
Nonlinear modeling of neural population dynamics for
hippocampal prostheses

Dong Songa,b,*, Rosa H.M. Chana,b, Vasilis Z. Marmarelisa, Robert E. Hampsond, Sam A.
Deadwylerd, and Theodore W. Bergera,b,c
aDepartment of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089,
USA
bCenter for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA
cProgram in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA
dDepartment of Physiology & Pharmacology, Wake Forest University, School of Medicine, Winston-
Salem, NC 27157, USA

Abstract
Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation
of population neural activities performed by the hippocampal circuitry. To bypass a damaged region,
output spike trains need to be predicted from the input spike trains and then reinstated through
stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for
the input–output transformation of spike trains. In this approach, a MIMO model comprises a series
of physiologically-plausible multiple-input, single-output (MISO) neuron models that consist of five
components each: (1) feedforward Volterra kernels transforming the input spike trains into the
synaptic potential, (2) a feedback kernel transforming the output spikes into the spike-triggered after-
potential, (3) a noise term capturing the system uncertainty, (4) an adder generating the pre-threshold
potential, and (5) a threshold function generating output spikes. It is shown that this model is
equivalent to a generalized linear model with a probit link function. To reduce model complexity
and avoid overfitting, statistical model selection and cross-validation methods are employed to
choose the significant inputs and interactions between inputs. The model is applied successfully to
the hippocampal CA3–CA1 population dynamics. Such a model can serve as a computational basis
for the development of hippocampal prostheses.

Keywords
Hippocampus; Spike; Spatio-temporal pattern; Volterra kernel; Feedback; Multiple-input multiple-
output system

1. Introduction
One of the fundamental principles of cortical brain regions, including the hippocampus, is that
information is represented in the ensemble firing of populations of neurons, i.e., spatio-
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temporal patterns of electrophysiological activity (Deadwyler & Hampson, 1995;
Georgopoulos, Schwartz, & Kettner, 1986; Pouget, Dayan, & Zemel, 2003; Puchalla,
Schneidman, Harris, & Berry, 2005; Schwartz, Kettner, & Georgopoulos, 1988). The
hippocampus has long been known to be responsible for the formation of declarative, or fact-
based, memories (Burgess, Maguire, & O'Keefe, 2002; Deadwyler, Bunn, & Hampson,
1996; Deadwyler & Hampson, 1995; Eichenbaum, 1999; Squire, 1992). Damage to the
hippocampus disrupts the propagation of spatio-temporal patterns of activity through the
hippocampal internal circuitry, resulting in a severe anterograde amnesia. Developing a neural
prosthesis for the damaged hippocampus requires restoring this multiple-input, multiple-output
(MIMO) transformation of spatio-temporal patterns of activity (Fig. 1(A)). Because the
mechanisms underlying synaptic transmission and generation of electrical activity in neurons
are inherently nonlinear, any such prosthesis must be based on a nonlinear MIMO model. We
developed a nonlinear dynamic model to describe the spike train-to-spike train transformations
in the brain. This model allowed the prediction of spatio-temporal patterns in a downstream
brain region (e.g., hippocampal CA1) based on the spatio-temporal patterns in an upstream
brain region (e.g., hippocampal CA3), and served as the computational basis for the
development of hippocampal prostheses.

In this approach, a MIMO model consists of a series of multiple-input, single-output (MISO)
models. Each MISO model can be considered as a modified Volterra kernel model describing
the nonlinear dynamic transformation from the input (e.g., CA3) spike trains that one (CA1)
neuron receives to the output spike train of this neuron. With progressively higher order
Volterra kernel terms, this model can capture arbitrarily high order nonlinearities within each
input and nonlinear interactions between inputs as they affect the output (Song et al., 2007).
In a real biological system, however, an output may not be affected by every input, and all
inputs may not nonlinearly interact with each other. In such circumstances, the full Volterra
kernel model is not the most efficient way of system representation. In addition, the number
of coefficients to be estimated in a full Volterra kernel model grows rapidly with the number
of inputs and the model order. Estimation of such a model, especially one with higher order
terms, can easily become unwieldy. Furthermore, a model with too many open parameters
(coefficients) eventually tends to fit the noise instead of the signal in the training data. A model
with overfitted parameters results in (1) poor generalization of the training data and, (2) bad
predictions for novel data. Interpretation of such a model becomes problematic.

