is compensated by the fast deterministic propagation of forward input evidence
and backwork output errors, which is crucial in large-scale machine learning
applications.

Deterministic relationships between parents and child variables in a DAG
arise naturally also in constraint satisfaction networks [7] and as a mean to
simplify and accelerate learning and inference in complex BN models. In [4], for
instance, a Markovian BNs is constructed where the conditional distributions
of the hidden node variables are delta functions associated with the state of
the parents. More generally, we define a deterministic Bayesian network (dBN)
to be a BN where all the local conditional probability distributions are delta
functions.

In this paper, we clarify the relationship between BNs on one hand and dBNs
and DAG-F models on the other. In particular we show in which sense a dBN
with its underlying DAG- F model can be viewed as a limit of a sequence
of BNs when the local conditional distributions have vanishing covariance
matrices. Technical details, including bounds and proofs of theorems, as well
as material on constraint networks are omitted for brevity but can be found in
the corresponding technical report [3] downloadable from www.ics.uci.edu/

~pfbaldi/publications.htm.

2 Background and Notations

2.1 Directed Acyclic Graphs and Related Variables

Given a DAG G = (V, �E) we always assume that its |V | = N nodes are labeled
1, . . . N in a topological order, i.e., the nodes are labeled with consecutive
integers so that every arc is directed from a node with smaller label to a node
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with larger label. In what follows we do not distinguish the nodes and their
labels, so that i < j implies that (j, i) is not an element of �E. A source node is
a node with only outgoing edges and a sink nodes is a node with only incoming
edges. Any DAG obviously has at least one source node and at least one sink
node. πi stands for the ordered list of parents of node i. If a node i has two
parents j < j′, for example, then πi = (j, j′).

The node hierarchy of a DAG ensures that the nodes can be partitioned into
disjoint layers denoted K0, K1, ..., Kmax. The layers are defined recursively
letting K0 be the set of all source nodes. K1 is the set of all nodes in V − K0

that receive connections exclusively from nodes in K0. Kk is the set of all
nodes in V − ∪i=k−1

i=0 Ki that receive connections exclusively from nodes in
K0 ∪ . . . ∪ Kk−1 and Kmax is the set that includes the sink nodes with the
longest directed path from the source nodes, so that V = ∪max

i=0 Ki. Note that
the layers contain ascending lists of nodes in the sense that for all i ∈ Kk and
j ∈ Kl, if k < l then i < j.

Real random vector variables or real vector values associated with the nodes
of a DAG are denoted in the obvious way by Xi and xi respectively, with xi

in IRni . Similarly, xK denote the ordered set of vectors associated with the
ordered set K.

2.2 DAG-F Models

A DAG-F model (Figure 1) is a straightforwared generalization of DAG-RNN
defined by a labeled DAG as above, an integer ni and corresponding vector
variable Xi in IRni for each node i = 1, . . . , N , and a set of real valued functions
fi associated with each node in V − K0. In addition if πi = i1, . . . iik is the
ordered list of parent variables of i, then the function fi is a function from
IRni1 × . . . IR

niik to IRni. A consistent set of vectors xi for i = 1, . . . , N is such
that for every i in V −K0 we have xi = fi(xπi

). Thus a DAG-F is a graphical
representation/decomposition of a real vector valued function. The input is
described by the values that are entered at all the source nodes and the output
is read out at the sink nodes for the corresponding consistent assignment of
values which is trivially obtained by forward propagation, i.e. by computing
the functions fi layer by layer, starting with K1. We denote this deterministic
propagation by F so that, for any non source node i there is a deterministic
function Fi such that xi = Fi(xK0). The results in this paper are true both
in the discrete and continuous case. In the continuous case, we will assume in
general that the functions fi, and hence also Fi, are continuous
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Fig. 1. DAG-F with 10 nodes with a consistent ordering and partitioned into 4
layers K0, . . . ,K4. All source nodes are in K0. Nodes 6 and 10 are the only sink
nodes. If all the functions fi correspond to addition and if the visible input is given
by x1 = x2 = x3 = x4 = 1 then, in a consistent assignment, x5 = x6 = x7 = 2,
x8 = x9 = 3, and x10 = 6.

