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Self Organizing Map algorithm and distortion measure

Abstra
t

We study the statisti
al meaning of the minimization of distortion measure and the relation

between the equilibrium points of the SOM algorithm and the minima of distortion measure.

If we assume that the observations and the map lie in an 
ompa
t Eu
lidean spa
e, we prove

the strong 
onsisten
y of the map whi
h almost minimizes the empiri
al distortion. Moreover,

after 
al
ulating the derivatives of the theoreti
al distortion measure, we show that the points

minimizing this measure and the equilibria of the Kohonen map do not mat
h in general. We

illustrate, with a simple example, how this o

urs.
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lass, uniform law of large numbers, general neighborhood fun
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1 Introdu
tion

The distortion or distortion measure, is 
ertainly the most popular 
riterion for assessing the quality

of the 
lassi�
ation of a Kohonen map (see Kohonen [8℄). This measure yields an assessment of

model properties with respe
t to the data and over
omes the absen
e of 
ost fun
tion in the SOM

algorithm. Moreover, the SOM algorithm has been proven to be an approximation for the gradient

of distortion measure (see Graepel et al.[6℄).

Although the Kohonen map is proven to 
onverge sometimes on equilibria points, when the

number of observations tends to in�nity, the learning dynami
 
annot be des
ribed by a gradient

des
ent of distortion measure for an in�nite number of observations (see for example Erwin et

al. [2℄). Moreover, Kohonen [9℄ has shown in some examples for the one dimensional grid, that

the model ve
tor produ
ed by the SOM algorithm does not exa
tly 
oin
ide with the optimum of

distortion measure. This property seems to be paradoxi
al, on one hand SOM seems to minimize

the distortion for a �nite number of observations, but this behavior is no more true for the limit,

i.e. an in�nity of observations.

In this paper we will investigate the relationship between the SOM and distortion measure.

Firstly we will prove the strong 
onsisten
y of the estimator minimizing the empiri
al distortion.

More pre
isely, we will prove that the maps almost minimizing the empiri
al distortion measure will


onverge almost surely to the set of maps minimizing the theoreti
al distortion measure. Se
ondly,

we will 
al
ulate the derivatives of the theoreti
al distortion, and dedu
e from this 
al
ulation that

the points minimizing the theoreti
al distortion di�er generally from the equilibrium point of the

SOM, whatever the dimension of the grid. Finally we will illustrate, with a simple example, why

an apparent 
ontradi
tion between the dis
rete and the 
ontinuous 
ase o

urs.
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2 Distortion measure

We also assume in the sequel that the observations ω are independent and identi
ally distributed

(i.i.d.) and are of dimension d. We assume that the observations lie in an 
ompa
t spa
e, therefore,

without loss of generality, they lie in the 
ompa
t spa
e [0, 1]d. We assume also that these obser-

vations follow the probability law P having a density with respe
t to the Lebesgue measure of R
d
,

this density is assumed to be bounded by a 
onstant B. In the sequel we 
all 
entroid a ve
tor of

[0, 1]d representing a 
lass of observations ω. We adopt in the sequel the notation of Cottrell et al.

[1℄.

De�nition 2.1 For e ∈ N
∗
, e ≤ d, we 
onsider a set of units indexed by I ⊂ Z

e
with the neighbor-

hood fun
tion Λ from I − I := {i− j, i, j ∈ I} to [0, 1] satisfying Λ (k) = Λ (−k) and Λ (0) = 1,

note that su
h neighborhood fun
tion 
an be dis
rete or 
ontinuous.

De�nition 2.2 Note ‖.‖ the Eu
lidean norm, let

Dδ
I :=

{

x := (xi)i∈I ∈
(

[0, 1]d
)I

, su
h that ‖xi − xj‖ ≥ δ if i 6= j

}

be the set of 
entroids xi separated by, at least, δ.

