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Self Organizing Map algorithm and distortion measure

Abstrat

We study the statistial meaning of the minimization of distortion measure and the relation

between the equilibrium points of the SOM algorithm and the minima of distortion measure.

If we assume that the observations and the map lie in an ompat Eulidean spae, we prove

the strong onsisteny of the map whih almost minimizes the empirial distortion. Moreover,

after alulating the derivatives of the theoretial distortion measure, we show that the points

minimizing this measure and the equilibria of the Kohonen map do not math in general. We

illustrate, with a simple example, how this ours.

keywords Distortion measure, asymptoti onvergene, onsisteny, Self Organizing Map, empiri-

al proesses, Glivenko-Cantelli lass, uniform law of large numbers, general neighborhood funtion.
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1 Introdution

The distortion or distortion measure, is ertainly the most popular riterion for assessing the quality

of the lassi�ation of a Kohonen map (see Kohonen [8℄). This measure yields an assessment of

model properties with respet to the data and overomes the absene of ost funtion in the SOM

algorithm. Moreover, the SOM algorithm has been proven to be an approximation for the gradient

of distortion measure (see Graepel et al.[6℄).

Although the Kohonen map is proven to onverge sometimes on equilibria points, when the

number of observations tends to in�nity, the learning dynami annot be desribed by a gradient

desent of distortion measure for an in�nite number of observations (see for example Erwin et

al. [2℄). Moreover, Kohonen [9℄ has shown in some examples for the one dimensional grid, that

the model vetor produed by the SOM algorithm does not exatly oinide with the optimum of

distortion measure. This property seems to be paradoxial, on one hand SOM seems to minimize

the distortion for a �nite number of observations, but this behavior is no more true for the limit,

i.e. an in�nity of observations.

In this paper we will investigate the relationship between the SOM and distortion measure.

Firstly we will prove the strong onsisteny of the estimator minimizing the empirial distortion.

More preisely, we will prove that the maps almost minimizing the empirial distortion measure will

onverge almost surely to the set of maps minimizing the theoretial distortion measure. Seondly,

we will alulate the derivatives of the theoretial distortion, and dedue from this alulation that

the points minimizing the theoretial distortion di�er generally from the equilibrium point of the

SOM, whatever the dimension of the grid. Finally we will illustrate, with a simple example, why

an apparent ontradition between the disrete and the ontinuous ase ours.
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2 Distortion measure

We also assume in the sequel that the observations ω are independent and identially distributed

(i.i.d.) and are of dimension d. We assume that the observations lie in an ompat spae, therefore,

without loss of generality, they lie in the ompat spae [0, 1]d. We assume also that these obser-

vations follow the probability law P having a density with respet to the Lebesgue measure of R
d
,

this density is assumed to be bounded by a onstant B. In the sequel we all entroid a vetor of

[0, 1]d representing a lass of observations ω. We adopt in the sequel the notation of Cottrell et al.

[1℄.

De�nition 2.1 For e ∈ N
∗
, e ≤ d, we onsider a set of units indexed by I ⊂ Z

e
with the neighbor-

hood funtion Λ from I − I := {i− j, i, j ∈ I} to [0, 1] satisfying Λ (k) = Λ (−k) and Λ (0) = 1,

note that suh neighborhood funtion an be disrete or ontinuous.

De�nition 2.2 Note ‖.‖ the Eulidean norm, let

Dδ
I :=

{

x := (xi)i∈I ∈
(

[0, 1]d
)I

, suh that ‖xi − xj‖ ≥ δ if i 6= j

}

be the set of entroids xi separated by, at least, δ.

De�nition 2.3 if x := (xi)i∈I is the set of units, the Voronoi tessellation (Ci (x))i∈I is de�ned by

Ci (x) :=
{

ω ∈ [0, 1]d |‖xi − ω‖ < ‖xk − ω‖ if k 6= i
}

In ase of equality we assign ω ∈ Ci (x) thanks to the lexiographial order. Conversely, the index

of the Voronoi tessellation for an observation ω will be de�ned by

C−1
x (ω) = i ∈ I, if and only if ω ∈ Ci(x)
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De�nition 2.4 distortion measures the quality of a quanti�ation with respet to the neighborhood

struture. It is de�ned as follows:

