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Abstract
The temporal context model (TCM Howard & Kahana, 2002) was proposed to describe recency and
associative effects observed in episodic recall. Episodic recall depends on an intact medial temporal
lobe, a region of the brain that also supports a place code. Howard, Fotedar, Datey, and Hasselmo
(2005) demonstrated that the leaky integrator that supports a gradually-changing representation of
temporal context in TCM is sufficient to describe properties of cells observed in ventromedial
entorhinal cortex during spatial navigation if it is provided with input about the animal’s current
velocity. This representation of temporal context generates noisy place cells in the open field, unlike
the clearly-defined place cells observed in the hippocampus. Here we demonstrate that a reasonably
accurate spatial representation can be extracted from temporal context with as few as eight cells,
suggesting that the spatial precision observed in the place code in the hippocampus is not inconsistent
with input from a representation of temporal-spatial context in entorhinal cortex.

It has long been believed that the medial temporal lobe (MTL), including the hippocampus and
parahippocampal cortical regions, is involved in episodic recall—memory for specific
instances from ones’ life (e.g. Nadel & Moscovitch, 1997). It has also been clear from
neurophysiological results that the MTL is involved in maintaining a representation of position
within an open environment (e.g. O’Keefe & Dostrovsky, 1971; O’Keefe & Nadel, 1978;
Quirk, Muller, Kubie, & Ranck, 1992; Fyhn, Molden, Witter, Moser, & Moser, 2004; Wilson
& McNaughton, 1993). It is of considerable theoretical interest to know if these two functions
—episodic memory and a current representation of position—correspond to a single
computational function (e.g. O’Keefe & Nadel, 1978; Eichenbaum, Dudchenko, Wood,
Shapiro, & Tanila, 1999). Recently Howard et al. (2005) proposed that the temporal context
model (TCM, Howard & Kahana, 2002) could provide a framework in which to describe
aspects of both episodic recall and the construction and maintenance of a place code. We will
review this work briefly here before presenting new results on the reconstruction of spatial
position from a representation of temporal context.

TCM in episodic recall
TCM (Howard & Kahana, 2002; Howard, 2004; Howard, Wingfield, & Kahana, Revised;
Howard et al., 2005) provides a set of equations that describe a distributed representation of
temporal context as a vector in a high-dimensional space. This model was developed to describe
performance in situations in which a list of words are presented for a memory test. In TCM,
the state of context at time step i, ti is updated according to

ti = ρiti−1 + βti
IN , ρi : | | ti | | = 1, (1)

where β is a free parameter that controls the rate of change of temporal context. The value of
the scalar ρi is chosen at each time step to keep the context vector of unit length. The context
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vector is formed from the context vector from the previous time step, ti−1 and an input vector
ti

IN . We assume throughout that the length of ti
IN  is less than or equal to one. The input vector

is caused by the currently presented stimulus. The properties of ti
IN  will be described

extensively below.

It may help to attempt to visualize the process of contextual evolution described by Eq. 1. The
pattern of activity ti may be thought of as a pattern of sustained firing across cells in
extrahippocampal MTL regions (Howard et al., 2005;Egorov, Hamam, Fransén, Hasselmo, &
Alonso, 2002). The constraint that the length of ti is always equal to 1 means that ti lives on
the surface of a hypersphere in a high-dimensional space. At each time step, the input pattern
pushes ti−1 in a particular direction. Then ρi is chosen to bring the resulting vector sum back
to the surface of the sphere, resulting in ti. If we assume, as we typically have in modeling
random lists of words each presented once, that the input patterns ti

IN  are orthonormal to each
other, then Eq. 1 describes a random walk and the similarity of context vectors falls off
exponentially with the number of presentations between them:

ti ⋅ t j = ρ |i− j|, (2)

where ρ without the subscript is the asymptotic value of ρi when presented with an infinitely
long list of orthonormal inputs, ρ = 1 − β 2.

In TCM, the current state of the context vector is used to probe recall of a set of vectors
corresponding to the items that are to be recalled, typically words from episodic recall tasks.
This is accomplished by means of an outer product matrix MTF which is updated by

Mi
TF = Mi−1

TF + f iti′, (3)

where fi is the pattern corresponding to the item vector presented at time step i and the prime
denotes the transpose. Although a mapping hypothesis between TCM as a formal model and
the structure of the MTL will be developed more fully later (see also Howard et al., 2005), we
note here that the entries in the matrix MTF may be roughly interpreted as the strength of the
set of synapses connecting extrahippocampal MTL regions, especially entorhinal cortex, to
neocortical association areas. When MTF is multiplied from the right with a particular state of
context tj, this yields a superposition of item vectors, each weighted by the inner product of
the probe context to that item’s encoding context(s):

M FTt j = ∑
i

f i(ti ⋅ t j). (4)

Each item is cued by a particular context cue to the extent that context cue overlaps with the
study context of that item. In modeling episodic recall tasks, we have used a non-linear
competitive recall rule to map this superposition of item vectors onto a probability of recall for
each item.

The recency effect
In the free recall task, the subject is presented with a list of items one at a time. At recall the
subjects’ task is to recall as many items as possible without regard to order. Subjects can initiate
recall after a delay (e.g. Glanzer & Cunitz, 1966), or even from specific prior lists (Shiffrin,
1970; Ward & Tan, 2004), so that recall cannot be initiated by using item representations
available in short-term memory. Accordingly, models of free recall have typically assumed
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that subjects maintain some representation of the list context to use as the cue in free recall
(e.g. Raaijmakers & Shiffrin, 1980; Anderson & Bower, 1972; Hasselmo & Wyble, 1997).
TCM builds on this tradition by assuming that the current state of temporal context is the cue
used to initiate recall in the free recall task. Because ti changes gradually over time (Eqs. 1, 2),
and items are cued to the extent that their study context overlaps with the probe context, this
naturally leads to a recency effect; items presented at the end of the list should be more strongly
activated, and hence more likely to be recalled than items from earlier in the list.