2.3 Bayesian Networks

A BN is defined by a DAG, a set of random variables associated with the
vertices of the DAG, and a set of conditional distributions of each node variable
given the parent node variables. The set of independence assumptions encoded
by the graph implies the decomposition of the joint probability distribution
into the product of all the local conditional distributions. If πi = (i1, . . . iik) is
the ordered list of parent nodes of i, then the conditional probability density
function, ρi(Xi|xπi

), is a function ρi : IRni × IRni1 × . . . IR
niik → IR such that

P (Xi ∈ R) =
∫
R ρi(x|xπi

)dx. Here R defines a region in the ni dimensional
space. A complete description requires also giving the prior distribution of the
variables associated with the source nodes. While we use a continuous notation
here and in most of the article, it should be clear that the results are the same
in the discrete case.

Given evidence in the form of the value assumed by some of the random vari-
ables, we can compute the posterior marginal distributions for any subset of
the remaining variables by integrating out any residual variables. In most of
the article, we will be concerned with the case where only source node vari-
ables may be observed, fully or partially, including the case where none is
observed. An important special case that is particularly relevant in connec-
tion with DAG-F models is when all source nodes variables are observed, i.e.
the full input case. In this case: ρ (Xi|xK0) =

∫
ρ(XV −K0|xK0)

∏
j∈V −K0−i dXj .

Here ρ (Xi|xK0) denotes the posterior marginal probability distribution of Xi

given the observed source nodes. Likewise, ρ(XV −K0 |xK0) denotes the joint
probability distribution over the unobserved random variables, XV −K0 condi-
tioned on the known values xK0 . This joint probability distribution is factor-
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ized into the product of the local distributions according to the underlying
graph, ρ(XV −K0 |xK0) =

∏
j∈V −K0

ρi(Xj|xπj
). Note that we use the subscript i

for the local conditional distribution that define the BN but we omit it for the
local posterior marginal distribution. A similar relation holds for the posterior
marginal of clusters of node variables.

2.4 Deterministic Bayesian Networks

By a deterministic Bayesian network we mean a Bayesian network where all
the local conditional probability functions are Kronecker or Dirac delta func-
tions, in the discrete and continuous case respectively, so that ρi(Xi|xπi

) =
δ(Xi − fi(xπi

)), for some function fi. It should be clear that there is a one-
to-one correspondence between DAG-F and dBN models via the functions fi.
The DAG-F associated with a dBN, however, is deprived of the probabilis-
tic semantics present in the corresponding dBN. In particular, in a DAG-F
evidence can only be entered in the source nodes–this is not the case for the
corresponding dBN in general. While in a dBN all nodes have deterministic
behavior, it is of course possible to consider mixed cases where only a strict
subset of the node variables of a BN is associated with delta functions. This
is the case, for instance, for the model described in [4] in generative mode
(during learning all the nodes are deterministic). Further examples are given
in the Conclusion.

2.5 Sigma Bayesian Networks

Finally, we introduce the notion of σBN associated with a DAG-F or DBN,
by considering families of BNs with the same underlying DAG-F and node
variables, where the local conditional probability functions are almost deter-
ministic, i.e. have vanishing small entropy. This can be achieved by having a
vanishingly small covariance matrix controlled by a vanishing parameter σ.
The particular form of the distribution is not important for our results, but,
to fix the ideas, the reader may consider continuous systems with Gaussian
conditional distributions of the form:

ρi (Xi|xπi
) = N

(
Xi; fi(xπi

), σ2I
)

(1)

with mean fi(xπi
) and covariance matrix σ2I, where I is the ni × ni identity

matrix. The more general requirement, in the continuous case, is that the
sequence of conditional distributions be continuous around the limit point. In
fact, the covariance matrix need not be diagonal. Any covariance matrix will
do as long as the variance and covariance terms converge to 0 to yield delta
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function behavior. Likewise the conditional probabilities do not have to be
Gaussian. Other hill-shaped distributions that converge to delta functions will
also work. Depending on the situation, one could use for instance rectangles
of width 2σ and height 1/2σ, or Dirichlet distributions in the case of variables
associated with multinomial distributions.

2.6 Belief Propagation in Bayesian Networks with Source Node Evidence
Only

One of the most common inference algorithms used for deriving approximate
marginals in BNs is the Belief propagation (BP) algorithm [14]. In general,
Pearl’s BP algorithm for directed graphs includes messages from parents to
children and from children to parents. However, in the case of BNs with par-
tial or full evidence associated with source nodes only, BP becomes a purely
feedforward algorithm. More precisely, the backward messages from children
to parents do not contain any relevant information and can be ignored so that
the posterior marginal can be approximated recursively, from source to sink
nodes, by

ρ̃(Xi) =
∫

ρi(Xi|Xπi
)

∏
j∈πi

[ρ̃j(Xj)dXj] (2)

Here ρ̃(Xi) is the message in the BP approximation and it is easy to show that
each of these messages is also a probability distribution intended to approxi-
mate the posterior marginal of Xi. This result was proved for discrete random
variables in [6] and for distributions from the exponential family in [15]. It
can easily be generalized along the same lines to any distribution.