• Distortion for the disrete ase (empirial distortion): We assume that the observations are

in a �nite set Ω = {ω1, · · · , ωn} and are uniformly distributed on this set. Then, distortion

measure is

Vn (x) =
1

2n

∑

i∈I

∑

ω∈Ci(x)





∑

j∈I
Λ (i− j) ‖xj − ω‖2





• Distortion for the ontinuous ase (theoretial distortion): Let us assume that P is the distri-

bution funtion of the observations. The theoretial distortion measure is

V (x) =
1

2

∑

i,j∈I
Λ (i− j)

∫

Ci(x)
‖xj − ω‖2 dP

As mentioned before the distribution P has a density with respet to the Lebesgue measure

bounded by a onstant B > 0.

The distortion measure is well known to be not ontinuous with respet to the entroids (xi)i∈I

for the disrete ase. Indeed, if an observation is exatly on an hyperplan separating two entroids,

shifting one of the entroids will imply a jump for the distortion. So, the distortion is not ontinuous

and, in general, a map whih realizes the minimum of the empirial distortion, does not exist.

However, if we onsider the sequenes of maps xn suh that the distortion Vn(x
n) will be su�iently

lose to its minimum, then we will show that suh sequenes of maps xn will onverge almost surely

to the set of maps whih reahes the minimum of the theoretial distortion measure V (x).
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3 Consisteny of the almost minimum of distortion

This demonstration is an extended version of Rynkiewiz [11℄. It follows the same line as Pollard

[10℄, so we will �rst show a uniform law of large numbers and then dedue the strong onsisteny

property.

3.1 Uniform law of large number

Let the family of funtions be

G :=







gx(ω) :=
∑

j∈I
Λ
(

C−1
x (ω)− j

)

‖xj − ω‖2 for x ∈ Dδ
I







(1)

In order to show the uniform law of large numbers, we have to prove that:

sup
x∈Dδ

I

∣

∣

∣

∣

∫

gx(ω)dPn(ω)−
∫

gx(ω)dP (ω)

∣

∣

∣

∣

a.s.
n→∞−→ 0 (2)

sine, for all probability measure Q on [0, 1]d:

∫

gx(ω)dQ(ω) =

∫

∑

j∈I
Λ
(

C−1
x (ω)− j

)

‖xj − ω‖2dQ(ω) =
1

2

∑

i,j∈I
Λ(i− j)

∫

Ci(x)
‖xj − ω‖2dQ(ω)

(3)

Now, a su�ient ondition to verify the equation (2) is the following (see Gaenssler and Stute [5℄):

∀ε > 0,∀x0 ∈ Dδ
I a neighborhood S(x0) of x0 exists suh that

∫

gx0(ω)dP (ω)− ε <

∫
(

inf
x∈S(x0)

gx(ω)

)

dP (ω) ≤
∫

(

sup
x∈S(x0)

gx(ω)

)

dP (ω) <

∫

gx0(ω)dP (ω) + ε

(4)

First we prove the following result, using a similar tehnique as the proof of lemma 11 of Fort and

Pagès [3℄
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Lemma 3.1 Let x ∈ Dδ
I and λ be the Lebesgue measure on [0, 1]d. Note Ec

the omplementary set

of set E in [0, 1]d and |I| the ardinal of set I. For 0 < α < δ
2 , let

Uα
i (x) =

{

ω ∈ [0, 1]d/∃y ∈ Dδ
I , xj = yj if j 6= i and ‖xi − yi‖ < α and ω ∈ Cc

i (y) ∩ Ci(x)
}

be the set of ω hanging of Voronoi ells when the entroid xi are moving a distane of at most α.

Then

supx∈Dδ
I
λ (Uα

i (x)) < (|I| − 1)

(

2α

δ
+ α

)

(√
2
)d−1

(5)

proof Let x and y ∈ Dδ
I heking the assumption of lemma 3.1 and j 6= i ∈ I. In order to

prove the inequality, we have to bound the measure of ω belonging to the ells Ci(x) and Cj(y)

simultaneously, sine (Ci(y))
c =

⋃

j∈I,j 6=iCj(y).

