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Abstract  

In the study of information flow in the nervous system, component processes can be 
investigated using a range of electrophysiological and imaging techniques. Although 
data is difficult and expensive to produce, it is rarely shared and collaboratively 
exploited. The Code Analysis, Repository and Modelling for eNeuroscience (CARMEN) 
project addresses this challenge through the provision of a virtual neuroscience 
laboratory: an infrastructure for sharing data, tools and services. Central to the 
CARMEN concept are federated CARMEN nodes, which provide: data and metadata 
storage, new, thirdparty and legacy services, and tools. In this paper, we describe 
the CARMEN project as well as the node infrastructure and an associated thick client 
tool for pattern visualisation and searching, the Signal Data Explorer (SDE). We also 
discuss new spike detection methods, which are central to the services provided by 
CARMEN. The SDE is a client application which can be used to explore data in the 
CARMEN repository, providing data visualization, signal processing and a pattern 
matching capability. It performs extremely fast pattern matching and can be used to 
search for complex conditions composed of many different patterns across the large 
datasets that are typical in neuroinformatics. Searches can also be constrained by 
specifying text based metadata filters. Spike detection services which use wavelet 
and morphology techniques are discussed, and have been shown to outperform 
traditional thresholding and template based systems. A number of different spike 
detection and sorting techniques will be deployed as services within the CARMEN 
infrastructure, to allow users to benchmark their performance against a wide range 
of reference datasets.  
 
1. Introduction  

An important challenge in the study of the nervous system is to understand the 
way in which neuronal signals are encoded, archived and decoded (Watson et al., 
2007). This is not only a fundamental research question but has major application to 
industry, including: computer science, nanotechnology and neuromorphic systems, 
electronic engineering and central nervous system drug discovery. Coding is thought 
to occur in different ways at different levels of abstraction. These are characterised 
through application of various electrical, imaging and modelling techniques, 
addressing different levels of granularity.  

Data, which are difficult and expensive to produce, yet sporadically shared, are 
typically voluminous and locally curated,  
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and exist in heterogeneous formats. They are therefore difficult to integrate and 
often not amenable to computation. Consequently, analysts are often deprived of 
data, and it is not common for methods to be verified on data from multiple sources. 
As a result, there is:  

(a) A shortfall in generic analysis methods.  
(b) An absence of readily accessible reference data.  
(c) Limited organised curation or data optimisation.  
(d) Limited cooperation between disparate research groups with complementary 
expertise.  
 

This paper describes ongoing work into developing an infrastructure that will 
address these challenges. The CARMEN (Code Analysis, Repository and Modelling for 
eNeuroscience) Project is developing a virtual neuroscience laboratory: a platform for 
sharing data, tools and services. The paper discusses the evolution of the system 
and reports on the current state of development. An overview of the project is 
provided, followed by an outline of the integration of data, tools and services. The 
Signal Data Explorer (SDE) and underlying pattern match algorithms are described. 
Pattern matching will be used, for example, for detecting shapes which indicate a 
particular condition in an electrophysiology recording. Preliminary services for spike 
detection are then presented, followed by future work and conclusions. 

 
2. Background  

CARMEN is a $10M, 4 year UK eScience Pilot Project which began in October 2006 
and is progressing through requirements, design and prototyping stages. Release in 
stable form is planned for October 2008. The aim is to provide a webbased 
computing infrastructure (Foster & Kesselman, 2004) to enable integration of data, 
software and knowledge from distributed neuroscientists. These innovations embody 
a virtual neuroscience laboratory, linking experimental and analytical neuroscientists 
in a translational pipeline which challenges contemporary neuroscience; offering 
potential for rapid and expedient advancement. Complementary to this, the 
publication and sharing of data is increasingly mandated by research funding 
organisations (Medical research council, n.d.; NIH data sharing policy, 2003).  

The primary advantage of CARMEN is to reduce the requirement for expensive and 
often ethically contentious experimentation, by allowing maximum benefit to be 
derived from experimental data and analysis methods.  

The initial requirements for the CARMEN system have been collected through 
extensive, iterative discussion with the ten neuroscience research groups on the 
project. These requirements can be summarised as follows:  

• Allow ‘‘experimenter’’ users to describe, store and analyse data (time and 
image series) from various electrophysiology acquisition systems — in various 
proprietary and bespoke formats (the maximum data rate discovered so far is 
1 Tbyte per week).  

• Allow ‘‘analyst’’ users to describe, store and browse code (source and 
executable) for data analysis.  

• Allow execution of code in MATLAB, R, Java, Python and C/C++, including 
highly parallel processes.  

• Allow ‘‘simulation’’ users to describe, store and analyse data generated by 
simulation tools, including the NEURON (n.d.) and GENESIS (n.d.) simulators.  

• Allow data derived from the results of analyses to be stored and bound to 
source data for further analysis.  