As an illustrative example, we consider the dBN in Figure 1 where all condi-
tional distributions are defined by Equation 1 with vanishing σ, all functions fi

correspond to addition and the observed input is given by x1 = x2 = x3 = x4 =
1. The messages of all nodes in K0 are Dirac delta functions, ρ̃(xi) = δ(xi−1),
since these values are observed. When σ = 0 and using Equation 2 hierarchi-
cally, one finds immediately that for all nodes in layer 1 ρ̃(xi) = δ(xi − 2),
for all nodes in layer 2 ρ̃(xi) = δ(xi − 3). Finally, using messages from node
8 and 9 the message at node 10 is found to be ρ̃(x10) = δ(x10 − 6). Later we
show that these values are exact in the dBN case, and can be used as good
approximations when σ is non-zero but sufficiently small.
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2.7 Convergence Problems

In this paper, for a fixed DAG-F and the fixed associated dBN, we study the
convergence properties of the corresponding σBNs to the dBN as σ → 0 when
only the source nodes are fully or partially observed. That is in which sense
can we say that “limσ→0 σBN = dBN(DAG-F)”? More specifically, we address
two different problems. First, in section 3, we study the convergence of the
posterior marginals of the σBN to the posterior marginals of the dBN. Then,
in section 4, we study the convergence of the approximate posterior marginals
produced by BP in σBNs with source evidence only to the corresponding
dBN posterior marginals, as σ → 0. In both cases, we analyze both weak
convergence, i.e. in distribution, and strong convergence, i.e. in probability,
as well as conditions for uniform convergence. As a byproduct, we also show
that Belief Propagation, in a dBN where only the source nodes are fully or
partially observed, is an exact (and purely feeforward) algorithm.

3 Convergence of Posterior Marginals in Distribution

We first study the convergence properties of posterior marginals of single
nodes. The generalization to posterior marginals of bigger clusters is straight-
forward. We deal with the case where all the input variables are observed and
then show how the same ideas can be applied when some or all the input
variables are unobserved.

Theorem 3.1 (Convergence in Distribution): Let xK0 denote a complete set of
evidence at the source nodes of a σBN with an underlying DAG-F. Then for
any node i in G,

lim
σ→0

ρ(Xi|xK0) = δ(Xi − Fi(xK0)) (3)

in other words all the local marginal distributions converge in distribution to
delta functions centered at the consistent deterministic values provided by the
underlying DAG-F.

The same result is first obtained in the case of unobserved discrete bounded
variables in the source nodes by considering each input configuration sepa-
rately with its corresponding probability. The posterior marginals then become
mixtures of delta functions,

lim
σ→0

ρ(Xi) =
∑
xK0

∏
j∈K0

p(xj)δ (Xi − Fi(xK0)) (4)
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where p(xj) is the given probability that the j random variable (in the source
node) equals xj. In the case of unbounded variables or of continuous variables,
the same result is obtained by considering compact supports and taking the
limit,

lim
σ→0

ρ(Xi) =
∏

j∈K0

ρ(xj)δ (Xi − Fi(xK0)) (5)

Empirically, this amounts to sampling the input variables according to their
distribution and, for each sample and for each node, computing the posterior
marginal as a delta function centered on the corresponding value provided by
the underlying DAG- F.

In fact, an even stronger form of convergence holds.

Theorem 3.2 (Convergence in Probability): Let xK0 denote a complete set of
evidence at the source nodes of a σBN with an underlying DAG-F. Then for
any node i in G, and for any ε

lim
σ→0

P (|(Xi|xK0) − Fi(xK0)| > ε) = 0 (6)

Here Xi|xK0 is a random variable distributed according to the posterior dis-
tribution, ρ(Xi|xK0).

In other words, the marginal random variables converge in probability to the
corresponding consistent constant values. This results from the general fact
that if a random variable converges in distribution to a constant, then it
converges in probability to that constant [5]. In the general case where some
of the input variables are not observed, the result above can be immediately
extended in the case of discrete finite input variables, by taking an OR over
all possible input configurations.

We immediately get uniform convergence across the finite set of nodes in G
and across the finite set of examples by minimizing the value of σ in the
corresponding convergence inequalities. By taking limits over the set of exam-
ples, the result remains true over an infinite set of examples, as long as the
set is compact (i.e. closed and bounded) and the functions fi, hence Fi, are
continuous (hence bounded).