De�nition 2.3 if x := (xi)i∈I is the set of units, the Voronoi tessellation (Ci (x))i∈I is de�ned by

Ci (x) :=
{

ω ∈ [0, 1]d |‖xi − ω‖ < ‖xk − ω‖ if k 6= i
}

In 
ase of equality we assign ω ∈ Ci (x) thanks to the lexi
ographi
al order. Conversely, the index

of the Voronoi tessellation for an observation ω will be de�ned by

C−1
x (ω) = i ∈ I, if and only if ω ∈ Ci(x)
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De�nition 2.4 distortion measures the quality of a quanti�
ation with respe
t to the neighborhood

stru
ture. It is de�ned as follows:

• Distortion for the dis
rete 
ase (empiri
al distortion): We assume that the observations are

in a �nite set Ω = {ω1, · · · , ωn} and are uniformly distributed on this set. Then, distortion

measure is

Vn (x) =
1

2n

∑

i∈I

∑

ω∈Ci(x)





∑

j∈I
Λ (i− j) ‖xj − ω‖2





• Distortion for the 
ontinuous 
ase (theoreti
al distortion): Let us assume that P is the distri-

bution fun
tion of the observations. The theoreti
al distortion measure is

V (x) =
1

2

∑

i,j∈I
Λ (i− j)

∫

Ci(x)
‖xj − ω‖2 dP

As mentioned before the distribution P has a density with respe
t to the Lebesgue measure

bounded by a 
onstant B > 0.

The distortion measure is well known to be not 
ontinuous with respe
t to the 
entroids (xi)i∈I

for the dis
rete 
ase. Indeed, if an observation is exa
tly on an hyperplan separating two 
entroids,

shifting one of the 
entroids will imply a jump for the distortion. So, the distortion is not 
ontinuous

and, in general, a map whi
h realizes the minimum of the empiri
al distortion, does not exist.

However, if we 
onsider the sequen
es of maps xn su
h that the distortion Vn(x
n) will be su�
iently


lose to its minimum, then we will show that su
h sequen
es of maps xn will 
onverge almost surely

to the set of maps whi
h rea
hes the minimum of the theoreti
al distortion measure V (x).
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3 Consisten
y of the almost minimum of distortion

This demonstration is an extended version of Rynkiewi
z [11℄. It follows the same line as Pollard

[10℄, so we will �rst show a uniform law of large numbers and then dedu
e the strong 
onsisten
y

property.

3.1 Uniform law of large number

Let the family of fun
tions be

G :=







gx(ω) :=
∑

j∈I
Λ
(

C−1
x (ω)− j

)

‖xj − ω‖2 for x ∈ Dδ
I







(1)

In order to show the uniform law of large numbers, we have to prove that:

sup
x∈Dδ

I

∣

∣

∣

∣

∫

gx(ω)dPn(ω)−
∫

gx(ω)dP (ω)

∣

∣

∣

∣

a.s.
n→∞−→ 0 (2)

sin
e, for all probability measure Q on [0, 1]d:

∫

gx(ω)dQ(ω) =

∫

∑

j∈I
Λ
(

C−1
x (ω)− j

)

‖xj − ω‖2dQ(ω) =
1

2

∑

i,j∈I
Λ(i− j)

∫

Ci(x)
‖xj − ω‖2dQ(ω)

(3)

Now, a su�
ient 
ondition to verify the equation (2) is the following (see Gaenssler and Stute [5℄):

∀ε > 0,∀x0 ∈ Dδ
I a neighborhood S(x0) of x0 exists su
h that

∫

gx0(ω)dP (ω)− ε <

∫
(

inf
x∈S(x0)

gx(ω)

)

dP (ω) ≤
∫

(

sup
x∈S(x0)

gx(ω)

)

dP (ω) <

∫

gx0(ω)dP (ω) + ε

(4)

First we prove the following result, using a similar te
hnique as the proof of lemma 11 of Fort and

Pagès [3℄
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Lemma 3.1 Let x ∈ Dδ
I and λ be the Lebesgue measure on [0, 1]d. Note Ec

the 
omplementary set

of set E in [0, 1]d and |I| the 
ardinal of set I. For 0 < α < δ
2 , let

Uα
i (x) =

{

ω ∈ [0, 1]d/∃y ∈ Dδ
I , xj = yj if j 6= i and ‖xi − yi‖ < α and ω ∈ Cc

i (y) ∩ Ci(x)
}

be the set of ω 
hanging of Voronoi 
ells when the 
entroid xi are moving a distan
e of at most α.

Then

supx∈Dδ
I
λ (Uα

i (x)) < (|I| − 1)

(

2α

δ
+ α

)

(√
2
)d−1

(5)

proof Let x and y ∈ Dδ
I 
he
king the assumption of lemma 3.1 and j 6= i ∈ I. In order to

prove the inequality, we have to bound the measure of ω belonging to the 
ells Ci(x) and Cj(y)

simultaneously, sin
e (Ci(y))
c =

⋃

j∈I,j 6=iCj(y).