Note (z |t), the inner produt between z and t, and −→n ij
x :=

xj−xi

‖xj−xi‖ . The parameter vetor

x + γ1−→n ij
x will be the vetor with all omponents equal to x exept the omponent i equal to

xi + γ1−→n ij
x .

Sine ‖yi − xi‖ < α, we have
(

yi − xi
∣

∣
−→n ij

x

)

= γ1 with |γ1| ≤ α < δ
2 . As the Lebesgue measure

(of R
d−1

) of all plane setions of [0, 1]d is bounded by

(√
2
)d−1

, when there is a movement of the

entroid xi, of γ1−→n ij
x , the Lebesgue measure of ω hanging of Voronoi ells is then bounded by

|γ1|
2

(√
2
)d−1

, so

λ
(

Cj

(

x+ γ1−→n ij
x

)

∩ Ci(x)
)

< α
(√

2
)d−1

(6)

Moreover, we note that x+ γ1−→n ij
x belongs to D

δ
2
I .

On the other hand, let yi−xi− γ1−→n ij
x := γ2−→τ ij

x , with ‖−→τ ij
x ‖ = 1, be the orthogonal omponent

to

−→n ij
x of the movement of xi to yi, i.e. suh that

(−→n ij
x

∣

∣
−→τ ij

x

)

= 0.

As it is shown in �gure (1), in dimension 2, for all x′ = x+ γ1−→n ij
x ∈ D

δ
2
I , the Lebesgue measure

of ω hanging of Voronoi ells for a movement of entroid x′i, of γ2
−→τ ij

x is bounded by

2α
δ

(√
2
)d−1

.
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Therefore, we have

λ
(

Cj

(

x+ γ1−→n ij
x + γ2−→τ ij

x

)

∩ Ci(x)
)

< α
(√

2
)d−1

+
2α

δ

(√
2
)d−1

(7)

Figure 1: hathed area < 2γ2
δ

<
√
2×2α
δ

γ2

γ2

0

1

2

2

δ

δ/2

/2
 <

x’

x j

i

As this inequality is independent of x, �nally we get:

sup
x∈Dδ

I

λ
(

Cj

(

x+ γ1−→n ij
x + γ2−→τ ij

x

)

∩ Ci(x)
)

<

(

α+
2α

δ

)

(√
2
)d−1

(8)

then

sup
x∈Dδ

I

λ (Uα
i (x)) < (|I| − 1)

(

α+
2α

δ

)

(√
2
)d−1

�

Now onsider x0 ∈ Dδ
I and S(x0) a neighborhood of x0 inluded in a sphere of radius α. Let

W (x0) be the set of ω remaining in their Voronoi ells when x0 go to any x ∈ S(x0). For all
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ω ∈ W (x0) we have

infx∈S(x0) gx(ω) ≥ gx0(ω)−∑j∈I Λ
(

C−1
x0 (ω)− j

)

(

‖x0j − ω‖2 − infx∈S(x0) ‖x0j − ω‖2
)

≥ gx0
j
(ω)−∑j∈I

(

‖x0j − ω‖2 − infx∈S(x0) ‖x0j − ω‖2
)

(9)

For all ω ∈ [0, 1]d, for a small enough α, we have
(

‖x0j − ω‖2 − infx∈S(x0) ‖xj − ω‖2
)

< ε
2B|I| so

∫

W (x0)

∑

j∈I

(

‖x0j − ω‖2 − inf
x∈S(x0)

‖xj − ω‖2
)

dP (ω) <
ε

2
and

∫

W (x0)

(

gx0(ω)− inf
x∈S(x0)

gx(ω)

)

<
ε

2

(10)

Now, let W (x0)c be the set of ω hanging of Voronoi ells when the entroids go from x0 to

x ∈ Sx0 . For all ω ∈ W (x0)c there exist two di�erent indies i and j suh that ω ∈ Ci(x
0) and

ω ∈ Cj(x). Let us de�ne a sequene xk, k ∈ {0, · · · , ‖I|}, by sequentially hanging the omponents

of x0 into the omponents of x suh that x|I| = x (xk is the set of intermediate on�gurations

to transform x0 in x), then there exists a moment l ∈ {0, · · · , |I| − 1}, suh that ω ∈ Ci(x
l) and

ω /∈ Ci(x
l+1). Indeed, if it were not the ase, you ould �nd a sequene xk, k ∈ {0, · · · , ‖I|}, with

x|I| = x suh that ω ∈ Ci(x
|I|) = Ci(x), whih would be a ontradition. So W (x0)c is inluded in

the set of ω whih hange of Voronoi set when we hange sequentially the omponents of x0 by the

omponents of x.