• Allow users to specify access control rights to their data or analysis services.  
• Allow both thin and thick client tools – including legacy tools – to access the 



repository securely for data analysis and visualisation.  
• Enable data translation between different proprietary and bespoke data 

formats. Retaining source data at all stages in the translation.  
• Support a user community that is distributed and growing, with varying data 

preservation requirements.  
 
3. Relation to existing infrastructures  

The desire to share, preserve and make efficient use of scientific data is generic. 
Prior to the commoditisation of networked computing, peerreviewed articles provided 
the optimal media for distribution of results of research. Confronted simultaneously 
by escalating data rates, and rapidly increasing capacity to archive and transport 
data, the focus in many domains has diversified towards publishing experimental 
data, in some cases prior to peerreview. A range of initiatives in these domains, 
including the life sciences, therefore precedes CARMEN. CARMEN, where possible, 
utilises their technologies:  

• The Storage Request Broker (SRB) (SRB, n.d.) was developed by the San 
Diego Supercomputer Center (SDSC). The Biomedical Imaging Research 
Network (BIRN) project (BIRN, n.d.) uses SRB to build datagrids, to integrate 
distributed image repositories. The DAME (Distributed Aircraft Maintenance 
Environment) (Austin et al., 2004) and BROADEN (Business Resource 
Optimisation for Aftermarket & Design on Engineering Networks) (Fletcher et 
al., 2006) projects used SRB to manage data from aeroengine sensors. 
CARMEN uses the SRB for storage of raw and derived data from 
neurophysiology experiments.  

• The XACML security markup (XACML, n.d.) was used by the GOLD (n.d.) 
project at Newcastle University to allow intellectual property on new chemical 
entities to be shared securely by biotech companies. CARMEN utilises XACML 
tooling developed by the GOLD project for provision of federated security.  

• The Taverna Workbench and Freefluo Enactment Engine (TAVERNA, n.d.) 
were developed by the myGrid project (myGrid, n.d.) to facilitate interchange 
of software services developed for microarray analysis. CARMEN will make 
use of Taverna and Freefluo for construction and orchestration of data 
analysis workflows.  

• FuGE (n.d.) was developed by the functional genomics community to provide 
a generic data annotation model for experiments. FuGE will be extended by 
CARMEN to describe neurophysiology experiments.  

• The SDE(n.d.)and distributed search technology was developed during the 
DAME and BROADEN projects. CARMEN will use this technology for data 
visualisation and searching.  

 
To illustrate this point, we compare CARMEN to a preceding initiative in the High 

Energy Physics (HEP) domain. The ROOT (n.d.) system is an object oriented 
framework whose purpose is to manage and analyse large amounts of data from the 
Large Hadron Collider (LHC). The LHC generates data for both simulation and 
analysis which is (by orders of magnitude) larger than anything seen before; 
approximately 1 Tbyte per experimental run. Currently the core function of ROOT is 
restricted to data processing in C++ and Python, which differs from CARMEN where 
there is a requirement to support a much broader range of scripting languages, 
which will be met by embedding code within generic data messaging interfaces 
(Java, SOAP). It is intended that ROOT will be extended to cover: data acquisition, 
event reconstruction, detector simulation, and event generators. There is also is an 
extension of ROOT allowing transparent analysis of large sets of ROOT files in 



parallel, on clusters of computers or multicore machines, known as the Parallel ROOT 
Facility, PROOF (n.d.). It is intended that CARMEN will emulate and extend this 
functionality through use of Dynasoar (n.d.), which supports dynamic service 
deployment over loosely coupled compute grids. The CARMEN and ROOT projects are 
similar in that both intend to store data, and perform remote data analysis and 
simulation. However, their data formats, and analysis and simulation requirements 
are potentially very different. It is also not clear that ROOT intends to support 
sharing, social networking and client access, which are requisite features for 
CARMEN. 

 
4. The CARMEN architecture  

The architecture consists of federated CARMEN Active Information Repository 
Nodes (CAIRNs), which store, process and expose data (Fig. 1). A portal presents 
resources to clients in a conceptually centralised manner.  

It is envisaged that CAIRNs will hold both raw time series data from 
electrophysiology recordings (e.g. Multi Electrode Array — MEA) and optical image 
data. Services will be provided to convert data to and from a translation format, 
providing a uniform data  

 

 

Fig. 1. CARMEN Active Information Repository Node (CAIRN).  

interface for analysis services. Presently, flat file data, including raw experimental 
recordings, are held in the Storage Request Broker. Metadata is held in a database, 
providing native search and indexing functions.  

The CAIRNs support the notion that both data and code may be managed. 
Furthermore, each CAIRN provides an execution environment comprising of: (a) 
Dynasoar, which allows services to be dynamically deployed over compute grids by 
way of virtual endpoints, and; (b) the Freefluo enactment engine, which allows 
workflows combining data and analysis services (specified in XML) to be deployed 
and reused. Together, these allow data transport to be optimised for fast, efficient 
processing.  

Analysis functions are presented in the form of Web services (n.d.), which will be 
deployed by users supported by the CARMEN development team. It is anticipated 
that a core set of methods will be provided with the first stable release. Those 
currently in development range from spike detection and sorting, to information 
theory, correlation and causality measures, including Bayesian modelfitting.  