Theorem 3.3 (Uniform Convergence in Probability): Consider a σBN with an
underlying DAG-F. For every ε > 0 and every α > 0, there is an integer m
such that if σ < 1/m then for every node i in G and any complete evidence
xK0 in a compact set C,

P (|(Xi|xK0) − Fi(xK0)| > ε) < α (7)
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provided the functions fi are continuous. In other words, there is convergence
in probability uniformly across all the nodes in a BN and across all the evidence
inputs in a compact set.

4 Exactness and Convergence of Belief Propagation

In this section, we turn to the relationship between the BP beliefs (poste-
rior marginals) in σBNs and in dBNs and use the convergence results of the
previous section to prove exactness of BP in dBNs.

Theorem 4.1 (Convergence in Distribution of BP): Let xK0 denote a complete
set of evidence at the source nodes of a σBN with an underlying DAG-F. Then
for any node i in G,

lim
σ→0

ρ̃(Xi|xK0) = δ(Xi − Fi(xK0)) (8)

in the discrete case, or in the continuous case provided the functions fi (hence
Fi) are continuous.

The same convergence-in-distribution result was proved in Section 3 for the
exact posterior marginals. Together, these two convergence results, prove that
BP is exact in dBNs.

Theorem 4.2 (Exactness of BP-derived Posterior Marginals in dBNs): Let
xK0 denote a complete set of evidence at the source nodes of a dBN with
an underlying DAG- F. Let ρ̃ denote the approximated posterior marginals
derived by BP. Then for any node i

ρ̃(Xi|xK0) = ρ(Xi|xK0) (9)

Clearly both the convergence in distribution of the BP beliefs as σ → 0 and
the exactness of the BP beliefs in dBNs can be used to derive exact marginals
in the case where the source nodes are only partially observed, or not observed
at all. In a procedure that is different from the standard BP updates, one can
derive estimates of the posterior marginal distributions by combining the BP
beliefs obtained for each possible fully observed setting of the source nodes.
This procedure, that we call decomposition of BP marginals, is based on the
well-known cutset conditioning method (see [14, 13] for details) for inferring
posterior marginals. When the domain of the source nodes is discrete, we sim-
ply run BP on each possible realization of the source nodes and decompose the
posterior marginal probability of a sink node, or any other node, accordingly
using the distribution of the source nodes.

10



1

3

4

2

Fig. 2. DAG-F with 4 nodes and one loop. x1 is the source variable and the functions
are f2 = f3 = Id = x1, f4 = x2 · x3.

As a simple illustration of decomposition of BP marginals, consider the DAG
in Figure 2, with a single loop, a single source node, and a single sink node,
and functions f2 = f3 = x1 and f4 = x2 · x3. Let us asssume that the source
variable can take two values, 1 and -1, with a uniform probability so that the
prior can be written as ρ(X1) = 1

2
[δ(X1 − 1) + δ(X1 + 1)]. Then for X1 = 1

in a dBN, application of BP yields the sink distribution ρ(X4|X1 = 1) =
δ(X4 − 1). In this case also for X1 = −1 one obtains ρ(X4|X1 = −1) =
δ(X4 − 1). The probability distribution of the sink for unobserved source
nodes is obtained simply by combining both results in the form ρ(X4) =∫ 1

2
[δ(X1 − 1) + δ(X1 + 1)] ρ(X4|X1)dX1 = δ(X4 − 1), which is the exact re-

sult for this network. In this case the cutset contains only the source node.

In the case where the source variables have an infinite domain, one can ap-
ply the decomposition of BP marginals by running BP symbolically on fixed
values of the source nodes and then compose the resulting marginals using
the prior distribution on the source variables. In addition, the exactness of
BP in dBNs applies not only to posterior marginals of single node variables,
but also to posterior marginals of clusters of variables. For instance, in the
dBN associated with Figure 2 with source evidence X1 = −1, BP provides
the marginal estimation ρ(X2, X3, X4) = δ(X2 + 1)δ(X3 + 1)δ(X4 − 1) which
is the exact marginal of the cluster.

Theorem 4.3 (Convergence in Probability of BP Posterior Marginals): Let xK0

denote a complete set of evidence at the source nodes of a σBN with an
underlying DAG-F. Let ρ̃ denote the approximated posterior marginals derived
by BP. Then for any node i in G, and for any ε > 0

lim
σ→0

ρ̃(|(Xi|xK0) − Fi(xK0)| > ε) = 0 (10)

Theorem 4.4 (Uniform Converges in Probability of BP Posterior Marginals):
Consider a σBN with an underlying DAG-F. Let ρ̃ denote the approximated
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posterior marginals derived by BP. For every ε > 0 and every α > 0, there
is an integer m such that if σ < 1/m then for every node i in G and any
complete evidence xK0 in a compact set C,

ρ̃(|Xi|xK0 − Fi(xK0)| > ε) < α (11)

provided the functions fi are continuous.