Note (z |t), the inner produ
t between z and t, and −→n ij
x :=

xj−xi

‖xj−xi‖ . The parameter ve
tor

x + γ1−→n ij
x will be the ve
tor with all 
omponents equal to x ex
ept the 
omponent i equal to

xi + γ1−→n ij
x .

Sin
e ‖yi − xi‖ < α, we have
(

yi − xi
∣

∣
−→n ij

x

)

= γ1 with |γ1| ≤ α < δ
2 . As the Lebesgue measure

(of R
d−1

) of all plane se
tions of [0, 1]d is bounded by

(√
2
)d−1

, when there is a movement of the


entroid xi, of γ1−→n ij
x , the Lebesgue measure of ω 
hanging of Voronoi 
ells is then bounded by

|γ1|
2

(√
2
)d−1

, so

λ
(

Cj

(

x+ γ1−→n ij
x

)

∩ Ci(x)
)

< α
(√

2
)d−1

(6)

Moreover, we note that x+ γ1−→n ij
x belongs to D

δ
2
I .

On the other hand, let yi−xi− γ1−→n ij
x := γ2−→τ ij

x , with ‖−→τ ij
x ‖ = 1, be the orthogonal 
omponent

to

−→n ij
x of the movement of xi to yi, i.e. su
h that

(−→n ij
x

∣

∣
−→τ ij

x

)

= 0.

As it is shown in �gure (1), in dimension 2, for all x′ = x+ γ1−→n ij
x ∈ D

δ
2
I , the Lebesgue measure

of ω 
hanging of Voronoi 
ells for a movement of 
entroid x′i, of γ2
−→τ ij

x is bounded by

2α
δ

(√
2
)d−1

.
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Therefore, we have

λ
(

Cj

(

x+ γ1−→n ij
x + γ2−→τ ij

x

)

∩ Ci(x)
)

< α
(√

2
)d−1

+
2α

δ

(√
2
)d−1

(7)

Figure 1: hat
hed area < 2γ2
δ

<
√
2×2α
δ

γ2

γ2

0

1

2

2

δ

δ/2

/2
 <

x’

x j

i

As this inequality is independent of x, �nally we get:

sup
x∈Dδ

I

λ
(

Cj

(

x+ γ1−→n ij
x + γ2−→τ ij

x

)

∩ Ci(x)
)

<

(

α+
2α

δ

)

(√
2
)d−1

(8)

then

sup
x∈Dδ

I

λ (Uα
i (x)) < (|I| − 1)

(

α+
2α

δ

)

(√
2
)d−1

�

Now 
onsider x0 ∈ Dδ
I and S(x0) a neighborhood of x0 in
luded in a sphere of radius α. Let

W (x0) be the set of ω remaining in their Voronoi 
ells when x0 go to any x ∈ S(x0). For all
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ω ∈ W (x0) we have

infx∈S(x0) gx(ω) ≥ gx0(ω)−∑j∈I Λ
(

C−1
x0 (ω)− j

)

(

‖x0j − ω‖2 − infx∈S(x0) ‖x0j − ω‖2
)

≥ gx0
j
(ω)−∑j∈I

(

‖x0j − ω‖2 − infx∈S(x0) ‖x0j − ω‖2
)

(9)

For all ω ∈ [0, 1]d, for a small enough α, we have
(

‖x0j − ω‖2 − infx∈S(x0) ‖xj − ω‖2
)

< ε
2B|I| so

∫

W (x0)

∑

j∈I

(

‖x0j − ω‖2 − inf
x∈S(x0)

‖xj − ω‖2
)

dP (ω) <
ε

2
and

∫

W (x0)

(

gx0(ω)− inf
x∈S(x0)

gx(ω)

)

<
ε

2

(10)

Now, let W (x0)c be the set of ω 
hanging of Voronoi 
ells when the 
entroids go from x0 to

x ∈ Sx0 . For all ω ∈ W (x0)c there exist two di�erent indi
es i and j su
h that ω ∈ Ci(x
0) and

ω ∈ Cj(x). Let us de�ne a sequen
e xk, k ∈ {0, · · · , ‖I|}, by sequentially 
hanging the 
omponents

of x0 into the 
omponents of x su
h that x|I| = x (xk is the set of intermediate 
on�gurations

to transform x0 in x), then there exists a moment l ∈ {0, · · · , |I| − 1}, su
h that ω ∈ Ci(x
l) and

ω /∈ Ci(x
l+1). Indeed, if it were not the 
ase, you 
ould �nd a sequen
e xk, k ∈ {0, · · · , ‖I|}, with

x|I| = x su
h that ω ∈ Ci(x
|I|) = Ci(x), whi
h would be a 
ontradi
tion. So W (x0)c is in
luded in

the set of ω whi
h 
hange of Voronoi set when we 
hange sequentially the 
omponents of x0 by the


omponents of x.