Provenance functions are planned to allow processing threads to be transcribed 
and queried over time, binding raw data to derived data from analysis.  

The security infrastructure allows users to grant other users with access to data 
and services. More sophisticated functions, including policy conflict resolution (e.g. 
where funder policies must be reconciled with policies specified by the recipient user) 
are earmarked for future research.  

Section 5 presents further exploration on data, services workflows and tools. 
Sections 6 and 7 explore the Signal Data Explorer (SDE) tool and the pattern 
matching techniques used in more detail. Section 8 covers server based spike 
services, and Sections 9 and 10 describe future work and conclusions. 

 
5. Data, services, workflows and tools  

We have identified that typical users of the CARMEN infrastructure will perform 
one or more of the following:  

• Collect raw data (e.g. time series or image series) and store this in the 
CARMEN infrastructure.  

• Perform data translation and analysis using the tools and services (e.g. 
algorithms) available.  

• Develop new algorithms and workflows.  
• Produce synthetic data using models.  
• Develop new models to generate synthetic data.  
• Define model parameters by analysing real data.  

 
Data, tools and services, and their integration, are considered in more detail in the 

following sub sections.  
 
5.1. Data  

Neurophysiology data are typically very large (>1 Tbyte) and growing due to 
advancements in data capture. Transport of intermediate data (e.g. data generated 
during analysis) is therefore undesirable. CARMEN addresses this in two ways. First, 
the federated data storage and processing architecture allows large datasets residing 
on a local CAIRN to be accessed and analysed remotely. Second, where network 
upload is unrealistic, it is planned that offline submission will be supported. Large 
data may be physically shipped to their eventual server location.  

A far greater challenge is the heterogeneity of the data; there is currently no 
standardized data format for neurophysiology. To counter this, an extensible, 
translation data format is being specified. This allows the format of binary array 
data, e.g. multichannel time series, to be arbitrarily specified by way of XML header 
documents, providing a uniform data interface for analysis services. Neuroshare 
(n.d.) was first investigated but was found to be suboptimal, as: (a) it does not write 
data out to a static file representation that can be passed by services in a 
standardised manner; (b) it inflates the data volume, presenting optimisation 
problems for operations such as streaming, or buffering for interactive visualisation. 
However, it is planned that the NeurosShare DLLs (Dynamic Linked Libraries) will be 
employed in the process of parsing data into the translation format.  

Schemata and vocabularies are required to structure collaborative systems such as 
CARMEN.BrainML model repository (n.d.) was evaluated but was found to be 
unsuitable, due to the lack of available tooling and APIs to other models. Extensions 
to the FuGE data model are therefore being developed to describe neurophysiology 
experiments (Gibson et al., 2008).  



Data entities are uniquely identified and associated with other data entities by 
Uniform Resource Identifiers (URIs). To support federation, it is anticipated that 
CARMEN will eventually utilise location independent identifiers, such as LSIDs (Life 
Science Identifiers) (LSID, n.d.). 

 
5.2. Services and workflows  

Existing and new algorithms will be implemented as web services to allow remote 
deployment. Due to the range of scripting languages employed by neuroscientists, 
some of which (MATLAB. R, Python) are interpreted and therefore require parsing 
engines to generate native instruction sets, there is no generic, scalable way of 
deploying analysis codes as services. The preferred approach is to embed scripts in 
Java to provide a uniform messaging interface (SOAP — Simple Object Access 
Protocol). Documentation is being produced to explain the embedding processes to 
users. It is hoped that in the later stages of the project it will be possible to codify 
these processes, in order to provide a drag and drop wizard for deployment of 
analysis services.  

The use of MATLAB (n.d.) for coding analysis methods is prevalent in 
neuroscience. This raises challenges, both in terms of licensing, and distribution. As 
MATLAB is a widely used system for the analysis of data, CARMEN aims to support it 
to ensure rapid uptake. The approach taken has been to use the MATLAB compiler 
technology. However, this presents specific problems, in that: (a) the compilers are 
not free of charge, and cannot be shared by multiple licensees or deployed as third-
party services; (b) some toolbox functions cannot be compiled. Further research is 
required to identify whether the latter represents a technical or commercial 
constraint.  

Open source initiatives offer an alternative which may simultaneously encourage 
software vendors to consider more flexible licensing avenues. Discussions have taken 
place with the FIND Toolkit Project (FIND, n.d.) and may seed a collaborative effort 
along these lines. Given the current move towards service oriented computing, such 
an effort should not favour a particular scripting implementation, but should exploit 
web service standards (Web services, n.d.) to provide flexibility and crossplatform 
interoperability.  

The CARMEN project will generate web services for neuroscience data analysis 
ranging from spike detection and sorting, to correlation and causality analysis 
including statistical modelfitting. The preliminary development of services for spike 
detection is described later. Users will be able to mobilise these services and as-
sociated datasets as modular workflow components in the Taverna system. 

