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Abstract

We investigate the linear stability of a neural network wdiktributed delay, where the neurons are identical. We
examine the stability of a symmetrical equilibrium poind ¥he analysis of the characteristic equation both when the
connection matrix is symmetric and when it is not. We detama mean delay and distribution independent stability
region. We then illustrate a way of improving on this consdixe result by approximating the true region of stability
when the actual distribution is not known, but some momentsimulants of the distribution are. Finally, we compare
the approximate stability regions with the stability reggan the case of the uniform and gamma distributions. We
show that the approximations improve as more moments or lantsuare used, and that the approximations using
cumulants give better results than the ones using moments.
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1. Introduction

We consider the following neural network,

v

Cyrvi(t) = — .];2(:) +Zakjfj(vj(t))+lk(t), k=1,...,n, Q)
j=1

popularized by Hopfield [21], which is a special case of a nyameral network first studied by Cohen and Grossberg
[8]. In this model,v, Ci, and R, denote the voltage, the capacitance, and the resistanauodmi;, respectively.
Parameteuy,; represents the connection strength (or synaptic weigtg. ékterior current applied to each neufon

is given byI,. Functionf; models the nonlinear element, which has the property ofitigithe output of the signal
v;. This function [8, 13, 21, 32] is usually taken to be monotatiy increasing and differentiable ¢r-oco, 0o), with
fi(0) =0, fi(z) < f}(0) = v; foranyx € R (wherev; is called the gain of neuroj), and satisfying

zli»rfoofj(x):il’ ji=1,...,n.

In many biological and physical models, time delays play mpdrtant role. They arise for example due to
age structure, gestation, maturation, or for biologicalraknetworks, due to the delay in the propagation of the
electrochemical signal among neurons. Atrtificial neuratems also exhibit time delays due to the propagation
of the electric signal between nodes and the signal praugs$sside the nodes. The model (1) assumes that the
communication between two nodes is instantaneous. Motistieanodels of neural networks should include time
delays to represent the dependence on past states of teensydeural networks with time delays were first studied
by Grossberg [15, 17, 18, 16]. Marcus and Westervelt [32pthiced time delays into the model (1) to explain
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instabilities of equilibria that occurred when implemeagtithis model using real electrical circuits. The resulting
model is a system of delay differential equations:

Ckv;c(t):—v%(:)+Zakjfj(’l}j(t—7'kj))—I—Ik(t), k=1,...,n, (2)
j=1

where the delay;;, represents the time it takes for the signal to travel fronroe; to neuronk.

There is a vast literature of neural networks such those5n1¥, 18, 16] and the model (2) where the delays are
fixed (also called discrete). We will not attempt to revieus thiterature in detail, but refer the reader to some recent
papers [22, 39, 47] which contain extensive referencesditarature.

As noted above, the time delays in (2) are assumed to be fixattmBny biological and physical events, such
as regeneration, recovery period from a disease, or sigmaluction, may not take exactly the same time in each
instance. Hence the model (2) can be further improved to dyding a distribution of delays:

v

Crup(t) = — ;(:) + Zakj /000 fi(v;(t — u))gr;(u) du + I (t), k=1,...,n. 3)
j=1

Here the delay:, which denotes the time it takes for the signal to travel fro@uron; to neuronk, occurs with
some probability given by the kerngi; (u), which is a probability density function. Since the timeajemust be
nonnegative in order to make sense physically and bioltigicee takefo"O grj(u) du = 1.

Models with distributed delay have been developed mostpplications to population biology and epidemiology.
Examples include the work of Thiel et al. [43] on how disttibdi delays may abolish complex dynamics present with
fixed delays, work on blood cell population models [1, 2, Bmostat models [27, 38, 45, 46], epidemic models [3],
ecological models [4, 11, 19, 36], and enzyme kinetics [RIjre examples can be found in the references within these
papers. The majority of these studies use specific kernals|lly the gamma distribution or the uniform distribution,
although some [3, 4, 5, 11, 36] obtain results for any distidm. More information on the theory of equations with
distributed delay and its application to biological modeds be found in several monographs[9, 12, 26, 30, 31].