To solve this problem, we further established a rigorous statistical method of reducing/
optimizing the structure of a MIMO model of spike train transformation, and demonstrate how
such an approach can be applied to the specific MIMO structure. Specifically, we applied
statistical model selection methods to the configuration of our modified Volterra kernel models.
The model complexity was reduced by (1) selecting the inputs, i.e., self-terms, that significantly
contributed to the output, (2) selecting the interactions between inputs, i.e., cross-terms, that
had significant contributions to the output. Results showed that the reduced kernel model,
which contained much fewer coefficients, had maximal prediction power for novel data. The
reduced kernels can be more reliably used for further analysis of the functional connections/
interactions between neurons.

2. Nonlinear model of population neural dynamics
2.1. Model configuration

A multiple-input, multiple-output (MIMO) model is broken down into a series of multiple-
input, single-output (MISO) models (Fig. 1(B)). Within each MISO model, the output spike
train is predicted based on all the input spike trains. The MISO model structure is inspired by
the electrophysiological properties of single spiking neurons and consists of five components
(Fig. 1(C)): (1) a feedforward block K transforming the input spike trains x to a continuous
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hidden variable u that can be interpreted as the synaptic potential, (2) a feedback block H
transforming the preceding output spikes to a continuous hidden variable a that can be
interpreted as an after-potential, (3) a noise term ε that captures the system uncertainty caused
by both the intrinsic neuronal noise and the unobserved inputs, (4) an adder generating a
continuous hidden variable w that can be interpreted as a pre-threshold potential, and (5) a
threshold function generating output spike when the value of w crosses θ (Song et al., 2007).

The model can be expressed by the following equations:

(1)

(2)

K and H can take any mathematical form as long as it sufficiently captures the nonlinear
dynamic transformations between the variables, i.e., x to u and y to a. In our approach, K takes
the form of a Volterra model, in which u is expressed in terms of the inputs x by means of the
Volterra series expansion as:

(3)

The zeroth order kernel, k0, is the value of u when the input is absent. First order kernels 
describe the linear relation between the nth input xn and u, as functions of the time intervals

(τ) between the present time and the past time. Second self-kernels  describe the second

order nonlinear relation between the nth input xn and u. Second order cross-kernels 
describe the second order nonlinear interactions between each unique pair of inputs (xn1 and
xn2) as they affect u. N is the number of inputs. Mk denotes the memory length of the
feedforward process. Higher order kernels, e.g., third order and fourth order kernels, are not
shown in this equation.

Similarly, H takes the form of a first order Volterra model as in:

(4)

where h is the linear feedback kernel. Mh is the memory length of the feedback process. (Note
that τ starts from 1 instead of 0 to avoid predicting the current output with itself.)

One of the major challenges in Volterra modeling is the large number of open parameters
(coefficients) to be estimated. The total number of open parameters increases exponentially
with input dimension and model order. The MISO model in this study involves 2D (time and
index of the input neurons) input and second order nonlinearity. The number of parameters
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easily becomes unwieldy even in a moderately large model (e.g., the 24-input MISO model
shown in Table 1). To solve this problem, we employed (1) Laguerre expansion of Volterra
kernel (LEV), and (2) statistical model selection techniques (see Section 2.3).