 
5.3. Interactive tools  

Interactive tools will also be provided for visualisation and iterative searching. Due 
to complex user interaction with data it may not be possible to implement these tools 
within web browsers. However, other web services may be consumed to perform 
filtering and presentation; for example, a spike detection service may be mobilised to 
constrain the datasets over which an SDE pattern search operation may be made. 
CARMEN provides support for both native tools, such as the SDE, which are being 
developed within the project, and thirdparty tools, which (it is envisaged) will 
integrate with a programmatic interface (an API — currently in development). 

 



5.4. Integration  

The integration problem is characterised by:  

• A variety of data formats produced by different acquisition systems. There is 
a need for data translation, and in the long term, standardisation.  

• A variety of third party and legacy services and tools, some of which are 
bound to particular acquisition systems using particular data formats.  

• New services which use translated or standardised data formats, or which can 
use any data format.  

• New tools which use translated or standardised data formats, or which can 
use any data format.  

 
As described in this paper, CARMEN can go some way towards mitigating these 

problems. However, the underlying challenges are socioeconomic. There is a 
requirement for the user community to work together to create incentives for 
manufacturers and other commercial beneficiaries to solve the problem. CARMEN, 
with other data sharing projects in the neuroscience domain, aims to precipitate this 
change by providing scalable platform technologies for widespread sharing of data 
and services. 

 
5.5. The CARMEN portal  

The CARMEN Portal is in development, and provides a conceptually centralised 
interface to federated resources in the CAIRNs. The portal (CARMEN portal, n.d.) 
currently supports user account creation, data upload, metadata ascription and 
control of security policies — in addition to basic searching. The SDE can also be 
used to download and search for patterns in specific datasets. These functions are 
undergoing refinement and enrichment in partnership with neuroscience users. The 
ability to upload services, run workflows, and scrutinise provenance is planned.

 
6. Signal Data Explorer (SDE) tool overview  

The SDE tool supports viewing and search of the multichannel data in the CARMEN 
system. The tool, which was developed within a number of eScience projects, 
supports pattern matching over  

 

Fig. 2. SDE (Client) and Pattern Match Architecture, where PMC is Pattern Match 
Controller, PMS is Pattern Match Service, and SRB is the Storage Request Broker.  



federated signal (time series) data repositories. The search techniques are based on 
research methods derived from Correlation Matrix Memories (Austin, 1995; Austin, 
Kennedy, & Lees, 1995).  

The SDE is used as a client application that accesses data both on the client, or 
federated within the CARMEN system or other gridenabled data repositories. The SDE 
provides data visualisation, feature analysis and realtime search capabilities on 
complex experimental data.  

6.1. The SDE as a client–remote data access and Pattern Match Services  

The SDE is designed to interact with remote services and other software tools. 
Uniform Resource Locators (URLs, e.g. HTTP) or software commands can be used to 
access remote data repositories. Data can also be downloaded directly and loaded 
into the SDE on the client machine.  

The SDE provides a plugin interface that integrates external search algorithms 
with the SDE environment. Users can establish their own search services by 
implementing new plugins. When using a remote search service, the plugin acts like 
a client to the remote service. The current default deployment of SDE provides a web 
service client plugin for accessing the Pattern Match Controller (PMC) based 
distributed Pattern Match Services (PMS).  

The pattern match architecture (Fig. 2) consists of Pattern Match Controller (PMC) 
and Pattern Match Services (PMS). The Pattern Match Services access data in a 
distributed file system (implemented using the Storage Request Broker technology) 
and the Pattern Match Controller interfaces to the client for data communication 
relevant to the search task. A client can initiate a search task by contacting any of 
the PMC nodes over a distributed computer network. The PMC node contacted will 
automatically take control of the other relevant PMC notes for that particular search 
task and return the results to the client. 

 
6.2. Visualisation and data processing  

The SDE supports simultaneous and highly interactive viewing of multichannel 
time series data. This is a crucial feature for offline analysis of the complex 
experimental data in the CARMEN system, and also has potential applications in real-
time computational steering.  

An example of the SDE opening a MultiChannel Systems data file (mcd file from a 
MultiChannel Systems (MCS) acquisition system (Multi channel systems MCS GmbH, 
n.d.)) is shown inFig. 3. Using the SDE, a user can explore and view any portion of 
the data rapidly. The output of the data processing tools can be viewed immediately 
and compared to the raw data by displaying them in the same window.  
 



 

Fig. 3. Signal Data Explorer opening an mcd file.  

 

Fig. 4. Spike time data displayed in an auxiliary window.  

A windowing capability permits auxiliary data views to be opened which permit the 
user to interactively zoom into or out of data, providing macro and micro views, as 
well as allowing the user to ‘‘play and zoom’’ very large datasets. All views of the 
same record are synchronized in time. If views have different zoom factors, they are 
synchronized using a time instance mark. Fig. 4 shows spike detector output 
together with the raw data in an auxiliary window. In the auxiliary window, a user 
can zoom in/out of the view and change the scaling factor of each subview 
separately.  

