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Abstract. The identification of cis-regulatory binding sites in DNA is a difficult 
problem in computational biology. To obtain a full understanding of the 
complex machinery embodied in genetic regulatory networks it is necessary to 
know both the identity of the regulatory transcription factors together with the 
location of their binding sites in the genome.  We show that using an SVM 
together with data sampling, to integrate the results of individual algorithms 
specialised for the prediction of binding site locations, can produce significant 
improvements upon the original algorithms.  These results make more tractable 
the expensive experimental procedure of actually verifying the predictions. 
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1   Introduction 

Binding site prediction is both biologically important and computationally interesting.  
One aspect that is challenging is the imbalanced nature of the data and that has 
allowed us to explore some powerful techniques to address this issue.  In addition the 
nature of the problem allows domain specific heuristics to be applied to the 
classification problem.  Specifically we can remove some of the final predicted 
binding sites as not being biologically plausible. 

Computational predictions are invaluable for deciphering the regulatory control of 
individual genes and by extension aiding in the automated construction of the genetic 
regulatory networks to which these genes contribute. Improving the quality of 
computational methods for predicting the location of transcription factor binding sites 
(TFBS) is therefore an important research goal. Currently, experimental methods for 
characterising the binding sites found in regulatory sequences are both costly and time 
consuming. Computational predictions are therefore often used to guide experimental 
techniques. Larger scale studies, reconstructing the regulatory networks for entire 
systems or genomes, are therefore particularly reliant on computational predictions, 
there being few alternatives available.   



Computational prediction of cis-regulatory binding sites is widely acknowledged 
as a difficult task [1]. Binding sites are notoriously variable from instance to instance 
and they can be located considerable distances from the gene being regulated in 
higher eukaryotes. Many algorithmic approaches are inherently constrained with 
respect to the range of binding sites that they can be expected to reliably predict. For 
example, co-regulatory algorithms would only be expected to successfully find 
binding sites common to a set of co-expressed promoters, not any unique binding sites 
that might also be present. Scanning algorithms are likewise limited by the quality of 
the position weight matrices available for the organism being studied. Given the 
differing aims of these algorithms it is reasonable to suppose that an efficient method 
for integrating predictions from these diverse strategies should increase the range of 
detectable binding sites. Furthermore, an efficient integration strategy may be able to 
use multiple sources of information to remove many false positive predictions, while 
also strengthening our confidence about many true positive predictions. The use of 
algorithmic predictions prone to high rates of false positive is particularly costly to 
experimental biologists using the predictions to guide experiments. High rates of false 
positive predictions also limit the utility of prediction algorithms for their use in 
network reconstruction. Reduction of the false positive rates is therefore a high 
priority.   

 In this paper we show how the algorithmic predictions can be combined so that a 
Support Vector Machine (SVM) can perform a new prediction that significantly 
improves on the performance of any one of the individual algorithms.  Moreover we 
show how the number of false positive predictions can be reduced by around 80%.  
We use two different data sets: for our major study we use a set of annotated yeast 
promoters take from the SCPD [2], and then in order to validate the method with a 
complex multi-cellular system we used a set of 47 experimentally annotated 
promoters extracted from the ABS [3] and ORegAnno [4]  databases. 

2   Background 

The use of a non-linear classification algorithm for the purposes of integrating 
difference sources of evidence relating to cis-regulatory binding site located, such as 
the predictions generated from a set of cis-regulatory binding site prediction 
algorithms, is explored in this paper.  This is achieved by first generating the different 
sources of evidence for a set of annotated promoter sequences. Subsequently, an SVM 
is trained to classify individual sequence positions as either being found within a 
binding site or within the background sequence. The set of input sources, 
appropriately sampled to account for the imbalanced nature of the data set, and 
labelled with experimental annotations is used for the training inputs.  

A wide range of binding site prediction algorithms and other sources of evidence 
were used in this study. They were selected to represent the full range of 
computational approaches to the binding site prediction problem. The algorithms 
chosen were typically taken from literature although some were developed in-house 
or by our collaborators in the case of PARS, Dream and Sampler. Table 1 lists the 
algorithms used with the yeast dataset, along with references. Where possible, 



parameter settings for the algorithms were taken from the literature, if not available, 
default settings were used. 

 

Table 1.  The 12 Prediction Algorithms used  with the yeast dataset.  