If α < δ
4 , then when the omponents x0i of x0 are moving sequentially from x0 to xi of x, eah

intermediate on�guration stays in D
δ
2
I . Sine, for all i ∈ I, ‖xi − ω‖2 is bounded by 1 on [0, 1]d,

the lemma 3.1, assure that

∫

W (x0)c
gx(ω)dP (ω) < B|I|(|I| − 1))

(

4α

δ
+ α

)

(√
2
)d−1

(11)
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Finally, if we hoose a small enough α suh that B|I|(|I| − 1))
(

4α
δ
+ α

) (√
2
)d−1

< ε
2 , we get

∫

Dδ
I

gx0(ω)dP (ω)− ε <

∫

Dδ
I

(

inf
x∈S(x0)

gx(ω)

)

dP (ω) (12)

Exatly in the same way, for a small enough α, we get

∫

Dδ
I

(

sup
x∈S(x0)

gx(ω)

)

dP (ω) <

∫

Dδ
I

gx0(ω)dP (ω) + ε (13)

Therefore, the su�ient ondition for the uniform law of large numbers is true.

3.2 Consisteny

We want to show the onsisteny of the proedure involving hoosing maps (xn)n∈N∗
whih almost

minimizes the empirial distortions (Vn(x))n∈N∗
in Dδ

I .

Let

χ̄β
n :=

{

x ∈ Dδ
I suh that Vn(x) < inf

x∈Dδ
I

Vn(x) +
1

β(n)

}

(14)

be the set of estimators that almost minimize the empirial distortion, with β(n) being a stritly

positive funtion, suh that limn→+∞ β(n) = ∞. Let χ̄ = argminx∈Dδ
I
V (x) be the set of maps

minimizing the theoretial distortion, eventually redued to one map. It is easy to verify that the

funtion x 7−→ V (x) is ontinuous on Dδ
I , so for all neighborhood N of χ̄, η (N ) > 0 exists suh

that

∀x ∈ Dδ
I\N , V (x) > min

x∈Dδ
I

V (x) + η (N ) (15)

to show the strong onsisteny, it is enough to prove that for all neighborhoods N of χ̄ we have

lim
n→∞

χ̄β
n

a.s.⊂ N ⇐⇒ lim
n→∞

V
(

χ̄β
n

)

− V (χ̄)
a.s.
≤ η (N ) (16)
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with V (E) − V (F ) := sup {V (x)− V (y) for x ∈ E and y ∈ F}. By de�nition Vn

(

χ̄β
n

) a.s.
≤

Vn (χ̄) +
1

β(n) , and the uniform law of large numbers yields limn→∞ Vn (χ̄) − V (χ̄)
a.s.
= 0, we get

then limn→∞ Vn

(

χ̄β
n

) a.s.
≤ V (χ̄) + η(N )

2 . Moreover, we have limn→∞ V
(

χ̄β
n

)

− Vn

(

χ̄β
n

)

a.s.
= 0 and

lim
n→∞

V
(

χ̄β
n

)

− η (N )

2

a.s.
< lim

n→∞
Vn

(

χ̄β
n

) a.s.
≤ V (χ̄) +

η (N )

2
(17)

�nally limn→∞ V
(

χ̄β
n

)

− V (χ̄)
a.s.
≤ η (N ), this proves the strong onsisteny of the maps whih

almost minimizes the empirial distortion.

4 Di�erenes between the SOM algorithm and distortion measure

Using the result of the previous setion we an investigate the di�erenes between the minima

of the empirial distortion and the equilibria of the SOM algorithm. Namely, if these equilibria

were maps almost minimizing the empirial distortion riterion they will onverge, as the number

of observations inreases, to the minimum of the theoretial distortion measure but we will show

that it is not generally the ase. In the next setion we will ompute the gradient of the funtion

V (x), and show that even in multidimensional ases, the equilibria of the SOM algorithm and the

minima of V (x) do not math. These results generalize the results of Kohonen [9℄ obtained for

unidimensional ases.