Using LEV, both k and h are expanded with orthonormal Laguerre basis functions b
(Marmarelis, 1993, 2004; Song, Wang, Marmarelis, & Berger, 2009; Song & Wang, et al.,
2009; Zanos et al., 2008). With input and output spike trains x and y convolved with b:

(5)

(6)

Eqs. (3) and (4) can be rewritten into:

(7)

(8)

, , , and ch are the sought Laguerre expansion coefficients of , , , and
h, respectively (c0 is simply equal to k0). Since the number of basis functions (L) can be made
much smaller than the memory length (Mk and Mh), the number of open parameters is greatly
reduced by the expansion.

The noise term ε is modeled as a Gaussian white noise with standard deviation σ.

2.2. Parameter estimation
With recorded input and output spike trains x and y, model parameters can be estimated using
maximum-likelihood method. The negative log-likelihood function L can be expressed as:

(9)

where T is the data length, and P is the probability of generating the recorded output y:
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(10)

Since ε is assumed to be Gaussian, the conditional firing probability intensity function Pf (the
conditional probability of generating a spike, i.e., Prob(w ≥ θ|x, k, h, σ, θ) in Eq. (10)) at time
t can be calculated with the Gaussian error function (integral of Gaussian function) erf:

(11)

where

(12)

P at time t then can be calculated as:

(13)

or,

(14)

Model coefficients c then can be estimated by minimizing the negative log-likelihood function
L:

(15)

It is instructive to point out that the aforedescribed model is mathematically equivalent to a
Generalized Linear Model (GLM) with y as a dependent variable, the convolutions of Laguerre
basis functions with inputs x (v in Eqs. (7) and (8)) as well as the products of the these
convolutions (vv in Eq. (7)) as independent variables, and c as unknown parameters (Fig. 1
(D)). The GLM link function is the probit function (inverse cumulative distribution function
of the normal distribution) since the latter is defined as:

(16)

Given this important equivalence, model coefficients c and their covariance matrices can be
estimated using the iterative re-weighted least-squares method, the standard algorithm for
fitting GLMs (McCullagh & Nelder, 1989;Truccolo, Eden, Fellows, Donoghue, & Brown,
2005). For the same reason, this model can be termed as the Generalized Volterra Model
(GVM) (Song et al., 2008). Since u, a and n are dimensionless variables, without loss of
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generality, both θ and σ can be set to unity; only c are estimated. σ is later restored and the θ
value remains unity (see Section 2.4).

2.3. Model selection
Theoretically, the aforedescribed method can be used to estimate arbitrary MISO models.
However, in practice, model complexity often needs to be reduced by selecting an optimal
subset of model parameters (coefficients). This procedure, termed model selection, is
particularly necessary and desirable in modeling the population neural dynamics for the
following reasons: first, neurons are often sparsely connected. In a brain region, an output
neuron is seldom affected by all the input neurons. The full Volterra kernel model as described
in Eq. (7) is not the most efficient or interpretable way of representing such a system. More
importantly, the number of coefficients to be estimated in a full Volterra kernel model grows
rapidly with the number of inputs and the model order. Estimation of such a model, especially
the higher order ones, can easily become unwieldy (Table 1). Furthermore, a model with too
many open parameters (coefficients) tends to fit the noise instead of the signal in the training
data. An overfitting model would result in poor generalization of the training data and bad
predictions of the novel data. Consequently, interpretation of such a model becomes
problematic. To solve this problem, the following statistical model selection method is applied
to the configuration and estimation of the GVMs.

Before model selection, the input–output dataset is partitioned into two subsets. One subset
(training set) is used for model estimation. The other subset (testing set) is retained for
validation of the results from the training set. Results from the two subsets are called in-sample
and out-of-sample results, respectively.