This explanation of the recency effect contrasts to some extent with accounts of recency that
depend on the presence of items in a limited capacity short-term store (Atkinson & Shiffrin,
1968; Raaijmakers & Shiffrin, 1980; Davelaar, Goshen-Gottstein, Ashkenazi, & Usher,
2005). On the one hand ti is a record of recent experience, like notions of short-term store. On
the other, ti changes gradually over time, rather than in a discrete fashion like buffer models
(Atkinson & Shiffrin, 1968; Raaijmakers & Shiffrin, 1980). This gradual decay, coupled with
a competitive retrieval rule enabled TCM to provide an explanation of the long-term recency
effect (Bjork & Whitten, 1974; Glenberg et al., 1980; Howard & Kahana, 1999) observed in
continuous-distractor free recall.

Associative effects
Traditional accounts of interitem associations describe associations between, say, members of
a pair as some form of direct connection between item representations (e.g. Raaijmakers &
Shiffrin, 1980; Murdock, 1982). In TCM, associations between list items are mediated by the
effect those items have on context. When A is used as a probe item, there is no direct connection
between A and B to support an association. Rather, A causes a change in the state of context,
which then overlaps with the context that B was presented in, resulting in a behaviorally-
observed association. Items have their effect on context by determining the input patterns
ti

IN  in Eq. 1. Suppose we present an item A at some time Ai and then repeat it at some later
time Ai+1. The input pattern that A evokes when it is repeated is given by:

tAi+1
IN = αOtAi

IN + αNtAi
. (5)

The pattern tAi is the state of temporal context when A was presented previously. The pattern
tAi

IN  is the input pattern caused by A when it was presented previously. This input pattern

tAi
IN , is also governed by Eq. 5, meaning that it in turn, will also include prior states of context,

tAi−1
IN  in this case. The coefficients αO and αN are chosen such that the input pattern when A

is repeated, tAi+1
IN , is unity. A free parameter γ is used to control the relative contribution of

tAi
IN  and tAiin contstructing the retrieved context pattern.

The repetition of an item results in an input to the current state of context that includes prior
components of contextual states. Because these two components overlap with the encoding
contexts of other items, the current state of context after an item repetition serves as an effective
retrieval cue for items that were presented near in time to the previous presentation of the
repeated item. This provides a basis for explaining temporally-defined associations (Kahana,
1996; Howard & Kahana, 1999). In particular, tAi

IN  is part of contextual states that followed

the previous presentation of A, but not those that preceded it (see Eq. 1), so that the combination
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of tAi
IN  and tAi together provide an asymmetric retrieval cue that mimics the form of temporally-

defined associations measured from episodic recall tasks (Howard & Kahana, 2002; Howard
et al., 2005, Revised).

A mapping hypothesis onto the MTL
Performance in episodic recall tasks depends on an intact MTL (e.g. Graf, Squire, & Mandler,
1984). If TCM is an realistic model of episodic recall tasks, then it should be possible to map
the components of TCM onto MTL structures and use this mapping to explain
neurophysiological and neuropsychological results. One possiblity would be to put ti in the
hippocampus. Hasselmo and Wyble (1997) placed context in the hippocampus proper in a
previous model of free recall. In that model, free recall proceeded by using hippocampal context
as a probe for cortical items; in item recognition cortical items were used as a probe to try and
recover hippocampal context (see also Dennis & Humphreys, 2001; Schwartz, Howard, Jing,
& Kahana, in press). Similarly, a model of sequence learning that has been applied to a number
of learning tasks (Levy, 1996; Shon, Wu, Sullivan, & Levy, 2002; Wu & Levy, 1998, 2001)
argues that one function of the hippocampus is to support local context states that depend on
the item presented and the temporal context it is presented in. These local context neurons
bridge across temporally proximate item presentations, providing a possible explanation of the
temporally-defined associations described by TCM (Kahana, 1996; Howard & Kahana,
1999). In contrast to these prior approaches, various considerations led Howard et al. (2005)
to hypothesize that ti resides in the entorhinal cortex, and perhaps other parahippocampal
cortical areas as well, rather than in the hippocampus proper. The hippocampus proper was
hypothesized to support new item-to-context learning. That is, Howard et al. (2005)
hypothesized that the hippocampus was responsible for maintaining a non-zero value of αN in
Eq. 5. This mapping has been shown to provide an explanation of neuropsychological and
neurophysiological findings from relational memory tasks (Bunsey & Eichenbaum, 1996;
Higuchi & Miyashita, 1996) and neurophysiological findings from spatial navigation tasks
(Frank, Brown, & Wilson, 2000; Quirk et al., 1992). We briefly review these findings and their
explanations within TCM.