There are a few papers which have studied neural networksdigtributed delays, which we now review. Some
papers [29, 37] have analyzed low dimensional (e.g= 2) networks with specific kernels (gamma distribution with
p = 1 or2). They study the linear stability of equilibrium points,igtence of mean delay induced Hopf bifurcation
and stability of the resulting periodic solutions.

The work of Gopalsamy and He [13] investigates the globahyléhdependent region of stability for system
(3), where the kernej,; is a general gamma distribution. They prove the global asgtizpstability of the unique
equilibrium point using a Liapunov functional.

Chen [7] considers the neural network

n t
wi(t) = —hi(i(t)) + Y wi / i (t — u) fj(x;(u)) du+ I, i=1...n, 4)
j=1 -
whereh;,7 = 1...n, is differentiable,f;, j = 1...n, is Lipschitz, and the kernel;; is arbitrary. The network (3)
is a special case of this model. Using matrix theory and cooshg a Liapunov function, he proves the existence,
unigueness and global asymptotic stability of the equiliforpoint of (4).

Recent work has extended the Lyapunov function/functiapploach to study stability in networks with time vary-
ing delays [28, 40], networks with impulses [33] and withc$tastic perturbations [42, 44]. The Lyapunov functional
approach has also been used to formulate linear matrix alig(iLMI) conditions for stability [35].

In his Master’s Thesis, Grégoire-Lacoste [14] investigdhe global stability of an equilibrium of system (3). He
also performs local stability analysis to determine thertotauy of stability of the equilibrium point for the uniform,
exponential, triangular, and gamma distributions. Thaltesre compared to the results of the corresponding system
with a fixed delay.

In this paper, we analyze the linear stability of the netw@kwhen the neurons are identical, where the kernel
g represents a general distribution. We determine the deldgpendent region of stability and try to improve on



this conservative result by approximating the boundarytabitty using the first few moments or cumulants of a
distribution. We are able to also show that as the mean delafythe distribution becomes larger and larger, the
stability region of the network with a distributed delay Isaless conservative than the corresponding system with
one fixed delay-. Hence we are able to partially prove the conjecture thatstesy with distributions of delays is
more stable than the corresponding one with a fixed delay.

We note that the distributed delay model (3) includes thedfitelay case, i.e. model (2) corresponds to setting
gr;i(u) = 6(u — 73;) in (3), whered is the Dirac distribution.

Dividing (3) by C;, and assuming that the injected current is constant, werobtai

v, (t) = —agve(t +Zw;ﬂ/ Fivj(t —u)gej(w)du+ Fe,  k=1,...,n, (5)

Whereak = 1/(chk), Wi = akj/Ck, andFk = Ik/C;C.
For the rest of the paper, we shall assume that all neurondeartical, hencey, = «, fr(v) = f(v), v = ~, and
gr;(uw) = g(u). Then the above model is reduced to

vfc(t):—avk(t)—i-Zwkj/ f(v;(t —u))g(u) du + Fy, k=1,...,n. (6)

j=1 0

This equation possesses a symmetric equilibrium peint: (v*,v*, ..., v*)7, if the following equations are satisfied
av* — Fj, = Zwkj f*), k=1,...,n. @)

Given the properties of, we can always guarantee the existence of such an equitittyteither adjusting the external
inputs for a particular connection matrix, or by adjustihg tonnection strengths when particular external inpwets ar
applied. In particular, it, =0, k = 1,2, ..., n the system admits the trivial equilibrium poirt; = 0.