The model starts from the zeroth order. A zeroth order model only contains c0, which is
equivalent to the standard deviation of the pre-threshold Gaussian noise (see Section 2.4). It
essentially model the system output as a homogeneous Poisson process (constant firing
probability intensity). The minimal negative likelihood (L) of the zeroth order model provides
a starting point for the model selection. In the second step, feedback terms (as described by
Eq. (8)) are added to the model. Output spike train is predicted by the preceding output spikes
without considering any input. If L decreases in both the in-sample and out-of-sample results,
the feedback term is then added into the model. In the third step, inputs are selected using a
forward step-wise selection procedure (Kutner, Nachtsheim, Neter, & Li, 2004). Self-terms
involving first order and second order kernels are constructed for all inputs. With the zeroth
order term and feedback term (if selected in the previous step) included in the model, the values
of L with and without each input are calculated. The input that decreases L the most is then
added into the model. With the newly selected input included into the model, selection is then
performed on the remaining inputs. Repeating this procedure, inputs are sequentially added
into the model. The selection is stopped when the out-of-sample L starts to increase (in-sample
L always decreases with more terms included in the model), indicating the occurrence of
overfitting. In the fourth step, cross-terms involving cross-kernel are selected. Cross-terms are
first constructed for every unique pairs of the selected inputs and then selected following the
aforedescribed forward step-wise and cross-validation procedures.

2.4. Kernel reconstruction and interpretation
The final coefficients  and  can be obtained from estimated Laguerre expansion coefficients,
, with a simple normalization/conversion procedure:

(17)
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(18)

(19)

(20)

(21)

(22)

Feedforward and feedback kernels then can be reconstructed as:

(23)

(24)

(25)

(26)

(27)
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Threshold θ is equal to one in this normalized representation.

The normalized kernels provide an intuitive representation of the system input–output
nonlinear dynamics. Single-pulse and paired-pulse response functions (r1 and r2) of each input
can be derived as (Song, Marmarelis, & Berger, 2009):

(28)

(29)

 is simply the response in u elicited by a single spike from the nth input neuron;  describes
the joint nonlinear effect of pairs of spikes from the nth input neuron in addition to the

summation of their first order responses, i.e.,  represents the
joint nonlinear effect of pairs of spikes with one spike from neuron n1 and one spike from
neuron n2. h represents the output spike-triggered after-potential on u (Fig. 2).

2.5. Model validation and prediction
Two methods are used to evaluate the goodness-of-fit of the estimated GVM models. The first
method directly evaluates the continuous firing probability intensity predicted by the model
with the recorded output spike train. According to the time-rescaling theorem, an accurate
model should generate a conditional firing intensity function Pf that can rescale the recorded
output spike train into a Poisson process with unit rate (Brown, Barbieri, Ventura, Kass, &
Frank, 2002; Song et al., 2007). By further variable conversion, inter-spike intervals should be
rescaled into independent uniform random variables on the interval (0, 1). The model goodness-
of-fit then can be assessed with a Kolmogorov–Smirnov (KS) test, in which the rescaled
intervals are ordered from the smallest to the largest and then plotted against the cumulative
distribution function of uniform density. If the model is correct, all points should lie on the 45°
line of the KS plot within the 95% confidence bounds.

The second method quantifies the similarity between the recorded output spike train y and the
predicted output spike train  after a smoothing process. First,  is realized through simulation:
u is calculated with inputs x and the estimated feedforward kernels. This forms the deterministic
part of the pre-threshold potential w. A Gaussian random sequence with standard deviation

 is then generated and added to u. This operation renders w stochastic. At each time t, if w
crosses the threshold (θ = 1), a spike is generated and added to , and a feedback process a is
triggered and added to the future values of w. The calculation then moves on to time t +1 with
updated w until it reaches the end of the trace. In the second step, point-process signals  and
y are smoothed to continuous signals  and yσg, by convolving with a Gaussian kernel with
standard deviation σg. Correlation coefficients r are then calculated as:

(30)

Because  and yσg are both positive vectors, r is a quantity between 0 and 1 that measures
the similarity between  and y as a function of the “smoothness parameter” σg. σg essentially
determines the temporal resolution used in comparing the predicted spike train with the actual
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spike train. A large value means low temporal resolution and a small value means high temporal
resolution. This parameter does not influence the model estimation since the latter is done by
maximizing the likelihood function defined with a fixed 2 ms bin size. In this study, σg varies
from 2 to 100 ms. Mean and standard deviation of r are estimated with 32 trials of simulation.