The hippocampus and transitive association
In TCM, repetition of an item A results in two components of contextual input (Eq. 5). One
component, tAi, is the state of context present when the item was last presented. The other
component, tAi

IN , is the input that the item caused when it was last presented. Consider for a

moment what would happen if only one of those components was available. If αN = 1 and
αO = 0, meaning that only tAi contributed, then this would constitute a symmetric retrieval cue
for items presented near in time to A (see Eq. 2). In contrast, if αN = 0 and αO = 1, meaning
that only tAi

IN  contributed, then this would constitute an asymmetric retrieval cue. In particular,

if αN = 0, then this would result in robust forward associations, but no temporally-defined
backward associations. Bunsey and Eichenbaum (1996) observed that hippocampal lesions
impaired the development of backward associations, while leaving forward associations intact.
This finding led Howard et al. (2005) to hypothesize that the hippocampus functions to enable
items to reconstruct the temporal contexts in which they are presented, resulting in a non-zero
value of αN .

This hypothesis about the function of the hippocampus in reconstructing temporal context
states also provides an explanation of transitive associations. If a subject is trained on a pair of
items A–B, and then learns the pair B–C at some other time, a transitive association results if
A is associated to C, despite the fact that A and C were never presented together. Bunsey and
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Eichenbaum (1996) observed that although hippocampal lesions had no effect on learning the
forward pairwise associations A–B and B–C, they selectively disrupted transitive associations
between A and C. Howard et al. (2005) showed that setting αN = 0, simulating a disruption in
the ability for items to reconstruct the temporal contexts in which they were presented,
selectively disrupted transitive associations. In TCM, reconstruction of temporal contexts give
rise to transitive associations because these temporal context states are caused by inputs from
the items themselves. That is, when B is presented with C, B recovers the temporal context
associated with its presentation with A. The state of context in which C is encoded is therefore
similar to the state of contextual input that will be caused by A as a probe. Howard et al.
(2005) showed that reconstruction of temporal context states enables the development of a
cortical stimulus representation that reflects higher-order temporal relationships among the
stimuli; TCM can be seen as a quantitative implementation of ideas about the role of the
hippocampus and entorhinal cortex in sequence encoding and relational memory (e.g.
Eichenbaum, 2004).

A pseudo-integrator in entorhinal cortex
What computations might give rise to a representation of position like that observed in the
hippocampus? One possibility is a representation derived from landmark information. The
hippocampal place code persists unchanged in the dark (Quirk, Muller, & Kubie, 1990) and
even in blind rats (Save, Cressant, Thinus-Blanc, & Poucet, 1998), suggesting that the
hippocampal place code does not depend critically on visual input. One way to construct a
representation of position is to use a dead reckoning strategy. The first integral of velocity is
position. If provided with information about the current velocity, a computation that integrates
its inputs would result in a representation of position. The temporal context vector ti resembles
an integrator. Equation 1 states that ti includes ti−1. In turn, ti−1 includes ti−1

IN  and ti−2:

ti = ρiti−1 + βti
IN

= ρiρi−1ti−2 + β(ti
IN + ρiti−1

IN )

= β(ti
IN + ρiti−1

IN + ρiρi−1ti−2
IN + … )

(6)

By “unwinding” in this way we see that ti is the result of something like an integration of the
tINs. This expression also shows that ti is not the result of a perfect integration; rather the factors
of ρi cause a decay of information over time. The temporal context vector is the result of a
leaky integration of a series of input patterns.

Howard et al. (2005) examined the properties of the place code that would result from
combining the leaky integrator implemented by Eq. 1 with inputs that consist of velocity
vectors:

ti
IN = vi (7)

First, we note that this assumption could be implemented with known properties of the
entorhinal cortex. Most notably, cells in layer V of the entorhinal cortex show stable graded
firing when stimulated (Egorov et al., 2002). The presence of persistent stable firing is essential
to implement Eq. 1. To see this clearly, set ti

IN = 0 in Eq. 1. This results in ρi = 1 and we find
that ti = ti−1; to implement Eq. 1 cells must persist in their firing rates in the absence of input.
Remarkably, this property is met by principal cells in layer V in vitro (Egorov et al., 2002).
Moreover, to implement Eq. 1, cells must be able to assume a new stable firing rate when
presented with a depolarizing input—they must be able to integrate. This property is also met
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by layer V cells, even in the absence of recurrent synaptic inputs (Egorov et al., 2002). In
summary, it appears that cells in layer V have precisely the cellular properties necessary to
implement Eq. 1. The mechanisms that give rise to these properties at the cellular level are of
considerable interest. Several proposals have been made (e.g. Fransen, Egorov, Hasselmo, &
Alonso, 2003; Loewenstein & Sompolinsky, 2003)

Having cells that are capable of implementing the integration property of Eq. 1 is necessary
but not sufficient to implement a place code using a leaky integrator. Two other mechanisms
are necessary—a way to normalize the length of ti and a way to provide velocity vectors as
inputs to the set of integrator cells. Chance, Abbott, and Reyes (2002) showed that cultured
cortical neurons showed a gain that decreased as the simulated background activity of the
network increased. If the intrinsic currents that give rise to persistent firing are subject to this
type of gain control, then a set of integrator cells should eventually find a level of stable overall
firing rate, implementing something like the normalization represented by ρi in Eq. 1. To
provide velocity vectors as input (Eq. 1) we need information about heading and speed. Heading
is provided by head direction cells (Taube, 1998); it is known that cells in layer V of the
entorhinal cortex receive input from regions containing head direction cells (Haeften,
Wouterlood, & Witter, 2000). The only other requirement is a way to represent speed on these
inputs. There are a couple of ways to implement this. Here we note that average firing rate in
hippocampal pyramidal cells is strictly proportional to running speed (Figure 8, Zhang,
Ginzburg, McNaughton, & Sejnowski, 1998), suggesting that the MTL manages to find a
solution to this problem.