4.1 Derivability of V (x)

Let us now write

DI :=

{

(

xi =
(

x1i , · · · , xdi
))

i∈I
∈
(

[0, 1]d
)I ∣
∣

∣∀k ∈ {1, · · · , d}
∥

∥

∥xki − xkj

∥

∥

∥ > 0 if i 6= j

}

(18)
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For i and j ∈ I, notes −→n ij
x the vetor

xj−xi

‖xj−xi‖ and let

M ij
x :=:

{

u ∈ R
d/

〈

u− xi − xj
2

, xi − xj

〉

= 0

}

(19)

be the mediator hyperplan. Let us note λij
x (ω) the Lebesgue measure on M ij

x . Fort and Pagès [3℄,

have shown the following lemma:

Lemma 4.1 Let φ be an R valued ontinuous funtion on [0, 1]d. For x ∈ DI , let be Φi (x) :=
∫

Ci(x)
φ (ω) dω. We note also (e1, · · · , ed) the anonial base of R

d
. The funtion Φi is ontinuously

derivable on DI and ∀i 6= j, l ∈ {1, · · · , d}

∂Φi

∂xlj
(x) =

∫

C̄i(x)∩C̄j(x)
φ (ω)

{

1

2

〈−→n ij
x , el

〉

+
1

‖xj − xi‖
×
〈(

xi + xj
2

− ω

)

, el

〉}

λij
x (ω) dω (20)

Moreover, if we note

∂Φi

∂xi
(x) :=













∂Φi

∂x1
j

(x)

.

.

.

∂Φi

∂xd
j

(x)













∂Φi

∂xi
(x) = −

∑

j∈I,j 6=i

∂Φi

∂xj
(x) (21)

Then, we dedue the theorem:

Theorem 4.2 If P (dω) = f (ω) dω, where f is ontinuous on [0; 1]d, then V is ontinuously deriv-
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able on DI and we have

∂V
∂xi

(x) =
∑

k∈I Λ (i− k)
∫

Ck(x)
(xi − ω)P (dω)

+1
2

∑

j∈I
∑

k∈I,k 6=i (Λ (k − j)− Λ (i− j))

×
∫

C̄k(x)∩C̄i(x)
‖xj − ω‖2

(

1
2
−→n ki

x + 1
‖xk−xi‖ ×

(

xi+xk

2 − ω
)

)

f (ω)λki
x dω

(22)

where

∂V
∂xi

(x) =













∂V
∂x1

i

(x)

.

.

.

∂V
∂xd

i

(x)













Proof As the funtion V (x) is ontinuous on DI , we only have to show that the partial derivatives

exist and are ontinuous. We note hli ∈ R
|I|×d

the vetor with all omponents null exept the

omponent orresponding to xli , whih is h > 0. Then

V (x+hl
i)−V (x)

h
=

1
2

P

k,j∈I, k,j 6=i Λ(k−j)
R

Ck(x+hl
i)
‖xj−ω‖2P (dω)− 1

2

P

k,j∈I, k,j 6=i Λ(k−j)
R

Ck(x)
‖xj−ω‖2P (dω)

h

+

1
2

P

j∈I, j 6=i Λ(i−j)
R

Ci(x+hl
i)
‖xj−ω‖2P (dω)− 1

2

P

j∈I,j 6=i Λ(i−j)
R

Ci(x)
‖xj−ω‖2P (dω)

h

+

1
2

P

k∈I,k 6=i Λ(k−i)
R

Ck(x+hl
i)
‖xi+hl

i−ω‖2
P (dω)−

R

Ck(x)
‖xi−ω‖2P (dω)

h

+

1
2

„

R

Ci(x+hl
i)
‖xi+hl

i−ω‖2
P (dω)−

R

Ci(x)
‖xi−ω‖2P (dω)

«

h

(23)