3. Application on hippocampal CA3–CA1 population activity
3.1. Behavioral task

Male Long–Evans rats were trained to criterion on a two-lever, spatial delayed-nonmatch-to-
sample (DNMS) task with randomly occurring variable delay intervals (Deadwyler et al.,
1996; Hampson, Simeral, & Deadwyler, 1999). Animals performed the task by pressing
(sample response) a single lever presented in one of the two positions in the sample phase (left
or right); this event is called the “sample response”. The lever was then retracted and the delay
phase initiated; for the duration of the delay phase, the animal was required to nose-poke into
a lighted device on the opposite wall. Following termination of the delay the nose-poke light
was extinguished, both levers were extended and the animal was required to press the lever
opposite to the sample lever; this act is called the “nonmatch response”. If the correct lever
was pressed, the animal was rewarded and the trial was completed (Fig. 3(A)).

3.2. Data preprocessing
Spike trains were obtained with multi-site recordings from different septo-temporal regions of
the hippocampus of rats performing the DNMS task (Fig. 3(B)). For each hemisphere of the
brain, an array of electrodes (microwires) was surgically implanted into the hippocampus, with
8 electrodes in the CA3 (input) region and 8 electrodes in the CA1 (output) region. Each
electrode had the capacity of recording as many as 4 discriminable units (Fig. 3(C)). Spikes
were sorted and timestamped with a 25 μs resolution. Datasets from 25 rats were analyzed.
One to four sessions of recordings were selected from each rat. A session included
approximately 100 successful DNMS tasks that each of which consisted of two of the four
behavioral events, i.e., right sample (RS) and left nonmatch (LN), or left sample (LS) and right
nonmatch (RN).

Spike trains were pre-screened based on mean firing rate and peri-event histogram. Neurons
with mean firing rates in the range of 0.5 to 15 Hz and identifiable peri-event histogram were
included in further analyses. Low and high mean rate recordings were rejected since they could
represent artifacts or mixtures of action potentials. Both presumed principal (pyramidal)
neurons and interneurons were included in the datasets analyzed. Peri-event (−2 s to +2 s) spike
trains of the four behavioral events were extracted from each session and then concatenated to
form the datasets.

First, the timestamp data are discretized with a 2 ms bin size. For such bin width, each bin
contains a maximum of one spike event. To facilitate model estimation, the data length is further
reduced with an inter-spike binning (ISB) method (Fig. 4). In ISB, bins that contain spikes are
retained; bins within inter-spike intervals are merged with a bigger bin size. This method
preserves the accurate timing of every spike while reducing the data length. In order to preserve
the causal relation between input and output spikes, bins with an output spike are checked to
see whether it also contains input spike(s). If there is no other spike, no operation is performed;
if there is, the 2 ms bin is further divided between the input spike and the output spike. (The
latter case is extremely rare due to the low firing rate of hippocampal neurons.) For most of
the datasets, inter-spike bin size can be as large as 40 ms without introducing noticeable change
to the coefficient estimates.
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3.3. CA3–CA1 MIMO model
MIMO datasets consist of 6–32 CA3 spike trains and 5–24 CA1 spike trains, depending on the
number of neurons recorded from each animal and the number of recorded neurons meeting
the selection criteria. Each MIMO dataset is divided into MISO datasets for MISO model
estimation. Thirty-two MIMO datasets from 25 rats were analyzed. Fig. 3(C) shows the
anatomical locations of neurons included in one representative MIMO dataset (circles).