If α < δ
4 , then when the 
omponents x0i of x0 are moving sequentially from x0 to xi of x, ea
h

intermediate 
on�guration stays in D
δ
2
I . Sin
e, for all i ∈ I, ‖xi − ω‖2 is bounded by 1 on [0, 1]d,

the lemma 3.1, assure that

∫

W (x0)c
gx(ω)dP (ω) < B|I|(|I| − 1))

(

4α

δ
+ α

)

(√
2
)d−1

(11)
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Finally, if we 
hoose a small enough α su
h that B|I|(|I| − 1))
(

4α
δ
+ α

) (√
2
)d−1

< ε
2 , we get

∫

Dδ
I

gx0(ω)dP (ω)− ε <

∫

Dδ
I

(

inf
x∈S(x0)

gx(ω)

)

dP (ω) (12)

Exa
tly in the same way, for a small enough α, we get

∫

Dδ
I

(

sup
x∈S(x0)

gx(ω)

)

dP (ω) <

∫

Dδ
I

gx0(ω)dP (ω) + ε (13)

Therefore, the su�
ient 
ondition for the uniform law of large numbers is true.

3.2 Consisten
y

We want to show the 
onsisten
y of the pro
edure involving 
hoosing maps (xn)n∈N∗
whi
h almost

minimizes the empiri
al distortions (Vn(x))n∈N∗
in Dδ

I .

Let

χ̄β
n :=

{

x ∈ Dδ
I su
h that Vn(x) < inf

x∈Dδ
I

Vn(x) +
1

β(n)

}

(14)

be the set of estimators that almost minimize the empiri
al distortion, with β(n) being a stri
tly

positive fun
tion, su
h that limn→+∞ β(n) = ∞. Let χ̄ = argminx∈Dδ
I
V (x) be the set of maps

minimizing the theoreti
al distortion, eventually redu
ed to one map. It is easy to verify that the

fun
tion x 7−→ V (x) is 
ontinuous on Dδ
I , so for all neighborhood N of χ̄, η (N ) > 0 exists su
h

that

∀x ∈ Dδ
I\N , V (x) > min

x∈Dδ
I

V (x) + η (N ) (15)

to show the strong 
onsisten
y, it is enough to prove that for all neighborhoods N of χ̄ we have

lim
n→∞

χ̄β
n

a.s.⊂ N ⇐⇒ lim
n→∞

V
(

χ̄β
n

)

− V (χ̄)
a.s.
≤ η (N ) (16)
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with V (E) − V (F ) := sup {V (x)− V (y) for x ∈ E and y ∈ F}. By de�nition Vn

(

χ̄β
n

) a.s.
≤

Vn (χ̄) +
1

β(n) , and the uniform law of large numbers yields limn→∞ Vn (χ̄) − V (χ̄)
a.s.
= 0, we get

then limn→∞ Vn

(

χ̄β
n

) a.s.
≤ V (χ̄) + η(N )

2 . Moreover, we have limn→∞ V
(

χ̄β
n

)

− Vn

(

χ̄β
n

)

a.s.
= 0 and

lim
n→∞

V
(

χ̄β
n

)

− η (N )

2

a.s.
< lim

n→∞
Vn

(

χ̄β
n

) a.s.
≤ V (χ̄) +

η (N )

2
(17)

�nally limn→∞ V
(

χ̄β
n

)

− V (χ̄)
a.s.
≤ η (N ), this proves the strong 
onsisten
y of the maps whi
h

almost minimizes the empiri
al distortion.

4 Di�eren
es between the SOM algorithm and distortion measure

Using the result of the previous se
tion we 
an investigate the di�eren
es between the minima

of the empiri
al distortion and the equilibria of the SOM algorithm. Namely, if these equilibria

were maps almost minimizing the empiri
al distortion 
riterion they will 
onverge, as the number

of observations in
reases, to the minimum of the theoreti
al distortion measure but we will show

that it is not generally the 
ase. In the next se
tion we will 
ompute the gradient of the fun
tion

V (x), and show that even in multidimensional 
ases, the equilibria of the SOM algorithm and the

minima of V (x) do not mat
h. These results generalize the results of Kohonen [9℄ obtained for

unidimensional 
ases.