Having motivated the proposal that the place code in entorhinal cortex implements ti with
velocity vectors as inputs, Howard et al. (2005) examined the correlates of cells that compose
ti when presented with paths from actual rats during navigation tasks. We first examined place
fields generated by simulated neurons during navigation around an open field. Figure 1a and
b show representative place fields from the open simulation. The cells showed reliable but
noisy modulation by location. The location of the place fields was consistent across different
environments. Both of these properties have been observed for entorhinal cells during
exploration of the open field (Quirk et al., 1992; but see Fyhn et al., 2004). The simulated cells
showed place fields located towards the preferred direction of the head direction cell that
projected to that place cell. For instance, the cell in Figure 1a had a preferred direction that
pointed toward the east.

Although the simulated cells showed positional modulation in the open field similar to that
observed for cells in the entorhinal cortex, it is something of a misnomer to refer to these as
place cells. The integrator described in Eq. 6 is leaky, meaning that more recent movements
are more strongly represented than movements that took place a longer time ago. Rather than
a place code, ti is more accurately described as a weighted sum over recent movements. Rather
than being a shortcoming, this property turns out to be essential for describing properties of
the enorhinal “place code” when the animal is navigating around the W-maze. Frank et al.
(2000) had animals move around a three-armed maze (Figure 1c) from arm to arm. The animals
were trained to visit a food well at the bottom of the center arm, then one at the bottom of the
left arm, then return to the center arm, then the right arm, back to the center and so forth. Frank
et al. (2000) observed cells in entorhinal cortex and the hippocampus proper that responded to
specific sequences of movements rather than locations. A trajectory coding cell would, for
instance, respond on the bar of the maze when the animal was making left-center or center-
right journeys, but not when in the same location on other trips. The simulation of Eq. 1 on the
W-maze showed huge numbers of trajectory coding cells with properties like this. Frank et al.
(2000) also observed cells that showed retrospective coding. A unique property of the W-maze
is that it allows one to compare trips down the center arm according to which arm the animal
is coming from (Figure 1c). On these trips, the animals position, heading and behavioral goal
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(the chocolate milk at the end of the arm) are the same. However, a group of cells that code
for the sequence of recent movements (Eq. 6) would be expected to show differential firing
according to where the animal is coming from. Frank et al. (2000) observed retrospective
coding cells in the entorhinal cortex, including both deep and superficial layers, as well as the
CA1 field of the hippocampus. The simulation showed cells with this property (Figure 1d).
These cells were activated when the animal assumed the cell’s preferred direction on the bar
of the maze. Because firing persists over a macroscopic period of time, the same property that
enabled us to describe the recency effect in free recall, the cell does not turn off right away,
but shows firing that persists along the center arm of the maze. One aspect of the Frank et al.
(2000) results that the model did not capture robustly was the phenomenon of prospective
coding, in which cells fire differentially according to movements the animal is about to make
(see also Ferbinteanu & Shapiro, 2003;Wood, Dudchenko, Robitsek, & Eichenbaum, 2000,
for more evidence of retrospective and prospective coding in the hippocampus).

Could the hippocampal place code come from ti?
Howard et al. (2005) demonstrated that ti, when provided with velocity vectors as inputs, can
describe spatial correlates of cells from ventromedial entorhinal cortex (Frank et al., 2000;
Quirk et al., 1992, see also Fyhn et al., 2004 for recent findings on the dorsolateral entorhinal
cortex). Does the entorhinal cortex function like ti during spatial navigation? The fact that ti
is not really a spatial code at all seems at first glance like a serious obstacle to accepting this
point of view. As discussed above, ti, when provided with velocity vectors as inputs, is better
interpreted as a weighted sum over recent movements than as a positional code. This seems
inconsistent with what we know about the hippocampus in the open field.

Hippocampal place fields in the open field are omnidirectional (Muller, Bostock, Taube, &
Kubie, 1994), suggesting an accurate representation of position. Recording from over a
hundred cells, Wilson and McNaughton (1993) observed reconstruction errors of as small as
7 cm in a familiar 62 × 62 cm open field environment using a template matching method. This
discrepancy between actual and reconstructed position was on the order of the 5 cm tracking
error intrinsic to their set up. It is possible to obtain even more precise reconstruction when the
motion is constrained, as in a linear track (Jensen & Lisman, 2000) or a figure eight maze
(Zhang et al., 1998). If the hippocampal place code results from processing ti driven by velocity
vectors, then there must be a way to extract accurate positional information from a weighted
sum over recent movements. If it proves impossible to reconstruct position to the precision
possible with hippocampal cells (Wilson & McNaughton, 1993; Zhang et al., 1998; Jensen &
Lisman, 2000) using ti, then this rules out ti as an explanation of entorhinal activity, at least in
spatial applications. To address these questions, we will attempt to perform spatial
reconstruction on the output of the cellular implementation of ti driven by velocity vectors in
the open field.