Strategy  Algorithm 
Scanning algorithms Fuzznuc 

MotifScanner [5] 
Ahab [6] 

Statistical algorithms  PARS 
Dream (2 versions) [7] 
Verbumculus [8] 

Co-regulatory algorithms MEME [9] 
AlignACE [10] 
Sampler 

Evolutionary algorithms  SeqComp [11] 
Footprinter [12] 

 
Table 2 lists the sources of evidence used with the mouse dataset. Each of these 

sources was extracted from the UCSC genome browser [13] for the promoter regions 
of interest.  

 

Table 2.  The 7 Prediction Algorithms used with the mouse dataset.  

Strategy Algorithm 
MotifLocator Scanning algorithms 
EvoSelex 
Regulatory Potential 
PhastCons (Conserved) 

Evolutionary algorithms 

PhastCons (Most conserved) 
Indirect evidence CpGIsland 
Negative evidence Exon 

 

3  Description of the Data  

Experimentally annotated sequences were used in this study. The yeast, S.cerevisiae 
was selected for the model organism for the first experiment; the use of this 
particularly well studied model organism ensures that the annotations available are 
among the most complete available. 112 annotated promoter sequences were 
extracted from the S.cerevisiae promoter database (SCPD) [2] for training and testing 
the algorithms. For each promoter, 500 base-pairs (bp) of sequence taken immediately 
upstream from the transcriptional start site was considered sufficient to typically 
allow full regulatory characterisation in yeast [2]. In cases where annotated binding 
sites lay outside of this range, then the range was expanded accordingly. Likewise, 
where a 500 bp upstream region would overlap a coding region then it was truncated 
accordingly.  Further details about how the data was obtained can be found in [14].  



The dataset for the second experiment consists of a merger of annotated 
transcription factor sites for the mouse, M.musculus, taken from the ABS and 
ORegAnno databases.  There are 47 annotated promoter sequences in total.  
Sequences extracted from ABS are typically around 500 base pairs in length and those 
taken from ORegAnno are typically around 2000 bp in length.  Most of the promoters 
are upstream of their associated gene although a small number extend over the first 
exon and include intronic regions: where promoters were found to overlap they were 
merged.  Seven sources of evidence were used as input in this study.  MotifLocator 
uses the PHYLOFACTS matrices from the JASPAR database [15] to scan for good 
matches in the sequences.  EvoSelex uses motifs from [6] and the Fuzznuc algorithm 
to search for consensus sequences.  A number of sources of evidence were extracted 
from the UCSC genome browser [13]: Regulatory Potential (RP) is used to compare 
frequencies of short alignment patterns between known regulatory elements and 
neutral DNA.  The RP scores were calculated using alignments from the mouse, rat, 
human, chimpanzee, macaque, dog, and cow. PhastCons is an algorithm that 
computes sequence conservation from multiple alignments using a phylo-HMM 
strategy.  The algorithm was used with two levels of stringency, conserved and most 
conserved, which are included as separate sources of evidence. The CpGIsland 
algorithm finds CG sequences in the regulatory region which are typically found near 
transcription start sites and are rare in vertebrate DNA. Finally, Exon predictions are 
included for those sequences where the sequence extends over the first exon and into 
the next intronic region and should be considered a type of negative evidence.  

For both experiments, each source of evidence is placed into a matrix consisting of 
a vector of inputs for each sequence position, each associated with a binary label 
indicating the presence or absence of an experimental annotation at that position, see 
Figure 1.  

All predictions in the matrix were normalised as real values in the range [-1,1] with 
the value of 0 allocated to sequence positions where an input source was unavailable.  
Additionally, we contextualize the training and test datasets to ensure that the 
classification algorithms have data on contiguous binding site predictions. This is 
achieved by windowing the vectors within each of the annotated promoter sequences. 
We use a window size of 7, providing contextual information for 3 bp either side of 
the position of interest.   

Additionally this procedure carries the considerable benefit of eliminating a large 
number of repeated or inconsistent vectors which are found to be present in the data 
and would otherwise pose a significant obstacle to the training of the classifiers. 

 
 



 
Fig. 1.  The formation of the windowed data for the yeast dataset.  The 12 predictions from the 
original algorithms for the target site are concatenated with the predictions from the 3 sites on 
either side.  This gives an input vector of 12 by 7 real numbers.  The corresponding label of this 
vector is the annotation of the central nucleotide. 

A number of statistics summarising the yeast dataset are shown in Table 2. 
 

Table 3.  Summary of the yeast dataset.  