Where the �rst two lines of the sums onern entroids di�erent from xi and the last two lines the

variation involving xi. Now, by applying the lemma 4.1, to the �rst two lines of the sum we get:
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limh→0
V (x+hl

i)−V (x)

h
= 1

2

∑

k,j∈I, k,j 6=iΛ (k − j)
∫

C̄k(x)∩C̄i(x)
‖xj − ω‖2

{

1
2

〈−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el
〉

}

λki
x (ω) dω

−1
2

∑

k,j∈I, k,j 6=iΛ (i− j)
∫

C̄k(x)∩C̄i(x)
‖xj − ω‖2

{

1
2

〈

−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el
〉

}

λki
x (ω) dω

+ limh→0

1
2

P

k∈I,k 6=i Λ(k−i)
R

Ck(x+hl
i)
‖xi−ω‖2+2h(xl

i−wl)+o(h)P (dω)−
R

Ck(x)‖xi−ω‖2P (dω)

h

+ limh→0

1
2

„

R

Ci(x+hl
i)
‖xi−ω‖2+2h(xl

i−wl)+o(h)P (dω)−
R

Ci(x)
‖xi−ω‖2P (dω)

«

h

(24)

Then, by applying the lemma 4.1 to the last two lines, we get:

limh→0
V (x+hl

i)−V (x)

h
= 1

2

∑

k,j∈I, k,j 6=i (Λ (k − j)− Λ (i− j))
∫

C̄k(x)∩C̄i(x)
‖xj − ω‖2

{

1
2

〈−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el
〉

}

λki
x (ω) dω

+1
2

∑

k∈I,k 6=iΛ (k − i)
∫

C̄k(x)∩C̄i(x)
‖xi − ω‖2

{

1
2

〈

−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el
〉

}

λki
x (ω) dω

−1
2

∑

k∈I,k 6=i

∫

C̄k(x)∩C̄i(x)
‖xi − ω‖2

{

1
2

〈

−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el
〉

}

λki
x (ω) dω

+
∑

k∈I Λ (k − i)
∫

Ck(x)
(xli − wl)P (dω)

(25)

�nally

limh→0
V (x+hl

i)−V (x)

h
= ∂V

∂xl
i

(x) = 1
2

∑

k,j∈I, k 6=i (Λ (k − j) − Λ (i− j))

∫

C̄k(x)∩C̄i(x)
‖xj − ω‖2

{

1
2

〈−→n ki
x , el

〉

+ 1
‖xi−xk‖ ×

〈(

xk+xi

2 − ω
)

, el
〉

}

λki
x (ω) dω

+
∑

k∈I Λ (k − i)
∫

Ck(x)
(xli − wl)P (dω)�

(26)

If we assume that the minimum of distortion measure is reahed in the interior of DI (i.e. that

no entroids ollapse), we dedue from the previous results that it does not math the equilibrium

of the Kohonen algorithm. Indeed, a point x∗ := (x∗i )i∈I asymptotially stable for the Kohonen
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algorithm will verify for all i ∈ I:

∑

k∈I
Λ (i− k)

∫

Ck(x)
(xi − ω)P (dω) = 0 (27)

This equation is valid even for the bath algorithm (see Fort, Cottrell and Letrémy [4℄). It an

math with a minimum of the limit distortion only if

1
2

∑

j∈I
∑

k∈I,k 6=i (Λ (k − j)− Λ (i− j))

×
∫

C̄k(x)∩C̄i(x)
‖xj − ω‖2

(

1
2
−→n ki

x + 1
‖xk−xi‖ ×

(

xi+xk

2 − ω
)

)

f (ω)λki
x dω = 0

(28)

but, in general, this term is not null.

4.2 Example of a Kohonen string with 3 entroids

The previous setion has shown that the minimum of distortion measure does not math the equi-

librium of the Kohonen algorithm. We will illustrate this with a simple example. The lassial

explanation (see Kohonen [7℄) of loal potential minimization by the Kohonen algorithm is far from

being satisfatory. Atually it seems that the minima of the distortion measure always our on a

disontinuity point, where the funtion is not derivable.