With the preprocessed dataset, the MISO model is obtained using the aforedescribed estimation
and selection method (Sections 2.2–2.5 and 3). Fig. 5 illustrates the selection of inputs and
cross-terms of a MISO model. As described in Section 2.3, the model starts from the zeroth
order. The feedback term is then added into the model since it decreases L in both training and
testing datasets (Fig. 5(A)). With the zeroth order and feedback terms, inputs are added into
the model in a forward step-wise fashion (Fig. 5(B)). The in-sample L decreases monotonically
as more terms are added into the model. However, the out-of-sample L starts to increase from
the 7th input. Six inputs are then selected based on this cross-validation results (Fig. 5(A)).
With the 6 selected inputs, 15 cross-terms in total are then constructed and added into the model
(Fig. 5(C)). Again, in-sample L decreases monotonically; out-of-sample L starts to increase
from the 2nd cross-term–so only one cross-term is selected by cross-validation (Fig. 5(A)).
Table 1 summarizes the number of coefficients in a Volterra model, a Laguerre expansion of
Volterra (LEV) model, and the reduced LEV after model selection. It is evident that the model
selection procedure greatly reduces the model complexity and thus allows reliable estimation
of the model.

The estimated and normalized kernels provide intuitive representations of the system input–
output properties. Fig. 6 illustrates the first order and second order response functions for the
6 selected inputs, one second order cross-kernel for inputs No. 6 and No. 9, and the feedback
kernel. These functions quantitatively describe how the synaptic potential is influenced by a
single spike and pairs of spikes from a single input neuron or pairs of input neurons. The noise
standard deviation is estimated to be 0.418, which reflects a 4.19 Hz spontaneous (baseline)
firing rate of this CA1 neuron (see Eq. (11) for calculation) while the mean output firing rate
is 7.44 Hz.

The estimated model is validated using the out-of-sample KS test. The summation of synaptic
potential u and after-potential a is calculated using the input/output spike trains of the testing
set, and the kernels estimated from the training set (Fig. 7(A), First row). Firing probability
intensity Pf is then calculated using the Gaussian error function (Fig. 7(A), Second row). The
KS plot shows that all data points are within the 95% confidence bound (Fig. 7(C)).

Output spike train is also predicted using the recursive simulation method described in Section
2.4. Input spike trains of the testing set and the kernels of the training set are used to predict
and then compared with the output spike train of the testing set. Fig. 7(B) shows one realization
of the output spike train with a Gaussian random noise path. The similarities between the
predicted output spike train and the actual output spike train are quantified with correlation
coefficients r. Fig. 7(D) illustrates the mean and standard deviation of r as functions of the
standard deviation of the smoothing Gaussian kernel (σg). It shows that the model can generate
output highly correlated with the actual output for a large range of σg.