Total number of sequences  112 
Total sequence length  67782 bp 
Average sequence length  605 bp 
Average number of TFBS sites per sequences 3.6 
Average TFBS width  13.2 bp 
Total number of TFBS sites  400 
Number of unique TFBS sites  69 
TFBS density in total dataset  7.8% 

 

4  Performance Metrics 

As approximately 8% of the dataset (see Table 3) is annotated as being a part of a 
binding site, this dataset is imbalanced.  If the algorithms are to be evaluated in a 
useful manner simple error rates are inappropriate, it is therefore necessary to use 
other metrics. Several common performance metrics, such as Recall (also known as 
Sensitivity), Precision, False Positive rate (FP-Rate) and F-Score, can be defined 



using a confusion matrix (see Table 4) of the classification results.  Precision 
describes the proportion of predictions that are accurate; Recall describes the 
proportion of binding site positions that are accurately predicted; FP-Rate describes 
the proportion of the actual negatives that are falsely predicted as positive; and the  
F-Score is the weighted harmonic mean of Precision and Recall. There is typically a 
trade off between Precision and Recall, making the F-Score particularly useful as it 
incorporates both measures. In this study, the weighting factor, β, was set to 1 giving 
equal weighting to both Precision and Recall. It is worth noting that for all these 
metrics a higher value represents improved performance with the solitary exception of 
FP-rate for which a lower value is preferable.   

Table 4.  The definition of performance measures  

 Predicted Negatives Predicted Positives 
Actual Negatives True Negatives - TN False Positives - FP 
Actual Positives False Negatives - FN True Positives - TP 
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5  Techniques for Learning Imbalanced Datasets 

Without addressing the imbalance of the two classes in the data, classifiers will 
produce negligible true positive predictions.  This is due to the fact that predicting that 
every base-pair is not part of a binding site will give high accuracy, being correct 92% 
of the time (with no false positives).  However such a predictor is obviously 
worthless.  

In this paper we address the problem of our imbalanced data in two ways: firstly by 
using data based sampling techniques [16, 17] and secondly by using different SVM 
error costs for the two classes [18].   

5.1  Sampling Techniques 

One way to address imbalance is simply to change the relative frequencies of the two 
classes by under sampling the majority class and over sampling the minority class.  
Under sampling the majority class can be done by just randomly selecting a subset of 
the class.  Over sampling the minority class is not so simple and here we use the 
Synthetic Minority Oversampling Technique (SMOTE) [16].   For each member of the 
minority class its nearest neighbours in the same class are identified and new 
instances are created, placed randomly between the instance and its neighbours. In the 



first experiment the number of items in the minority class was first doubled and the 
number of randomly selected majority class members was then set to ensure that the 
final ratio of minority to majority class was 0.5. This value was selected using 5-fold 
cross validation experiments. 

5.2  Different SVM error costs 

In the standard SVM the primal Lagrangian that is minimized is: 
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Here C represents the trade-off between the empirical error, ξ , and the margin.   The 
problem here is that both the majority and minority classes use the same value for C, 
which as pointed out by Akbani et al [19] will probably leave the decision boundary 
too near the minority class.  Veropoulos et al [18] suggest that having a different C 
value for the two classes may be useful.  They suggest that the primal Lagrangian is 
modified to: 
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Here the trade-off coefficient C is split into 
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the decision boundary to be influenced by different trade-offs for each class.  Thus the 
decision boundary can be moved away from the minority class by lowering 
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Akbani et al [19] argue that using this technique should improve the position of the 
decision boundary but will not address the fact that it may be misshapen due to the 
relative lack of information about the distribution of the minority class.  So they 
suggest that the minority class should also be over-sampled, using SMOTE, to 
produce a method they call SMOTE with Different Costs (SDC).  This is one of the 
techniques we evaluate here.   



6  Biologically Constrained Post-Processing 

One important concern when applying classifier algorithms to the output of many 
binding site prediction algorithms is that the classifier decisions could result in 
biologically unfeasible results.  The original algorithms only predict reasonable, 
contiguous sets of base pairs as constituting complete binding sites.  However when 
combined in our meta-classifier each base pair is predicted independently of the 
neighbouring base pairs, and it is therefore possible to get lots of short predicted 
binding sites of length one or two base pairs. 