The current version of the CARMEN SDE provides the capability to apply a range of 
data preprocessing tools and various viewing modes to complement the core search 
and visualisation functions. Currently, the SDE preprocessing toolbox includes a 
variety of filters, amplitude limiters, a firing rate converter, envelope detector and a 
template based spike detector. The SDE toolbox can be easily extended by adding 
new tools. In future, the toolbox will inherit the analysis services provided by the 
CARMEN system. The SDE may also be expanded to accommodate third party tools, 
including those developed using MATLAB. 



 
6.3. The integrated environment for pattern matching  

Pattern search and matching technology was developed by the University of York 
and Cybula Ltd. It provides the capability to search for patterns in temporal data 
signals across distributed repositories. The SDE can compare events in timeseries 
data based on existing events, those stored in a file, or new events sketched by the 
user. It has the ability to match across multiple timeseries as well as allowing the 
user to tag the data with Metadata to identify known events. A pattern template 
library allows a user to create, manage, edit and reuse interesting patterns.  

The SDE provides an interactive and intuitive search capability, such that features 
of interest can be located in federated and local datasets. The search process is 
feature driven, in that the user can highlight a region of interest in a timeseries 
signal or select an instance from the pattern template library and request a pattern 
matching process to be carried out against the target datasets (see Fig. 3 the query 
pattern is highlighted in blue in the lower right window). Similarity measures are 
used to provide a ranking system that can score results for the search process. The 
search process has already been proven within the context of the DAME system and 
has been shown to be scalable to terabyte datasets. The SDE can search local and 
distributed data stores, and interfaces directly onto the datasets that are being held 
on the CAIRNs. It supports arbitrary variable length, and provides filter pre-
processing and data segment selection, conversion and export. 

 
7. Pattern matching  

Pattern matching is one of the primary functions of the SDE. The native search 
engine provided within the SDE is based on a high performance binary neural 
network called a Correlation Matrix Memory (CMM). The pattern matching functions 
allow a user to search for particular patterns within or across variables in datasets. 
The SDE generates a search index based on binary vectors (explained below), similar 
to a conventional text search engine. The index is created on the fly and can include 
references onto remote data repositories, including relational databases. This allows 
remote functionality (e.g. text based querying in SQL) to be exploited to preconstrain 
pattern search requests.  

An example application of the SDE is template based spike detection. By applying 
the SDE search engine, spikes within raw time series data can be detected quickly 
and (if the noise level is low) accurately. The search engine is currently being 
extended to allow fast, reliable spike train pattern matching at higher noise 
thresholds.  

In addition to the local search engine, a gridenabled, distributed search service 
cluster is marshalled by the PMC in the CARMEN system. This provides the capability 
for the CARMEN pattern matching system to efficiently manage and search large 
volumes of distributed data federated over a Grid (Foster & Kesselman, 2004). In 
this case, the SDE acts as a (thick) client to the CARMEN Grid services.  

7.1. AURA and CMM  

AURA (Advanced Uncertain Reasoning Architecture) is a set of generalpurpose 
methods for searching large unstructured datasets (Austin, 1995; Austin et al., 
1995) and is used in SDE for pattern searching. AURA, which is based on CMMs, can 
perform extremely fast parallel pattern matching on distributed data.  



The CMM is a type of binary associative neural network. A CMM with input width n 
and output width m can be represented as a n x

 
m binary matrix M. For a given input 

binary vector Ik and associated binary output vector Ok, the kth training update of a 
CMM is defined as:  

Mk = Mk-1 υ Ik
T 
Ok

 

where Mk and Mk-1 are the CMM after and before the training (M00)., and υ
 
denotes 

a logical OR operation. The recall vector Si associated to the input Ii is defined as:  

Si =  IiM  

 

Fig. 5. The CMM recall technique.  

Recall vector Si is, in general, an integer vector and the integer value of each 
element of the recall vector is called the ‘‘score’’ of the CMM matching on the 
relevant column vector. The recall vector can then be thresholded to a binary output 
vector, as shown in Fig. 5.  

A detailed discussion of AURA and CMM is out of the scope of this paper, more 
detail can be found in other papers (Austin, 1995; Austin et al., 1995; Furber et al., 
2007). 

 
7.2. Preprocessing and postprocessing  

Many of the fast pattern matching algorithms for large datasets use a similar 
approach in which a small set of data instances are obtained using a fast, 
approximate searching algorithm, then a conventional approach is applied to the 
candidate instances to obtain the final results speedily. In this context, the final 
results are constructed from the data candidates obtained from the approximate 
match via ‘‘postprocessing’’ or ‘‘fine tuning’’. Postprocessing is any procedure that 
uses the approximate search results as input, and outputs the final results.  

Usually, preprocessing is applied to the raw data before the approximate search 
stage. The main purpose of preprocessing is noise attenuation, feature 
enhancement, data mapping and data encoding.  