Finally, all individually estimated and validated MISO models are concatenated to form the
MIMO model for the hippocampal CA3–CA1 population neural dynamics. Fig. 8 compares
the actual CA1 spatio-temporal pattern with the spatio-temporal pattern predicted by a MIMO
model. Despite the difference in fine details (mostly due to the stochastic nature of the system),
the MIMO model replicates the salient features of the actual CA1 spatio-temporal pattern.
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4. Conclusions and discussion
We have formulated a Volterra kernel-based MIMO model for the population neural dynamics
and applied it successfully to the modeling of hippocampal CA3–CA1 spike train
transformation. The model inherits the capability of modeling nonlinear dynamic systems from
the ordinary Volterra model while having several critical modifications/improvements made
specific for the modeling of neural population activity. With the feedforward Volterra kernels,
the model can capture the single-pulse and paired-pulse (nonlinear) dynamic effects of the
input spikes to the output neuron and explicitly represents them in kernel functions. Different
from an ordinary Volterra model (Song & Marmarelis, et al., 2009; Song & Wang, et al.,
2009), the model includes hidden variables representing the internal states of the system. Point-
process outputs (spikes) are considered as realizations of a firing probability intensity function
determined by those hidden variables. This configuration allows simultaneous estimation of
all model parameters, i.e., kernel coefficients and noise variance, from the input and output
spike trains. The noise term and the threshold function can be considered as a “soft” threshold
function, since they map to and generate output spikes based on the estimated continuous
probability intensity function and thus avoid dichotomizing such continuous variable with a
cut-point that highly depends on the relative frequencies of spikes (1s) and non-spikes (0s) in
the outputs (Kutner et al., 2004). The resulting model structure is equivalent to a generalized
linear model (GLM) with a probit link function and a binomial distribution function. Taking
advantages of the concave likelihood function (L) and the well-established estimation methods
of GLM, model parameters can be reliably (avoiding local minima) and efficiently estimated
employing an iterative re-weighted least-squares method (Paninski, Pillow, & Simoncelli,
2004; Truccolo et al., 2005). Furthermore, a feedback kernel (h) is added to the model. This
auto-regressive component captures the effects of the preceding output activities to the current
output. Numerous evidence has shown that the output spike-triggered after-potential can
profoundly influence the neuron's spiking activity (Alger & Nicoll, 1982; Berger, Chauvet, &
Sclabassi, 1994; Gerstner & Kistler, 2002; Jolivet, Lewis, & Gerstner, 2004; Keat, Reinagel,
Reid, & Meister, 2001; Paninski et al., 2004; Song, Wang, & Berger, 2002; Storm, 1987). As
shown in our results (Fig. 5), the feedback component can account for a significant portion of
the output variance. In our model selection scheme, the feedback term is not only included but
also selected prior to the selection of inputs and cross-terms. This is akin to the Granger
causality analysis, in which the moving-averages of inputs are statistically tested with the auto-
regressive component built in (Nedungadi, Rangarajan, Jain, & Ding, 2009). Such a scheme
differentiates the output-dependent dynamics from the input-dependent dynamics and thus
provides more certain assessments of the causal relations between inputs and output.

The feedforward Volterra model is chosen to be second order in this study. However, with the
expense of more open parameters and computational cost, the model can also include higher
order terms, e.g., third order self-kernels and cross-kernels. Our previous analysis showed that
adding third order self-kernels only marginally improved the model performance (Song et al.,
2007).

The model described in this paper was developed within the context of hippocampal prostheses
and CA3–CA1 population dynamics. For example, to replace a CA1 cell field selectively
damaged in association with stroke – a common consequence of even brief periods of anoxia
– the prosthetic device has to reinstate the output signal (e.g., CA1 spikes) purely based on the
signals recorded in an upstream region (e.g., CA3) since the former is unavailable in such a
scenario. For this reason, our model does not include other CA1 neurons as inputs in predicting
the activity of a CA1 neuron and thus can be considered as an inter-region population model
(i.e., no intra-CA1 region dynamics is included). A prosthesis including our CA3–CA1 model
would be used in the following manner. First, stimulating electrodes would be placed in the
molecular layer of the subiculum and other output targets of CA1 according to known anatomy.