Letay(t) = vg(t) —v*, andB = f'(v ) Usmg (7) and expanding(v, ) into its Taylor series aroung, = v*, we
obtain the linearization of (6) abowut',

xh.(t) = —azk(t) —i—ﬁZwk]/ zj(t — u)g(u) du, k=1,...,n. (8)
We next transform the above equation so that the mean delay

= /Oooug(u)du

appears explicitly. First we note that as— 0, then the distribution functiop(u) approaches the Dirac distribution
d(u), sinceg(u) is nonzero or(0, co) and thus, as the mean delay approac¢héke entire weight of the distribution
gets compressed closer and closet te 0. Hence as- — 0, we recover the non-delayed model

), (t) = —axy(t) +ﬁzwkm k=1,...,n, 9)

which is the linearization about the equilibrium point om (1) withn identical neurons. Having dealt with the
caser = 0, we now restrict to the case > 0. Making the change of variables= t/7,v = u/7 and defining
g(v) = 7g(rv), model (8) becomes

2 (s) = —arxi(s +57’2wa/ zj(s —v)g(v) dv, k=1,...,n, (10)



where the dot represents the derivative with respegt We note that the mean of the new distributipis one.
In order to analyze the linear stability of the trivial satut of (10), we compute the characteristic equation asso-
ciated with the above system. To do so, it is easier to lookeatihalogous vector form of (10),

&(s) = —aTx(s) + ﬁTW/ z(s —v)j(v) dv, (11)
0
wherex = (z1,...,z,)" andW is ann x n matrix with the(k;)" entry given bywy;. Letzx, k = 1,...,n be the
eigenvalues oW, then there exists a matri® such that? = PEP ', whereE is an upper triangular matrix with
zk,k = 1,...,n as diagonal elements. With the change of varialeles Py, equation (11) becomes

§(s) = —ary(s) + BrE /0 ~ (o) — v) do.

Substitutingy = e**c and noticing that the coefficient matrix is upper triangulae characteristic equation becomes,
A = [Tac =] <)\ +ar — ﬁmk/ eA”g(v)dv) =0. (12)
k=1 k=1 0

Since the characteristic equation is a product ofilaé))’s, A is a root of A(\) if and only if it is a root ofAj ()
for somek. Therefore, the linear stability of (10) may be determingdtudying the roots o\ (), k = 1,...,n.
In section 2 we will do this by assuming that the connectiotrix@V is symmetric, i.e. all its eigenvalueg are real.
In section 3, we consider the case wH&his not symmetric, i.e. its eigenvalues may be complex.

2. Connection Matrix with Real Eigenvalues

In this section we assume that the eigenvalues of the cdpneuatrix W are real. We start by describing the
delay independent region of stability, which we presenthia following subsection. This is a conservative result
which is useful in practice when one cannot estimate theydela system. And then in the following subsection, we
improve on this conservative result by approximating thgae of stability using just the some statistical propestie
of a distribution.

2.1. Distribution independent results

In this section we will give one result which is independehalb aspects of the distribution and one which is
independent of all aspects save the mean delay. The mailtsre$uhis section generalize to dimensions the
theorems presented in [6] for the scalar case (i.e., (8) with 1). The proofs are very similar to the proofs in [6],
hence we omit them.

Theorem 1. Assume thay;’o G(v)e™? dv is analytic inRe(\) > 0. Then the equilibrium poing* of (6) is locally
asymptotically stable if, for each= 1, ..., n, either

«
1) |z < =,
(1) |zk] 3
or
1
2) — — <z < -2

BT g

We note that if allz, k = 1, ..., n satisfy the condition irf1), then the equilibriunv* of (6) is locally asymptot-
ically stable for any value of the mean delayand for all distributiongj(v). We will call this thedelay independent
stability region. The following result determines a reginthe parameter space where the equilibrium point is unsta-
ble for any distribution.

Theorem 2. The equilibrium poiny* of (6) is unstable if at leastong,, k = 1,. .., n, satisfies;, > «/0.
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Figure 1: lllustration of the distribution independentislity results described by Theorems 1 and 2. (I) No distidiuindependent stability results
are known for this region. (Il) Region of stability describly Theorem 1: alk’s must lie to the right of the curve-1/(37) and be less than
—a/3, or have norm less tham/3. (lIl) Region of instability described by Theorem 2: at lease of thez;'s must be greater tham/3.

The results of Theorems 1 and 2 are illustrated in Figure &.stability region in the shaded area is a conservative
result and is independent of the distribution, save the nletay.