In other words, in a σBN with small σ, BP provides posterior marginals that
are close to the underlying DAG-F results. By combining the facts that dBN
(DAF-F-derived) posterior marginals are close to both the exact and the BP-
derived posterior marginals in the corresponding σBN, we can see that the
BP-derived posterior marginals are also close to the exact posterior marginals
in σBNs.

5 Conclusion

In summary, deterministic relationships between parents and child variables
in a directed acyclic graph (DAG) arise naturally in constraint satisfaction
networks, in recursive neural networks associated with DAGs (DAG-RNNs),
and as a mean to simplify and accelerate learning and inference in probabilis-
tic graphical models, such as Bayesian networks. A deterministic Bayesian
network (dBN) is a Bayesian network where all the conditional probability
distributions of a node variable given its parent variables are Kronecker or
Dirac delta functions. A sigma Bayesian network (σBN) is a corresponding
family of Bayesian networks, with the same underlying DAG and node vari-
ables, where the local conditional distributions have covariance matrices that
converge to 0 together with a control parameter σ (e.g. Gaussians with vanish-
ing covariance matrices). Here we have shown that when the source nodes are
observed fully or partially, the posterior marginals of a σBN converge to the
posterior marginals of the corresponding dBN both in distribution and in prob-
ability, as σ approaches 0. In addition, the approximate posterior marginals
computed by the Belief Propagation algorithm in the σBN also converge to
the posterior marginals in the corresponding dBN, both in distribution and
in probability. This implies that Belief Propagation is an exact feedforward
algorithm in dBNs with source node evidence only.

Although internal propagation inside a DAG-F is deterministic, the overall
model itself can remain probabilistic. This is the case, for instance, with DAG-
RNNs used in classification where the values computed in the output layer
correspond to class probabilities, computed by logistic or normalized expo-
nential neural units. In this case, the range of some of the variables xi can be
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restricted to classification probability values and, strictly speaking, we can use
Dirichlet distributions rather than Gaussians to define the conditional prob-
ability distributions of the corresponding nodes, given their parents. Thus,
in spite of their deterministic variables, DAG-Fs and dBNs can remain full-
fledged probabilistic models of the data. They can be viewed as self-standing
models, or as limiting cases of BNs, where the introduction of deterministic
units speeds up inference and may render complex models tractable.

We have analyzed the convergence of σBNs to dBNs and the underlying DAG-
F as the parameter σ goes to 0 and the properties of BP in σBNs, and dBNs.
We have shown that BP is exact in dBNs and derived error bound for the
BP marginals in σBNs. Thus if in a BN the conditional dependency relations
can be reasonably modeled or approximated by deterministic relations, then
DAG-F propagation in the corresponding dBN can be used to derive posterior
marginals that are exact for the dBN and reasonable approximations for the
original posterior marginals. From a practical standpoint, our results are not
meant to suggest that a DAG-F or dBNs should be replaced by taking the
limit of some σBN but rather the opposite. In some situations it may be
possible to replace, simplify, or approximate a portion of a BN using dBNs
or DAG-F models to speed up belief propagation and learning. In particular,
we can apply these results to BNs that are combinations of dBNs and trees,
since BP can provide exact posterior marginal distributions for each one of
these components. Here we shall only give two simple examples to illustrate
the ideas.

Consider first, the case of a BN where we can partition the nodes of the
underlying DAG into a loop cutset and its complement. If the nodes in the
cutset are deterministic (observed or dBN), then BP provides exact posterior
marginals in the cutset and its complement, thus on the entire BN. The special
case of BNs with binary random variables, where the loop cutset consist of
a single node with a σBN structure, is studied in [6]. In the second example,
consider a BN such that the graph associated with layers K1 to Kl is a tree
with non-deterministic random variables, and the graph associated with the
layers from Kl to Kmax contains loops but is a dBN. In this case BP pro-
vides the exact posterior marginals for all nodes in K1 to Kl, due to the tree
structure. One can view Kl as the source nodes of the dBN (or σBN) with
known marginals for all the source nodes. Thus all Theorems above apply for
the posterior marginals of the nodes in Kl to Kmax and in particular one can
apply the decomposition of BP marginals and again obtain exact marginals
for the entire BN.
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