The SDE system provides a set of configurable tools for preprocessing and post-



processing. These tools can be used to convert the raw data to a required format, to 
extract a particular component from the raw data or to enhance the required 
features from the data to improve the performance of the pattern searching. For 
example, local field potential (LFP) can be obtained by applying a lowpass filter to 
the raw data. A particular shape selected from the LFP data series can then be used 
as a search query in a search of the dataset using the SDE search engine. Filters and 
envelope detection can be applied to the data sequentially to obtain a suitable signal 
for the subsequent processing. 

 
7.3. The k-Nearest Neighbour (k-NN) method  

The current system uses the k-Nearest Neighbour (k-NN) pattern matching 
method, implemented using AURA and CMMs for pattern matching. K-NN is a simple 
algorithm that is widely used in data clustering, classification and prediction. Based 
on a specific distance metric or similarity measure, k-NN searches for the k instances 
of data (from all available data examples) that are ‘‘nearest’’ to the point 
representing the query.  

Zhou, Austin and Kennedy proposed an approach using the AURA technology for 
fast k-NN searching (Zhou, Austin, & Kennedy, 1999). This approach applies a CMM 
to quickly produce a small number of instances of candidate data and then applies 
the conventional k-NN approach to the candidate data to obtain the required results. 
Liang and Austin further improved the approach in several ways (Liang & Austin, 
2003). First, a particular kernel is applied to the query vector in order to obtain the 
specific distance measure for the CMM output that is consistent with the distance 
metric applied on the following postprocessing (e.g. Euclidean or Cityblock distance 
measure). Secondly, split kernels are used to separate the searching space into a 
number of subspaces and k-NN searching is applied to each subspace until the least 
of k instances are obtained. Third, an ‘‘asymmetry kernel’’ is suggested to cope with 
quantisation errors introduced by the procedure of encoding the real data value into 
binary vectors. The improved AURA based k-NN approach provides consistent 
distance measure both on the CMM matching stage and the following finetuning 
stage and ensures that the correct k-NN candidates are included in the search 
results. The split kernel makes it possible to control the searching space rather than 
either searching the whole dataset or missing some of the subspaces that may 
contain the k-NN candidates. 

 
7.4. Multi criteria searching  

In many applications, events or conditions are defined by more than one variable 
over time and also across data channels. Multicriteria searching makes it possible to 
characterize a condition or event by using multiple template patterns, parameters 
and measures to search for patterns. Searching for multiple patterns from timeseries 
data is a more complicated problem than searching for a single pattern. This is 
because it is not just a simple combination of separate single pattern searching 
procedures but also requires efficient collaboration of all searching procedures, 
intelligent management of the searching constraints applied and a clear, meaningful 
output that reasonably interprets the search results.  

To search efficiently for multiple variables across channels, data from each channel 
of the same record in databases must be associated by use of an identifier such as a 
groupname or index. All data in the same record are synchronized by time. In this 
way, the search service can efficiently locate the data channels and compute the 



final matches by interpreting the parameters from the query.  
A ‘‘hit’’ (or match) of a search is defined as the local maximum of the matches 

within a given tolerance threshold. The output of a similarity search may contain all 
the possible hits or may only be the best match on a dataset depending on the 
application. An event window Tw defines a maximum time interval that contains a 
set of valid hits across channels. Tw is an important searching constraint to define 
the valid hit set for multiple searching. Proper use of the event window constraint 
can also reduce the overall searching space. Each set of valid hits from a multiple 
searching procedure with n variables defines an ndimensional output vector. 
Conventional processes such as classification or indexing can then be applied to the 
output vector to obtain further information.  

SDE provides an addon called ‘The task planner’ that allows a user to define and 
manage multicriteria searching tasks. Using the task planner, a user can define the 
query patterns from a pattern library or selected from the current dataset. Each 
query pattern defines a subtask for pattern matching. All the search parameters such 
as measures, event windows together with a set of filters/preprocessing and post-
processing methods can be selected and attached to each subtask by using the task 
planner interface. A user can then dispatch the multi criteria search task and manage 
the search results using the task planner and the SDE.  

 
7.5. Pattern matching on neuronal signals — application examples  

To illustrate the use of SDE on the CARMEN system we consider the problem of 
searching for spikes and local field potentials in electrophysiology data.  

The user can view the raw data and highlight a desired pattern  
(i.e. a user selected template for a spike) and then apply the search to the whole 
dataset of one or more specified channels and produce a list of spikes based on the 
shape of the selected pattern. Details of the spike time data and the raw data can be 
viewed and compared in the SDE auxiliary view window. The SDE template based 
spike detector allows a user to define the template shape from the action potential 
waveforms, the threshold of the similarity measure and the amplitude range (the 
upper and lower bounds of the signal amplitude). Fig. 4 shows raw data and detected 
spikes from each channel, alternately.  