To illustrate this, let a Kohonen string be on segment [0, 1] (see �gure 2), with a disrete

neighborhood
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Figure 2: Kohonen string

0 1

1 1

X X X
1 2 3

4.2.1 The theoretial di�erene

The equilibrium of the SOM algorithm is reahed on points x verifying

∂V
∂x1

(x) =
∫

C1(x)
(x1 − ω)P (dω) +

∫

C2(x)
(x1 − ω)P (dω) = 0

∂V
∂x2

(x) =
∫

C1(x)
(x2 − ω)P (dω) +

∫

C2(x)
(x2 − ω)P (dω) +

∫

C3(x)
(x2 − ω)P (dω) = 0

∂V
∂x3

(x) =
∫

C2(x)
(x3 − ω)P (dω) +

∫

C3(x)
(x3 − ω)P (dω) = 0

(29)

but the minima of the distortion are reahed on points x verifying

∂V
∂x1

(x) =
∫

C1(x)
(x1 − ω)P (dω) +

∫

C2(x)
(x1 − ω)P (dω)− 1

4

∥

∥x3 − x1+x2
2

∥

∥

2
f
(

x1+x2
2

)

= 0

∂V
∂x2

(x) =
∫

C1(x)
(x2 − ω)P (dω) +

∫

C2(x)
(x2 − ω)P (dω) +

∫

C3(x)
(x2 − ω)P (dω)

−1
4

∥

∥x3 − x1+x2
2

∥

∥

2
f
(

x1+x2
2

)

+ 1
4

∥

∥x1 − x3+x2
2

∥

∥

2
f
(

x3+x2
2

)

= 0

∂V
∂x3

(x) =
∫

C2(x)
(x3 − ω)P (dω) +

∫

C3(x)
(x3 − ω)P (dω) + 1

4

∥

∥x1 − x2+x3
2

∥

∥

2
f
(

x2+x3
2

)

= 0

(30)

If we assume, for example, that the density of observations is uniform U[0;1], i.e. f(x) = 1 if x ∈ [0; 1],

then these two sets of points have no point in ommon. Indeed, if the two sets are equal then











x3 − x1+x2
2 = 0

x1 − x2+x3
2 = 0

(31)
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Therefore, x1 = x2 = x3, but this point is learly not an equilibrium of the Kohonen map.

4.2.2 Illustration of the behavior of distortion measure

We will see that if one draws data with a uniform distribution on the segment [0, 1] and then one

omputes the minimum of the distortion, then this minimum is always on a disontinuity point.

The more observations one has, the more disontinuities there are, but the global funtion looks

more and more regular. This is not surprising, sine we know that the limit is derivable.

The method of simulation Sine we have no numerial algorithm to ompute the exat min-

imum of variane, we proeed by exhaustive researh based on a disretization of the spae of the

entroids. To avoid too muh omputation, 0.001 is hosen as the disretization step. The following

�gures are obtained in the following way:

1. Simulate n �data� (ω1, · · · , ωn), hosen with a uniform law on [0, 1].

2. Searh exhaustively, on the disretization of DI , the string whih minimizes the distortion.

3. For the best string (x∗1, x
∗
2, x

∗
3), the graphial representations are obtained in the following

way:

• 3D Representation: we keep one entroid in the triplet (x∗1, x
∗
2, x

∗
3), then we move the

other around a small neighborhood of its optimal position. The level z is the extended

variane multiplied by the number of observations n.

• 2D Representation: we keep two entroids in the triplet (x∗1, x
∗
2, x

∗
3), then we move the

last one around a small neighborhood of its optimal position. The level z is the extended

variane multiplied by the number of observations n.
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The following �gures show the results obtained for a number of observations n varying from 10,

100 and 1000. We notie that, even for a small number of observations, the minima are always on

disontinuity points.

Figure 3: Distortion measure for 10 observations
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Figure 4: Distortion measure for 100 observations
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Figure 5: Distortion measure for 1000 observations
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5 Conlusion

For a �nite number of observations, the Kohonen algorithm was supposed to give an approximation

of the minimum of distortion measure, but if it were the ase, then why an the points of equilibrium

of the algorithm be di�erent from the theoretial minimum of distortion? Moreover, we have shown

that if we hoose maps that almost minimizes the empirial distortion, then these maps have to

onverge to the set of maps whih minimize the theoretial distortion. But, by alulating the

derivative of the theoretial distortion, we have shown that the equilibria of the Kohonen map an

not minimize this distortion in general. We illustrate this fat with an example where the minimum

is always reahed on disontinuity points. This fat proves that the loal derivability of distortion

measure is not an important property and is not a satisfatory explanation for the behavior of the

Kohonen algorithm when the number of observations is �nite.
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