4.1 Derivability of V (x)

Let us now write

DI :=

{

(

xi =
(

x1i , · · · , xdi
))

i∈I
∈
(

[0, 1]d
)I ∣
∣

∣∀k ∈ {1, · · · , d}
∥

∥

∥xki − xkj

∥

∥

∥ > 0 if i 6= j

}

(18)
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For i and j ∈ I, notes −→n ij
x the ve
tor

xj−xi

‖xj−xi‖ and let

M ij
x :=:

{

u ∈ R
d/

〈

u− xi − xj
2

, xi − xj

〉

= 0

}

(19)

be the mediator hyperplan. Let us note λij
x (ω) the Lebesgue measure on M ij

x . Fort and Pagès [3℄,

have shown the following lemma:

Lemma 4.1 Let φ be an R valued 
ontinuous fun
tion on [0, 1]d. For x ∈ DI , let be Φi (x) :=
∫

Ci(x)
φ (ω) dω. We note also (e1, · · · , ed) the 
anoni
al base of R

d
. The fun
tion Φi is 
ontinuously

derivable on DI and ∀i 6= j, l ∈ {1, · · · , d}

∂Φi

∂xlj
(x) =

∫

C̄i(x)∩C̄j(x)
φ (ω)

{

1

2

〈−→n ij
x , el

〉

+
1

‖xj − xi‖
×
〈(

xi + xj
2

− ω

)

, el

〉}

λij
x (ω) dω (20)

Moreover, if we note

∂Φi

∂xi
(x) :=













∂Φi

∂x1
j

(x)

.

.

.

∂Φi

∂xd
j

(x)













∂Φi

∂xi
(x) = −

∑

j∈I,j 6=i

∂Φi

∂xj
(x) (21)

Then, we dedu
e the theorem:

Theorem 4.2 If P (dω) = f (ω) dω, where f is 
ontinuous on [0; 1]d, then V is 
ontinuously deriv-
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able on DI and we have

∂V
∂xi

(x) =
∑

k∈I Λ (i− k)
∫

Ck(x)
(xi − ω)P (dω)

+1
2

∑

j∈I
∑

k∈I,k 6=i (Λ (k − j)− Λ (i− j))

×
∫

C̄k(x)∩C̄i(x)
‖xj − ω‖2

(

1
2
−→n ki

x + 1
‖xk−xi‖ ×

(

xi+xk

2 − ω
)

)

f (ω)λki
x dω

(22)

where

∂V
∂xi

(x) =













∂V
∂x1

i

(x)

.

.

.

∂V
∂xd

i

(x)













Proof As the fun
tion V (x) is 
ontinuous on DI , we only have to show that the partial derivatives

exist and are 
ontinuous. We note hli ∈ R
|I|×d

the ve
tor with all 
omponents null ex
ept the


omponent 
orresponding to xli , whi
h is h > 0. Then

V (x+hl
i)−V (x)

h
=

1
2

P

k,j∈I, k,j 6=i Λ(k−j)
R

Ck(x+hl
i)
‖xj−ω‖2P (dω)− 1

2

P

k,j∈I, k,j 6=i Λ(k−j)
R

Ck(x)
‖xj−ω‖2P (dω)

h

+

1
2

P

j∈I, j 6=i Λ(i−j)
R

Ci(x+hl
i)
‖xj−ω‖2P (dω)− 1

2

P

j∈I,j 6=i Λ(i−j)
R

Ci(x)
‖xj−ω‖2P (dω)

h

+

1
2

P

k∈I,k 6=i Λ(k−i)
R

Ck(x+hl
i)
‖xi+hl

i−ω‖2
P (dω)−

R

Ck(x)
‖xi−ω‖2P (dω)

h

+

1
2

„

R

Ci(x+hl
i)
‖xi+hl

i−ω‖2
P (dω)−

R

Ci(x)
‖xi−ω‖2P (dω)

«

h

(23)