In this and a previous study, it was observed that many of the predictions made by 
the classifiers were highly fragmented and too small to correspond to biological 
binding sites. It was not clear whether these fragmented predictions were merely 
artifacts or whether they were accurate but overly conservative. Therefore, predictions 
with a length smaller than a threshold value were removed and the effect on the 
performance measures observed. It was found that removal of the fragmented 
predictions had a considerable positive effect on the performance measures, most 
notably for Precision and that an optimal value for the threshold is 6 bp. Interestingly, 
this value corresponds roughly to the lower limit of biologically observed binding site 
lengths which are typically in the range 5-30 bp in length.  

7  Results 

Before presenting the main results we should point out that predicting binding sites 
accurately is extremely difficult.  The performance of the best individual original 
algorithm (Fuzznuc) is:   
                                                                                                                                  

 Predicted Negatives Predicted Positives 
Actual Negatives TN= 83% FP = 10% 
Actual Positives FN = 4% TP = 3% 

 
Here we can see over three times as many false positives as true positives.  This 

makes the predictions almost useless to a biologist as most of the suggested binding 
sites will need expensive experimental validation and most will not be useful.  
Therefore a key aim of our combined classifier is to significantly reduce the number 
of false positives given by the original algorithms. 

7.1 Results Using Sampling 

As described above the imbalanced nature of the data must be addressed.  First the 
data is divided into a training set and test set, in the ratio 2 to 1.  For the yeast dataset 
this gives a training set of 32,615 84-ary vectors and a test set of 16,739 vectors.   

In the results here for the yeast dataset the majority class in the training set is 
reduced, by random sampling, from 30,038 vectors to 9,222 and the minority class 
was increased from 2,577 vectors to 4,611 vectors using the SMOTE algorithm.  



Therefore the ratio of the majority class to the minority class is reduced from 
approximately 12 : 1 to 2 : 1.  Other ratios were tried but this appears to give good 
results.  The test set was not altered at all. 

As described earlier an SVM with Gaussian kernel was used as the trainable 
classifier, and to find good settings for the two free parameters of the model, C and γ 
standard 5-fold cross validation was used.  After good values for the parameters were 
found (C = 1000, γ = 0.001), the test set was presented and the results are as follows: 

 
 Recall Precision F-Score FP-Rate 
Best Original Algorithm 0.400 0.222 0.285 0.106 
Combined Classifier - Sampling 0.305 0.371 0.334 0.044 
 

The first notable feature of this result is that the combined classifier has produced a 
weaker Recall than the best original algorithm.  This is because it is giving fewer 
positive predictions, but it has a much higher precision.  Of particular significance is 
that the FP-Rate is relatively low at 0.04, so that only 4% of the actual non-binding 
sites are predicted incorrectly.  However this is still too large a figure to make the 
classifier useful to biologists.  So we turn to our second Combined Classifier using 
SDC. 

7.2  Results Using SDC 

First the minority class was over-sampled using SMOTE.  The size of the minority 
class was tripled to 7731 vectors so that the ratio of majority to the minority class was 
now about 4 : 1.  Once again 5-fold cross validation was used to find appropriate 
values for the three free parameters of the SVM with different costs, namely 
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- and γ.  The best values found were: 
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"= 1320 and γ = 0.0001. 

 
 Recall Precision F-Score FP-RATE 
Best Original Algorithm 0.400 0.222 0.285 0.106 
Combined Classifier - Sampling 0.305 0.371 0.334 0.044 
SDC 0.283 0.375 0.324 0.036 

 
This method has produced a good classifier, but it is not much better than the 

classifier using a straightforward SVM and sampling.  However the FP-Rate has been 
further reduced to 0.036. 

7.3  Results after Post-Processing 

Finally we investigate how the results can be further improved by removing those 
predictions of base-pairs being part of a binding site that are not biologically 
plausible.  As described earlier we find that removing predictions that are not part of a 
contiguous predicted binding site of at least six nucleotides gives an optimal result.  



So here we take the predictions of the SDC algorithm and remove all those that do not 
meet this criterion. 

 
 Recall Precision F-Score FP-Rate 
Best Original Algorithm 0.400 0.222 0.285 0.106 
Combined Classifier - Sampling 0.305 0.371 0.334 0.044 
SDC 0.283 0.375 0.324 0.036 
SDC + Post-Processing 0.264 0.517 0.350 0.021 

 
This produces our best result by some way.  The Precision of the prediction has 

been increased to 0.517 and the FP-Rate is now down to just 2%. 
To see how this has come about Figure 2 shows a fragment of the genome with the 

original algorithmic predictions, the SVM predictions, the result of post-processing 
the SVM predictions and the actual annotation.  It can be seen that for this fragment 
the removal of the implausible predictions eliminates almost all the false positive 
predictions. 
 