Simulation
Methods

We studied the ability to reconstruct position from the output of a cellular simulation
implementing ti with velocity vectors as inputs. The methods of the cellular implemention of
ti follow those used in Howard et al. (2005). The cellular implementation of ti was driven by
velocity vectors from simulated movements. Reconstruction was performed on the output of
the cellular implementation. To the extent that we can reconstruct position, we can conclude
that a brain region, presumably the hippocampus, receiving input from ti driven by velocity
vectors could in principle construct an accurate place code in the open field.
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Cellular simulation—Following Howard et al. (2005) we implemented ti with a set of
simulated cells. This is illustrated schematically in Figure 2. The activity of cell i at time step
s was computed using

ti(s) = ρ(s) ti(s − 1) + βti
IN (s) , (8)

where β is a free parameter, ρ(s) implements cortical gain control and ti
IN (s) is cell i’s input

from the head direction system implementing Eq. 7. Notice that the notation used here differs
from that used previously for the vectors. Whereas the subscript in the vector ti refers to the
time step, the subscripts in Eq. 8 refer to the cells with the time step s provided as the argument.
Equation 8 differs from Eq. 1 substantively in that the factor of ρ multiplies the input term as
well as the previous state of context term. For sufficiently small time steps, this is unlikely to
be an important difference.

Cortical gain control (Chance et al., 2002; Chance & Abbott, 2000) was implemented according
to

ρ(s) = {∑i ti(s − 1) 2}−1/2. (9)

This form of ρ(s) has the effect of normalizing t after each time step (see Eq. 8). To construct
the velocity input (Eq. 7) we first simulated the output of a head direction system (e.g. Taube,
1998). Each cell had a preferred direction φi. These were spaced evenly around the circle
starting with φ1 = 0. At each time step s, we compute φi

diff(s), the absolute difference between
each cells preferred direction and the animal’s actual head direction φ(s):

φi
diff(s) : = { | φ(s) − φi | , | φ(s) − φi | < π

2π − | φ(s) − φi | | φ(s) − φi | ≥ π
. (10)

Then the input to each cell at time step s is computed using

ti
IN (s) = | | p(s + 1) − p(s) | | 1

σ 2π
exp

− φi
diff(s) 2

2σ 2 , (11)

where p(s) is the position at time step s and ||p(s+1)−p(s)|| is just the animal’s speed at time
s. The parameter σ is the width of the tuning curve of the head direction cells. To be roughly
consistent with observed values (Taube, 1998), we fixed σ to π/6 for the simulations in this
paper.

Simulated paths: Simulated paths were constructed using an algorithm introduced by Brunel
and Trullier (1998). At each time step the animal moved one unit of distance. The direction of
movement θ changed from time-step to time-step using Equation 12:

τθθ̇ = − θ + θ̂ + σθ τθη (t), (12)

where the dot denotes differentiation with respect to time, θ̂ is the direction to the target, τθ is
a time constant that controls the animal’s turning radius, η(t) is a white noise source and σθ
controls the magnitude of the noise.

In the open field simulations (Figure 4), the animal moved around an 80×80 cm simulated
environment, with τθ = 2 and σθ = 0.5. To simulate random foraging, a set of ten “food locations”
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was chosen from a uniform distribution. The closest location to the animal’s current position
was chosen as the first goal location. After the animal navigated to within a radius of one cm
to the goal location the location was removed from the list of available food locations and the
closest remaining food location to the animal’s current position was chosen as the new goal
location. When all ten food locations had been visited, a new set of ten locations was chosen.

Reconstruction—Several existing techniques for estimating position from the activity of
cells in the hippocampus would be ineffective for estimating position from the cellular
simulation described here. Methods, like the template matching methods used by Wilson and
McNaughton (1993), that depend on estimating the mean firing rate of each cell as a function
of position are unlikely to succeed given the highly variable nature of the simulated cells in
the open field (see Figure 1). This is because ti is really responding to the set of recent
movements and a position may be reached from numerous different trajectories. This means
that a particular position may be associated with a wide variety of states of context. The activity
of any individual cell is a poor predictor of position taken alone. Bayesian methods of
reconstruction (Zhang et al., 1998; Jensen & Lisman, 2000) are poorly suited for this model
because the firing rate of cells are highly dependent on each other. This means that the
probability of a particular vector state must be calculated from the observed joint probability
at each positional bin. Typically joint probabilities are estimated by treating the firing of the
cells as independent variables (e.g. Jensen & Lisman, 2000). The need to directly estimate joint
probability becomes combinatorically very costly. In order to reconstruct position, we need to
have some insight into how the high-dimensional ti vectors project onto two-dimensional
space.

The following thought experiment will motivate the reconstruction method we used. Consider
the situation in which we have four cells fed by head direction cells with preferred directions
pointing in the cardinal directions (ENWS). Now assume that the animal moves around a one-
dimensional square track clockwise with constant speed. After a sufficient number of circuits,
it should be possible to reconstruct position precisely because each position along the linear
track is reached by only one trajectory. As the animal moves to the East, along the southern
edge of the track, the firing rate of “easterly” cell, tE will gradually increase, much like the
voltage of a charging capacitor. As the animal turns left and begins to head North, tE will decay
exponentially and tN will begin to increase. Each cell’s firing rate will increase as the animal
moves along the corresponding edge of the track, then decay exponentially as it starts moving
in a different direction. As long as the time constant of the increase is not too short, we should
be able to read off the animal’s position simply by looking at the appropriate cell and the
appropriate neighbor. For instance, tE assumes a particular intermediate value while the animal
is moving to the east and the cell is “charging” and when the animal is moving to the north
while tE is decaying. Examination of tS and tN is necessary to disambiguate these two
possibilities. Now consider the case in which the animal moves along an east-west line. In this
case, tE should increase its firing as the animal moves to the east and decay as the animal moves
to the west. It is necessary to examine both tE and tW , the firing rate of the westerly cell, to
determine position along the east-west axis, but each east-west position corresponds to one
(tE ,tW ) pair. What happens if the animal suddenly stops moving east-west and starts moving
north-south? tE and tW will both start decaying exponentially. Although both tE and tW are
changing, their ratio remains unchanged as the animalmoves north-south. We can apply similar
logic to construct and maintain position information using arbitrary sequences of movements
along a grid.