Where the �rst two lines of the sums 
on
ern 
entroids di�erent from xi and the last two lines the

variation involving xi. Now, by applying the lemma 4.1, to the �rst two lines of the sum we get:
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limh→0
V (x+hl

i)−V (x)

h
= 1

2

∑

k,j∈I, k,j 6=iΛ (k − j)
∫

C̄k(x)∩C̄i(x)
‖xj − ω‖2

{

1
2

〈−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el
〉

}

λki
x (ω) dω

−1
2

∑

k,j∈I, k,j 6=iΛ (i− j)
∫

C̄k(x)∩C̄i(x)
‖xj − ω‖2

{

1
2

〈

−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el
〉

}

λki
x (ω) dω

+ limh→0

1
2

P

k∈I,k 6=i Λ(k−i)
R

Ck(x+hl
i)
‖xi−ω‖2+2h(xl

i−wl)+o(h)P (dω)−
R

Ck(x)‖xi−ω‖2P (dω)

h

+ limh→0

1
2

„

R

Ci(x+hl
i)
‖xi−ω‖2+2h(xl

i−wl)+o(h)P (dω)−
R

Ci(x)
‖xi−ω‖2P (dω)

«

h

(24)

Then, by applying the lemma 4.1 to the last two lines, we get:

limh→0
V (x+hl

i)−V (x)

h
= 1

2

∑

k,j∈I, k,j 6=i (Λ (k − j)− Λ (i− j))
∫

C̄k(x)∩C̄i(x)
‖xj − ω‖2

{

1
2

〈−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el
〉

}

λki
x (ω) dω

+1
2

∑

k∈I,k 6=iΛ (k − i)
∫

C̄k(x)∩C̄i(x)
‖xi − ω‖2

{

1
2

〈

−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el
〉

}

λki
x (ω) dω

−1
2

∑

k∈I,k 6=i

∫

C̄k(x)∩C̄i(x)
‖xi − ω‖2

{

1
2

〈

−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el
〉

}

λki
x (ω) dω

+
∑

k∈I Λ (k − i)
∫

Ck(x)
(xli − wl)P (dω)

(25)

�nally

limh→0
V (x+hl

i)−V (x)

h
= ∂V

∂xl
i

(x) = 1
2

∑

k,j∈I, k 6=i (Λ (k − j) − Λ (i− j))

∫

C̄k(x)∩C̄i(x)
‖xj − ω‖2

{

1
2

〈−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el
〉

}

λki
x (ω) dω

+
∑

k∈I Λ (k − i)
∫

Ck(x)
(xli − wl)P (dω)�

(26)

If we assume that the minimum of distortion measure is rea
hed in the interior of DI (i.e. that

no 
entroids 
ollapse), we dedu
e from the previous results that it does not mat
h the equilibrium

of the Kohonen algorithm. Indeed, a point x∗ := (x∗i )i∈I asymptoti
ally stable for the Kohonen
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algorithm will verify for all i ∈ I:

∑

k∈I
Λ (i− k)

∫

Ck(x)
(xi − ω)P (dω) = 0 (27)

This equation is valid even for the bat
h algorithm (see Fort, Cottrell and Letrémy [4℄). It 
an

mat
h with a minimum of the limit distortion only if

1
2

∑

j∈I
∑

k∈I,k 6=i (Λ (k − j)− Λ (i− j))

×
∫

C̄k(x)∩C̄i(x)
‖xj − ω‖2

(

1
2
−→n ki

x + 1
‖xk−xi‖ ×

(

xi+xk

2 − ω
)

)

f (ω)λki
x dω = 0

(28)

but, in general, this term is not null.

4.2 Example of a Kohonen string with 3 
entroids

The previous se
tion has shown that the minimum of distortion measure does not mat
h the equi-

librium of the Kohonen algorithm. We will illustrate this with a simple example. The 
lassi
al

explanation (see Kohonen [7℄) of lo
al potential minimization by the Kohonen algorithm is far from

being satisfa
tory. A
tually it seems that the minima of the distortion measure always o

ur on a

dis
ontinuity point, where the fun
tion is not derivable.