Another example use of the SDE for neuronal signal pattern matching is to pick up 
the highly correlated channels by matching a template pattern to the Local Field 
Potential (LFP) signals. Through the use of the task planner, a user can define the 
width of the event window to ensure that a pattern belongs to the same 
experimental event when the pattern template is taken from the current dataset or 
from the template library. If the LFP signals are not directly available, a lowpass filter 
can be applied to the raw data before the search. This is carried out by defining it in 
the preprocessing procedures using the task planner. Other processing can also be 
defined at this stage in the same way. Searching can be carried out within the 
current data record or a set of records from the data repository. After the search 
task is defined, a user can invoke the search task by clicking on the search button; 
the SDE will automatically carry out the task and return the results. A user can then 
explore in detail the dataset of the result records by clicking on the relevant results 
from the displayed list. 

8. Preliminary service development — spike detection and sorting  

As discussed, one of the major tasks applied to spike train data is the detection 



and analysis of spikes (e.g. characteristic events). Typical analysis protocols range 
from spike detection and sorting to techniques for detecting mutual information 
between spike trains, to techniques for investigating the semantic content of higher 
level spike sequences. Higher level analyses rely on the accuracy and reproducibility 
of lower level analyses: hence in the initial phases of the CARMEN project, we have 
been concentrating on ensuring accuracy and flexibility of spike detection and 
sorting.  

In general it is difficult to evaluate the effectiveness of spike detection and sorting 
systems because of the lack of ‘‘ground truth’’ information. Currently the SDE tool 
uses a templatebased pattern detector, where the template is selected manually by 
the operator. This is one example of the many different types of spike detection 
systems in usage. Recent work has investigated the effectiveness of a range of spike 
detection systems using a biophysically realistic signal generation system (Smith & 
Mtetwa, 2007). This approach allows comparisons between different spike detection 
and spike sorting algorithms, although one can always criticise the particular 
biophysical model used for the generation of the data. In Smith and Mtetwa (2007) a 
simple threshold based spike detector was used, and KlustaKwik (KlustaKwik home 
page, n.d.) and Waveclus (Quian Quiroga, Nadasdy, & BenShaul, 2004) (spike 
sorting) techniques were compared. These spike sorting techniques extract a 
segment from the original signal around where a spike has been detected, and 
attempt to assign this spike to one of a (small) number of classes, each representing 
a spike from a different neuron. The segment should be rather longer than the 
feature to be classified: in this case, of the order of 3ms. At usual sampling  

 

Fig. 6. Best performance achieved by a number of different spike detection 
techniques on synthetically generated data (over 50 runs each). The xaxis shows the 
peak:peak signal:noise ratio, and the yaxis shows the penalty calculated by adding 
the number of inserted spikes and the number of missed spikes. Techniques: Neo, 
Nced: energy based techniques, Morph: morphology based technique, Sum: 
averaging based technique, Plain: simple thresholding, Wavelet: wavelet based 
technique, Conv: template based. The techniques are described in detail in Mtetwa 
and Smith (2006) and Smith, Shahid, Vernier, and Mtetwa (2007).  

rates (25 kHz is often used), 3ms of signal has a large number of dimensions; too 
many to permit effective clustering. The segment is therefore projected down to a 
lower dimensional space in which clustering is possible. The projection must 
summarise the critical aspects of the signal for spike detection purposes. Both 
Principal Component Analysis (PCA) and wavelet based techniques have been used 
for this (Lewicki, 1998). In this test, it was found that a wavelet based 
dimensionality reduction technique outperformed the more commonly used PCA 



based techniques.  
Recently the same approach has been used to compare spike detection systems. 

This work (reported in Mtetwa and Smith (2006) and Shahid, Walker, and Smith 
(2008)) suggests that traditional thresholding and template based systems can be 
considerably outperformed by wavelet and morphology based systems. In this work, 
several different spike detection systems were applied to some synthetic datasets – 
generated with a variety of different levels of realistic noise, and tested over 50 
different runs – see Fig. 6. Each technique has parameters which need to be tuned 
(for example, threshold level in simple thresholding) so that the technique works 
appropriately. Every technique was tested throughout the valid range of these 
parameters, and the best results chosen. In this way, each technique is allowed to 
perform optimally. Although one might expect that every technique would perform at 
about the same level (since each is allowed to perform optimally) this is clearly not 
the case. The wavelet and morphology techniques (described in detail in Mtetwa and 
Smith (2006)) outperform all the others. This shows that even discounting the 
parameter search problem, choosing the best spike detection technique is critically 
important, particularly when the SNR is below 10dB.  

Within CARMEN, we intend to supply a number of spike detection and sorting 
techniques, allowing the user to compare the performance of their complete 
workflow with different services. These range from wellknown techniques (e.g. 
simple thresholding, wavelet based (Kim & Kim, 2003; Lewicki, 1998; Nenadic & 
Burdick, 2005)) to new techniques based on higher order statistics (Shahid et al., 
2008): it is imperative that these services be described and evaluated – both 
declaratively and as a product of their use – as higher level services consume their 
outputs.  