Figure 3 illustrates the validity of this idea. We constructed paths between corners of a box.
This sequence of paths is more complex than a one-dimensional path but captures the essential
complexities of the open field problem. We simulated ti with four cells given the sequence of
movements.1 We then looked at the two-dimensional “shadow” of the four-dimensional ti
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when we projected it onto (logtE/tW , logtN/tS) space. As can be seen by comparing
corresponding panels in Figure 3, the projection of the four-dimensional ti onto this two-
dimensional space corresponds roughly to the topology of the actual paths.

The correspondence shown in Figure 3 motivated us to undertake a more elaborate
reconstruction. We generated simulated paths with 100,000 movements, then generated a series
of tis for each movement with a variety of values of β. We estimated reconstructed x and y
coordinates using

xr = a ∑
i=1

N
cosφilog(ti) (13)

yr = a ∑
i=1

N
sinφilog(ti), (14)

where N is the number of cells (set to 8 here to cover the circle) and φi is the preferred direction
of cell i. The preferred direction of the first cell φ1 =. The preferred directions were evenly
spaced over the circle. The slope a was estimated from the data. This was done by picking
10,000 time steps randomly (excluding the first 1000 points to avoid edge effects), calculating
the sums on the rhs of Eqs. 13 and 14, concatenating these values, and doing a simple linear
regression to the observed x and y coordinates from the sampled points. Our estimate of a was
simply the slope of this regression. The intercept of the regression was typically approximately
zero. Because by symmetry the intercept should be precisely zero we fixed it at zero and omitted
it from the reconstruction.

This reconstruction method is just population vector decoding. It differs slightly from
traditional population decoding approaches (e.g., Abbott, 1994) in that the basis vectors are
not derived from a tuning curve relating firing to position, but rather the preferred direction of
the head direction signal each cell receives. Also, taking the natural log of the firing rate
linearizes the exponential character of the firing rates.

Results
After finding a from a sample of the points, the reconstructed position was calculated for all
points in the sample. Figure 4 displays the results of the reconstruction. On the left is the average
distance between the reconstructed position and the actual position as a function of β. With β
as low as .01, the reconstruction error is about 7 cm. With β at .001, the reconstruction error
decreased to about 2.2 cm.2 The right side of the figure shows representative paths of actual
and reconstructed positions taken from successive 500 time-step segments of the reconstructed
path. Qualitatively, the reconstructed paths show an excellent correspondence with the
observed data.

General Discussion
We started with the question of whether an entorhinal place code derived from ti, a
representation of temporal context from a model of episodic recall, retains sufficient
information about position to support the hippocampal place code. We used a simple population
vector reconstruction scheme in which each cell voted for its preferred direction with the natural

1Because the diagonal movements corresponded to a region where the tuning curves for both of the adjacent cells were low, we

renormalized the input vector, such that the length of ti
IN  was one at each time step for the purposes of this illustration.

2With even lower values of β, e.g. 10−4 the observed error began to increase again. This was probably due to either rounding errors and/
or a very slow change from the initial state leading to an edge effect.
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log of its firing rate. Using this method we showed that ti implemented with as few as eight
cells was able to provide excellent positional reconstruction. Reconstruction error was a
function of β, which controls the rate of forgetting in the network. Good reconstruction was
observed with small values of β. This makes sense in that small values of β correspond to a
slower rate of forgetting, which enables movements from farther in the past to contribute to
the estimate of position. These findings suggests that it is possible that the excellent spatial
precision observed in the hippocampus in the open field (Wilson & McNaughton, 1993) could
be the consequence of an appropriate calculation performed on an entorhinal representation
described by ti provided with velocity vectors as input.

There are a number of potential limitations of the applicability of the present theoretical
excercise. The simple linear reconstruction method used here will not work well for larger
numbers of cells; more sophisticated regression methods that take into account the correlational
structure among the firing rates of the cells would be necessary to provide adequate
reconstruction if more cells were used. It is also possible that the simulated movements did not
capture some important property of the actual movements a rat might take in the open field.
For instance, actual paths could foil attempts at reconstruction if they are sufficiently
pathological. If for some reason the rat decided to run in one of several small circular paths for
extremely long periods of time, this method would be able to reconstruct position along each
path, but not distinguish the location of the circular paths themselves. This is because the
information that discriminates a circular path in, say, the northwest quadrant of an environment
from one in the southeast would be the movements prior to initiation of the circular path. As
the animal runs on the circle this information would recede into the distance. This property of
the model is perhaps not disadvantageous. When an animal in the open field starts a sequence
of stereotyped movements, the firing of hippocampal place fields changes (Markus, Qin,
Leonard, et al., 1995). Further, if the movement of a rat is constrained to quadrants of an
environment by means of barriers, the firing of hippocampal place cells is similar across the
different quadrants (Lever, Wills, Cacucci, Burgess, & O’Keefe, 2002). Finally we note that
the population vector method used here relies on an accurate measurement of low firing rates.
Although integrator cells (Egorov et al., 2002) can maintain stable firing rates over a wide
variety of values, their capacity is finite. With sufficient hyperpolarization, they eventually
shut off. This thresholding behavior would constrain the positional accuracy that can be
maintained with ti.