To illustrate this, let a Kohonen string be on segment [0, 1] (see �gure 2), with a dis
rete

neighborhood
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Figure 2: Kohonen string

0 1

1 1

X X X
1 2 3

4.2.1 The theoreti
al di�eren
e

The equilibrium of the SOM algorithm is rea
hed on points x verifying

∂V
∂x1

(x) =
∫

C1(x)
(x1 − ω)P (dω) +

∫

C2(x)
(x1 − ω)P (dω) = 0

∂V
∂x2

(x) =
∫

C1(x)
(x2 − ω)P (dω) +

∫

C2(x)
(x2 − ω)P (dω) +

∫

C3(x)
(x2 − ω)P (dω) = 0

∂V
∂x3

(x) =
∫

C2(x)
(x3 − ω)P (dω) +

∫

C3(x)
(x3 − ω)P (dω) = 0

(29)

but the minima of the distortion are rea
hed on points x verifying

∂V
∂x1

(x) =
∫

C1(x)
(x1 − ω)P (dω) +

∫

C2(x)
(x1 − ω)P (dω)− 1

4

∥

∥x3 − x1+x2
2

∥

∥

2
f
(

x1+x2
2

)

= 0

∂V
∂x2

(x) =
∫

C1(x)
(x2 − ω)P (dω) +

∫

C2(x)
(x2 − ω)P (dω) +

∫

C3(x)
(x2 − ω)P (dω)

−1
4

∥

∥x3 − x1+x2
2

∥

∥

2
f
(

x1+x2
2

)

+ 1
4

∥

∥x1 − x3+x2
2

∥

∥

2
f
(

x3+x2
2

)

= 0

∂V
∂x3

(x) =
∫

C2(x)
(x3 − ω)P (dω) +

∫

C3(x)
(x3 − ω)P (dω) + 1

4

∥

∥x1 − x2+x3
2

∥

∥

2
f
(

x2+x3
2

)

= 0

(30)

If we assume, for example, that the density of observations is uniform U[0;1], i.e. f(x) = 1 if x ∈ [0; 1],

then these two sets of points have no point in 
ommon. Indeed, if the two sets are equal then











x3 − x1+x2
2 = 0

x1 − x2+x3
2 = 0

(31)
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Therefore, x1 = x2 = x3, but this point is 
learly not an equilibrium of the Kohonen map.

4.2.2 Illustration of the behavior of distortion measure

We will see that if one draws data with a uniform distribution on the segment [0, 1] and then one


omputes the minimum of the distortion, then this minimum is always on a dis
ontinuity point.

The more observations one has, the more dis
ontinuities there are, but the global fun
tion looks

more and more regular. This is not surprising, sin
e we know that the limit is derivable.

The method of simulation Sin
e we have no numeri
al algorithm to 
ompute the exa
t min-

imum of varian
e, we pro
eed by exhaustive resear
h based on a dis
retization of the spa
e of the


entroids. To avoid too mu
h 
omputation, 0.001 is 
hosen as the dis
retization step. The following

�gures are obtained in the following way:

1. Simulate n �data� (ω1, · · · , ωn), 
hosen with a uniform law on [0, 1].

2. Sear
h exhaustively, on the dis
retization of DI , the string whi
h minimizes the distortion.

3. For the best string (x∗1, x
∗
2, x

∗
3), the graphi
al representations are obtained in the following

way:

• 3D Representation: we keep one 
entroid in the triplet (x∗1, x
∗
2, x

∗
3), then we move the

other around a small neighborhood of its optimal position. The level z is the extended

varian
e multiplied by the number of observations n.

• 2D Representation: we keep two 
entroids in the triplet (x∗1, x
∗
2, x

∗
3), then we move the

last one around a small neighborhood of its optimal position. The level z is the extended

varian
e multiplied by the number of observations n.
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The following �gures show the results obtained for a number of observations n varying from 10,

100 and 1000. We noti
e that, even for a small number of observations, the minima are always on

dis
ontinuity points.

Figure 3: Distortion measure for 10 observations
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Figure 4: Distortion measure for 100 observations
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Figure 5: Distortion measure for 1000 observations
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5 Con
lusion

For a �nite number of observations, the Kohonen algorithm was supposed to give an approximation

of the minimum of distortion measure, but if it were the 
ase, then why 
an the points of equilibrium

of the algorithm be di�erent from the theoreti
al minimum of distortion? Moreover, we have shown

that if we 
hoose maps that almost minimizes the empiri
al distortion, then these maps have to


onverge to the set of maps whi
h minimize the theoreti
al distortion. But, by 
al
ulating the

derivative of the theoreti
al distortion, we have shown that the equilibria of the Kohonen map 
an

not minimize this distortion in general. We illustrate this fa
t with an example where the minimum

is always rea
hed on dis
ontinuity points. This fa
t proves that the lo
al derivability of distortion

measure is not an important property and is not a satisfa
tory explanation for the behavior of the

Kohonen algorithm when the number of observations is �nite.
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