9. Future work  

CARMEN aims to provide a secure, endtoend virtual laboratory, linking data 
capture with analysis, modelling and publication, allowing digital assets to be 
exploited by large, distributed collaborator groups prior to publication and under 
longer term curation. This methodological shift is imperative to our understanding of 
the complexity of the nervous system. Our work to date has been concerned with 
mapping the problem space; specifically highlevel user requirements and software 
R&D priorities. A demonstration system has been released and usability testing is 
underway to identify lowlevel requirements. Further, system data and metadata 
format specifications have been defined, and published for community review.  

CARMEN is a rarity in the neuroinformatics domain, in that it encapsulates 
research into computer science methods, translation of this research into proof of 
concept software demonstrations, and transfer of the knowledge gained during the 
first two stages into formalised software development. Traversing this process endto-
end, within a distributed academic consortium, is highly challenging.  

Immediate next steps are to formalise our internal development process, allowing 
fully benchmarked system releases to be distributed for evaluation. We expect early 
releases to support secure data exchange, annotation and data format translation. 
Provision of a set of core analysis services, potentially drawing from the spike 
detection and sorting techniques described, is scheduled soon thereafter. Our 
preliminary release is set for October 2008.  

Our eventual aim is to supply a range of services, allowing the user to compare 
the performance of their complete workflow using different components to process 
different sets of data. Services and workflows may be provided by users in a similar 
way to data and metadata. A number of higher order analysis techniques will be 



provided by user groups funded by the CARMEN project grant. While it will be 
important to provide support for current luminary measures such as Rotter and 
Diesmann’s distance (Rotter & Diesmann, 1999), Victor’s distance (Victor, 2005) and 
Rossum’s distance (Van Rossum, 2001), the key consideration is that the study of 
the nervous system is a longliving problem, requiring prolonged optimisation of data 
and analysis methods.  

Using the current technology available in the SDE pattern matching system, it will 
be possible to implement a fast spike train comparison algorithm to compute 
distance measures. This will provide a highly flexible and useful tool for spike train 
comparison across multiple channels and also for higher level pattern processing. 
Currently, the SDE is used in a supervised manner. However, it will be useful to 
provide automatic usage for certain scenarios; for example, the use of predefined 
templates and other parameters – possibly drawn from a living database of data 
annotations – for automated detection of patterns. Work to this end is in progress 
and will continue to integrate the ability to index raw data against patterns derived 
from local field potentials, firing rates and spike trains.  

Tools developed for studies in neurophysiology utilise both proprietary and open 
source scripting technologies. Each of these has advantages and disadvantages, and 
a mechanism to integrate different scripts is required. Work will continue in CARMEN 
to provide generic web service interfaces and tooling to address this problem, 
allowing the SDE to plug and play with services developed in a range of scripting 
formats, including MATLAB (n.d.).  

In the long term, CARMEN aims to enable a truly global user community, building 
from the support of our early adopters participating in the CARMEN project. The 
mechanisms, and specifically business models, for doing this are highly complex and 
require deep consideration as our production infrastructure hardens into being.  
 
10. Conclusions  

Through the detailed discussions with the CARMEN research groups it is apparent 
that the system needs to support a wide range of technologies for services and 
address the difficulties involved in integrating multiple components developed by 
different research groups. A strategy for the transfer (wrapping and testing) of 
services to the system is being developed. Deployed services will need to be well 
tested and documented so that they can be easily shared. A strategy for interchange 
of data between services and support for the various data formats provided by the 
many acquisition systems is also being developed. System development times were 
underestimated at the outset, due in part to unanticipated technical barriers but 
more significantly to the deep complexity of the incentive structure uniting the many 
contributors to the programme. The latter should be a primary consideration for 
future platform initiatives in the neuroinformatics domain.  

However, the first release of CARMEN supporting the methods described in this 
paper will be available towards the end of 2008. Third party and legacy tools and 
services are being integrated into the CARMEN infrastructure, together with the 
capability to develop and run workflows. CARMEN will provide an environment where 
data, tools, services and workflows can be shared. It will also provide facilities for 
development and testing of new services and tools.  

The Signal Data Explorer (SDE) is an example of a CARMEN tool that provides 
visualisation and pattern matching on timeseries data (raw and derived neuroscience 
data). The SDE uses AURA, a Correlation Matrix Memory based neural network to 
perform extremely fast pattern matching. The technique includes preprocessing, 
AURA approximate matching (using k-NN and similarity measures) followed by post 
processing. The SDE and the AURA pattern match services can be used to detect 



patterns in neuronal data and can be used to search for complex conditions 
comprising of many different patterns across the large datasets. The SDE will provide 
a valuable means of querying and visualising patterns in the data held in the 
CARMEN repository, complementing conventional text based metadata query.  

During preliminary CARMEN service development, spike detection using wavelet 
and morphology techniques was shown to outperform traditional thresholding and 
template based systems. The workflow tools that will be provided in subsequent 
releases of CARMEN will allow users to compare the impact of different spike 
detection and sorting techniques across their analysis protocols. 
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