Variation in the speed of movement was not included in the simulations used here. To illustrate
the dependence of reconstruction on running speed, we will briefly derive an expression for
the change in our log measure in a simplified case. Consider a situation in which the animal
moves to the east with speed v(s) units per time step at time step s. Let’s assume that we have
four cells with preferred directions in the cardinal directions and sufficiently small tuning
curves that we can neglect the input activation of the cells other than the one with the preferred
direction pointing East. Let’s consider the change in activity of the “East” cell, tE and the
“West” cell, tW as a result of a movement of v(s) units to the east. Using Eq. 8, the activities
of these cells at time step s+1 is given by:

tE(s + 1) = ρ(s) tE(s) + βν(s)

tW (s + 1) = ρ(s)tW (s).

We’re interested in the dependence of the change in log(tE/tW ) on the speed of the movement
at time step s, v(s). We start by deriving the change in log(tE ).
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Δ log tE(s) = log{ρ(s) tE(s) + βν(s) } − log tE(s)

= log ρ(s) + ρ(s)βν(s)
tE(s)

= log ρ(s) + log(1 + βν(s)
tE(s) ).

Following similar logic, the change in log(tW ) is given by:

Δ log tW (s) = log ρ(s)tW (s) − log tW (s)

= log ρ(s).

Using these two expressions, we find

Δ log tE(s) / tW (s) = log 1 + βν(s)
tE(s) (15)

Of course log(1 + x) ≃ x when x is sufficiently small. When β/tE (s) is sufficiently small, log
(tE/tW ) responds almost linearly to changes in running speed. Insofar as this is the case, log
(tE/tW ) transforms exactly as one would desire from a measure of position. The requirement
that β/tE (s) be small for this reconstruction scheme to work also provides insight into the regime
over which this reconstruction scheme will work. Setting β to a small value not only enables
ti to retain information from a longer time, but also facilitates the constraint that β/tE (s) be
small. The dependence of this factor on tE (s) is somewhat unsettling, as this value will change
over time as, say, the animal continues to move to the east. This variability undoubtedly
accounts for some if not all of the residual error observed in the simulations reported here.
However, when β is small, the values of the components of ti are restricted to a relatively
narrow dynamic range. Under those conditions, if the variability in v(s) is large with respect
to the variability in tE (s), then an appropriate sensitivity to speed of movement will be
preserved.

The diversity of spatial firing properties in entorhinal cortex
The model of the entorhinal place code examined here (Howard et al., 2005) predicts the
properties of trajectory and retrospective coding on the W-maze, consistent with observations
from the lateral entorhinal cortex (Frank et al., 2000). The present model makes a number of
predictions for the activity of entorhinal cells in the open field. First, these cells should show
some directionality. If the preferred direction can be accurately estimated from a population
of principal cells (probably a difficult problem in practice), the reconstruction method used
here could in principle reconstruct position in the open field from the activity of noisy EC cells
like those observed by Quirk et al. (1992). A stronger prediction of the model is that the
ensemble firing at a given time should depend on the sequence of events that led up to that
time, even in the open field.

In the open field, the model predicts noisy place fields that are consistent across environments,
consistent with observations from the entorhinal cortex (Quirk et al., 1992). Recently, Fyhn et
al. (2004) showed that the entorhinal cortex contains cells with a broad range of spatial firing
properties in the open field. They recorded from a range of locations in entorhinal cortex along
a dorsolateral-to-ventromedial axis, corresponding to regions of EC that project to the
hippocampus proper along its dorsal to ventral extent respectively. They found that cells in the
most ventromedial parts of EC showed no little or no spatial modulation. Cells in the
intermediate range showed weak spatial modulation, like those observed previously (Quirk et
al., 1992), and like the model discussed here predicts (Figure 1, see also Howard et al.,
2005). Surprisingly, in the most dorsolateral parts of the entorhinal cortex Fyhn et al. (2004)
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observed cells with well-defined consistent omnidirectional place fields in the open field. These
cells typically showed multiple fields within an environment. Remarkably, this allocentric
spatial representation was maintained even in animals with lesions to the hippocampus,
suggesting that the locus of the precise allocentric representation in the MTL is upstream from
the hippocampus proper.

The findings of Fyhn et al. (2004) are extremely important for a number of reasons, not least
of which is that the dorsolateral entorhinal cortex provides input to the dorsal hippocampus,
which has provided that vast majority of studies of hippocampal place cells (but see Jung,
Wiener, & McNaughton, 1994). These findings should provoke a thorough reworking of our
views on the role of the hippocampus in constructing a spatial representation. They also point
out the importance of systematically mapping out the firing properties of hippocampal cells
along the septotemporal axis. The finding of entorhinal cells with well-defined omnidirectional
place fields in dorsolateral entorhinal cortex present a theoretical challenge for the view that
the entorhinal cortex supports a general representation of temporal-spatial context. Although
the present model of the place code apparently does a reasonable job at describing the activity
of cells in the intermediate zone, more dorsolateral regions of entorhinal cortex behave
differently. It is possible that ti is one of several computations that the entorhinal cortex
computes. Perhaps ventromedial entorhinal regions, where Fyhn et al. (2004) did not observe
spatial modulation of firing, implement ti, but do not receive velocity inputs derived from self-
motion information, instead receiving non-spatial inputs. The omnidirectional place fields in
dorsolateral entorhinal cortex could result from inputs from the intermediate zone of entorhinal
cortex, or some other upstream region. In any event, it is clear that a systematic exploration of
the spatial, and especially non-spatial, firing correlates of cells in entorhinal cortex is long
overdue and would shed considerable light on current models of hippocampal function. The
computational function of the hippocampus cannot be understood without a systematic a study
of its inputs and outputs.