 
Fig. 2. A fragment of the genome with the 12 original predictions, the actual annotations are 
shown in black.  The last row shows the predictions of the SVM and above it the effect of 
removing unrealistically short predictions. 

7.4 Results for the mouse genome 

In order to examine if our approach is also applicable to the much more complicated 
case of multi-cellular eukaryotes, we now give results for the mouse, M.musculus 
genome.  Prediction in this case is significantly more difficult. The mouse genome 
contains significantly more non-coding DNA sequence than the yeast genome, 
thereby increasing the search space.  Furthermore, complex, multi-cellular organisms, 
such as the mouse, exhibit more complex organisation of the gene regulatory regions. 
Genes are often regulated by a number of spatially distinct regulatory modules, each 
containing a number of transcription factor binding sites.  These modules can be 
located not just in the regions proximal to the promoter but also many thousands of 
base pairs away, both upstream and downstream as well as inside intronic regions. 
Furthermore, there are a number of other biological features found in non-coding 
sequence which are not necessarily related to transcription factor binding or gene 



regulation at all.  All these factors tend to increase the difficulty of making accurate 
computational predictions of binding sites. 

Firstly we give the confusion matrix for the best individual matrix (MotifLocator). 
 

 Predicted Negatives Predicted Positives 
Actual Negatives TN= 75% FP = 22% 
Actual Positives FN = 1.5% TP = 1.5% 

 
It is clear from the low true positives and the high false positives that this problem 

is indeed harder than the equivalent problem in yeast, as would be expected.  
 
As sampling alone gave similar results to the SDC algorithm we used the former, 

simpler approach with this data set.  However the post processing step of removing 
unfeasibly short predictions was repeated here.  The results are shown in the 
following table: 

 
 

 Recall Precision F-Score FP-Rate 
Best Original Algorithm 0.495 0.063 0.111 0.224 

No post processing 0.300 0.159 0.208 0.069 
Threshold = 5 0.289 0.169 0.213 0.062 
Threshold = 7 0.272 0.177 0.214 0.055 
Threshold = 9 0.256 0.192 0.220 0.183 

 
The results for three different post-processing thresholds are given as best 

performance differs across the measures used here.  As the threshold increases, the 
Precision also increases at the price of reduced Recall.   The threshold of seven is a 
reasonable compromise and in this case the confusion matrix is: 
 

 Predicted Negatives Predicted Positives 
Actual Negatives TN= 93% FP = 2.6% 
Actual Positives FN = 3.5% TP = 0.6% 

 
 
It can be seen that, when compared with MotifLocator, the number of False 

Positives has been dramatically reduced.  This is, however, at a cost as the True 
Positives are also reduced.  Nevertheless the overall performance, as measured by the 
F-Score has been improved by a factor of two. 

 

8  Discussion 

The identification of regions in a sequence of DNA that are regulatory binding sites is 
a very difficult problem.  Individually the original prediction algorithms are 



inaccurate and consequently produce many false positive predictions.  Our results 
show that by combining the predictions of the original algorithms we can make a 
significant improvement from their individual results.  This suggests that the 
predictions that they produce are complementary, perhaps giving information about 
different parts of the genome.  The only problem of our approach is that the combined 
predictor can indicate implausibly short binding sites.  However we have shown that 
by simply rejecting these binding sites, using a length threshold, gives a very low rate 
of false positive predictions.  This is exactly the result that we wanted: false positives 
are very undesirable in this particular domain.[20] 

On the technical issue of dealing with the highly imbalanced data we found that 
both sampling of the two classes and using the SDC algorithm gave similar results, 
with both methods dealing well with our data.   

When we tested the method on the much more difficult case of the mouse genome 
we also found that the number of false positive predictions could be significantly 
reduced. The reduction of false positives by a factor of 6 relative to the reduction of 
the true positives by a factor of 2 illustrates that the processes is preferentially 
filtering noise from the predictions. One limitation of these results is the large 
reduction in Recall. Further work will extend the range of sources used as evidence, it 
is hoped that by incorporating a large pool of evidence that less genuine predictions 
will be lost. The approach will also be applied to other available organism datasets to 
test the generally of these results. One particular goal is to apply the approach to 
systems where experimental validation of the predictions can be made, circumventing 
the uncertainty surrounding the completeness of the promoter annotations currently 
available. 
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