Song et al. Page 11

Neural Netw. Author manuscript; available in PMC 2010 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Electrophysiologically recorded output of CA3 neurons would provide the input to the model.
Thus, msec-to-msec spike output of the model would provide the context- and stimulus-specific
output of simulated CA1 to anatomically appropriate regions of the subiculum (and other brain
regions, if desired), the output target of CA1. This bypasses the damaged CA1 area, and restores
CA3-to-subiculum nonlinear dynamics, and thus, the “near-normal” nonlinear dynamic output
of the hippocampus. These nonlinear dynamics must provide the basis for the memory function
of the hippocampus, and thus, such a prosthesis could, in theory, restore the hippocampal
memory function. We have already partially demonstrated such a restoration of hippocampal
function, both in vitro and in vivo (Berger et al., 2005, 2001; Hampson et al., 2007). Although
we have focused on hippocampus, the model described in this paper is general enough to be
applied to virtually all brain regions, for example, dorsal premotor cortex (PMd) and primary
motor cortex (M1). The inter-region configuration used here can easily be extended by taking
all the recorded neuronal activities (from both CA3 and CA1 neurons) as inputs and then
performing the model selection/estimation to more thoroughly analyze a given neural
population and reveal both the intra-region and the inter-region functional connectivity in it
(Eldawlatly, Jin, & Oweiss, 2009; Okatan, Wilson, & Brown, 2005; Stevenson et al., in
press).
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Fig. 1.
Multiple-input multiple-output (MIMO) model for population neural dynamics. (A) schematic
diagram of spike train propagation between two brain regions. (B) MIMO model as a series of
multiple-input single-output (MISO) models. (C) structure of a MISO model. (D) MISO model
is equivalent to a generalized Volterra model (GVM) with a probit link function.
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Fig. 2.

Interpretations of the feedforward and feedback kernels.  is the response in u elicited by a

single spike from the ith input neuron;  describes the joint nonlinear effect of pairs of spikes
from the ith input neuron in addition to the linear summation of their first order responses.

 represents the joint nonlinear effect of pairs of spikes from neurons i and j. h represents
the output spike-triggered after-potential on u. Black areas: effect of each kernel on u.

Song et al. Page 16

Neural Netw. Author manuscript; available in PMC 2010 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Input and output spike trains recorded from hippocampal CA3 and CA1 regions during a
delayed nonmatch-to-sample (DNMS) behavior task. (A) schematic diagram of the DNMS
task. (B) CA3 and CA1 spike trains are recorded using a multi-electrode array during the task.
(C) anatomical locations of input (CA3) and output (CA1) neurons indicated on a foldout map
of the hippocampus. For this sample MIMO dataset, there are 24 inputs (white symbols) and
18 outputs (black symbols).
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Fig. 4.
Comparison of inter-spike binning and conventional binning for spike trains. Black bars: input
spikes; green bars: output spikes. (A) with inter-spike binning (blue lines), the causal relations
between input spikes and output spikes are retained. (B) with conventional binning (blue lines),
future inputs may influence present outputs in analysis and cause spurious causal relation
between inputs and outputs (red arrows). Dashed lines in A and (B) 2 ms bin.
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Fig. 5.
Selecting significant inputs and cross-terms of a MISO model. (A) the model starts from zeroth
order (first data points). Feedback kernels are then selected and included in the model (second
data points). Six inputs (first and second order self-terms) and one cross-term are selected based
on cross-validation. Open circles: in-sample results; Closed circles: out-of-sample results; Top:
absolute negative log-likelihood (L); Bottom: normalized L. (B) selection path of the inputs.
(C) selecting path of the cross-terms. The 15 cross-terms are constructed with the selected 6
inputs only.
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Fig. 6.
Feedforward and feedback kernels of a MISO model. r1 are the single-pulse response functions.
r2 are the paired-pulse response functions for the same input neuron. k2x are cross-kernels for
pairs of neurons. h is the feedback kernel.
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Fig. 7.
Model validation and prediction. (A) firing probability intensity Pf is calculated from the
summation of synaptic potential u and after-potential a. (B) actual output spike train y and the
predicted output spike train . (C) validating Pf with actual output spike train y using a KS
test. Dashed lines: 95% confidence bounds. (D) correlation coefficient r is calculated as a
function of the standard deviation of the Gaussian smoothing kernel. Thin lines show the
standard deviation of r.
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Fig. 8.
Predicting CA1 output spatio-temporal pattern with a MIMO model. Eight CA1 neurons are
included. Examples a and b are both out-of-sample results. Spike trains are spatially (piecewise
cubic Hermite interpolating polynomial) and temporally (non-overlapping 200 ms bin size)
interpolated for better visualization.
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