Constructing an accurate spatial representation
The finding that we could reconstruct position from ti reasonably well using a population vector
method suggests that ti contains sufficient amounts of information about allocentric position
in the open field to construct a place code like that observed in the hippocampus. The existence
of spatial information does not directly answer the question of how such a place code could be
constructed. It does, however, provide a couple of hints. First, the population reconstruction
method presented here takes the natural log of the firing rate. This suggests that downstream
neurons should have an input-output relationship that implements this property. Further, to get
an accurate reading of position in one direction, it is necessary to not only observe one cell
with a preferred direction pointing along the axis one is interested in, but also observe cells
with a preferred direction pointing in the opposite direction. This suggests that downstream
cells that compute an omnidirectional place code in the open field might take input from a non-
random set of cells that participate in ti, preferentially sampling matching pairs. This does not
necessarily require tuning to pairs of cells that differ by precisely π in their preferred directions.
Perhaps tuning to anticorrelated pairs of cells would be sufficient.

A set of downstream cells that compute omnidirectional place fields from input consisting of
ti would need to receive input from a number of cells and construct a conjunctive representation
from them. Existing models of omnidirectional place fields in the hippocampus (e.g. Brunel
& Trullier, 1998; Kali & Dayan, 2000; Hartley, Burgess, Lever, Cacucci, & O’Keefe, 2000)
have also proposed that the hippocampus computes a conjunctive representation of its
entorhinal inputs. A conjunctive function for the hippocampus has also been proposed on the
basis of considerations from the performance of non-spatial memory tasks (e.g., O’Reilly &
Rudy, 2001).
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Regardless of the nature of the coding in hippocampus, an assertion of the mapping hypothesis
between TCM and the MTL is that a primary function of the hippocampus in spatial navigation
is to allow reconstruction of states in entorhinal cortex in response to discrete objects. This
view is very similar to that proposed by Burgess and colleagues (e.g. Burgess, 2002; Burgess,
Maguire, & O’Keefe, 2002). This position is supported by the suggestion that the hippocampus
apparently plays a time-delimited role in the establishment of cognitive maps (Winocur,
Moscovitch, Fogel, Rosenbaum, & Sekeres, 2005; Rosenbaum, Ziegler, Winocur, Grady, &
Moscovitch, 2004 but see Clark, Broadbent, & Squire, 2005), as well as the observed deficit
in stimulus-place associations found in hippocampallesioned animals (Gilbert & Kesner,
2002).

Conclusions
We examined the properties of the place code that result from driving ti from the temporal
context model, a formal model of episodic recall performance, with velocity vectors during
spatial navigation. In particular, we attempted to reconstruct a veridical representation of
position from the noisy place code that results from driving ti with velocity vectors during
random exploration in an open field. We found that a simple population coding scheme in
which each cell votes in the preferred direction of the head direction cell that drives it with the
natural logarithm of its firing rate was successful in providing good spatial reconstruction with
as few as eight cells. We conclude that it is possible that the accurate representation of place
observed in the hippocampus could, in principle at least, be extracted from ti. Perhaps episodic
memory performance and the hippocampal place code both result from a representation of
temporal-spatial context.
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Figure 1. Simulated entorhinal place cells from Eq. 1 (Adapted from Howard et al, 2005)
a,b. Simulated entorhinal place fields from the open field. Like entorhinal cells (Quirk et al,
1992), the simulated cells showed noisy place fields that were correlated across similar
environments. The cell in a took input from a head direction cell with a preferred direction that
pointed towards the east. The cell in b received input from a head direction cell with a preferred
direction that pointed west-by-northwest. c. Frank et al, (2000) trained rats to run in a W-maze
in which the animal successively visited a food well in each arm in sequence. This paradigm
provides the opportunity to examine firing of cells in the middle arm of the maze as part of
different trajectories. d. Simulated entorhinal cells showed retrospective coding that
distinguished the path the animal had taken to reach a point on the middle arm. A representative
simulated retrospective cell shows different firing on the center arm on inbound paths
depending on which arm the animal was coming from. The choice points, CP, is a point along
the path that is several centimeters from the top of the middle arm. The choice point is indicated
by the top of the box in c. Because position and heading are the same in both cases (see c), this
indicates that the model, like the entorhinal cortex, is responding to more than position per
se. See Howard et al 2005 for details.
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Figure 2. Schematic diagram of the cellular simulation
The input vector tIN is constructed from a set of units that receive input from head direction
cells. Each unit has a preferred direction that determines its activation. This input projects to
a set of integrator cells. These maintain their firing. The activity of the integrator cells is
constrained by divisive inhibition ρ(s).
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Figure 3. Physical space projects onto log firing rate space
A four-cell simulation with normalized inputs was run during simulated movements among
the corners of a box. a. Successive paths of the simulated movement in physical space. b. The
activity of the simulated neurons projected into log space for the sequences corresponding to
a. The x axis in these plots is log(tE/tW ), where tE is the firing rate of the first unit, with preferred
direction pointing toward the east. When the animal moves north/south, logtE/tW is unchanged,
despite the fact that both tE and tW are subject to exponential decay.
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Figure 4. Error reconstruction
Left: Reconstruction error in cm as a function of β for reconstruction with eight cells. The
reconstruction error decreases to about the size of a rat with β as large as .01. Right: Sample
simulated paths (solid) with corresponding reconstructed paths (dashed) for β = .001.
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