In practice the results of Theorem 1 are useful only if onédle o compute? = f’(v*). This might not be trivial
since one has to solve the nonlinear system (7). But sincenaw khat3 < f/(0) = ~, we can use this to obtain the
following corollary to Theorem 1:

Corollary 1. Assume thafoOO G(v)e= v dv is analytic inRe(\) > 0. Then the equilibrium point* of (6) is locally
asymptotically stable if, for eadh= 1, ..., n, either

Q
(1) |27€| <,

Y
or

@) - <<%
T v

The results of the above corollary and their comparison ®ofém 1 are presented in Figure 2. Sific€ ~, it is
clear that the stability result presented in Corollary 1 trenconservative than the result of Theorem 1, but it might
be more useful in practice since one only needs to know theoneain,y = f7(0).

Theorem 1 gives an approximation to the stability regiorheféquilibrium point. The exact stability region has
a boundary consisting of points in the parameter space whereharacteristic equation (12) has roots with zero real
part. We now investigate this boundary.

Note that for any distribution, the characteristic equatias a zero root if for at least oke 3z, = «. To further
define the boundary of stability, we need to determine whegeharacteristic equation has a pair of pure imaginary
roots,A = +iw. We consider the most generic case: suppose that fok ofig() has a pair of pure imaginary roots,
ie.

iw+ a1 — BTz / e “vg(v)dv = 0. (13)
0

Separating this into real and imaginary parts we find

aT

Brar [ cos(wv) §(v) dv B2 C(w),

P 14)
—w = Pra [y sin(wv) §(v) dv = BrapS(w).

5



Figure 2: Comparison between the stability results deedrtiy Corollary 1 and the ones presented in Theorem 1. Théitytabgion guaranteed
by Corollary 1 (the dark gray region) is more conservatiwntthe one guaranteed by Theorem 1 (the light gray region)i Isueasier to obtain
since it is only dependent on the neuron ggin

Consider O( )
(@] w
= —, T= 15
o TaS@)’ 19
for all w > 0 such thatC'(w) and S(w) are nonzero. Equations (15) represent curves inth@lane parameterized
by w. We then choose the curve which is the closest tortkexis. If allz;, &k = 1,...,n lie on or below this curve

then the equilibrium point of (10) is stable. Hence the cutescribed by (15) and closest to theaxis forms part of
the boundary of stability.

We next determine whether the real part of the eigenvalueases or decreases as we cross the lines in (15).
Taking the derivative of in (15) with respect taw we obtain

dr 1

_ C'(w)S(w) = §'(w)C(w)
do ~ aS(w) (C’(w) tw S(w) ) ' (16)
Using the definitions in (14), we have
Ag(iw) = iw + at — przy (C(w) —iS(w)) = 0. a7)

Next we compute the rate of change of the real pait with respect toy,. Using (17), we first compute

g—iA_w:_ﬁT[ ( )—15 Tf[lw—’—aT_ﬁTzr( ( )_is(w)))a
r#k
and :
aa—ﬁ o = [1+4 frzp, (8" (w) +iC' (w 1_[1 iw+ at — frz, (C(w) —iS(w))) .

r;zék



Therefore
dRe(\)
dzk

0AL 0N
A=1iw B _Re(aﬁzk W )\_iw)
o —Br(Cw) — iSW)
- m(uwmmwm+mmm0
br me+ngwmsw>—swxxw>v

T H2(w) S(w)

where H?(w) = (1 + 125" (w))? + (Br2C’'(w))? is a positive function ofv and we have used th@rz, =
—w/S(w) from (15). Comparing with (16) we see that
dRe(\)
dzk

(18)

__ ow  dr
e H2(w) dw’

A=iw
Thus whether the number of eigenvalues with positive redlipancreasing or decreasing agis increased through

a point on one of the curves defined by (15) depends on the $ignand whether- is an increasing or decreasing
function ofw at the point.

To further characterize the stability region we need to nf@ination from the distribution. In the next subsection
we will show how one may find a better approximation to theargif stability than that given by Theorem 1 (shaded
area in Figure 1) by using more information from the disttidmo. In subsection 2.3 we will compare the various
approximations with the exact stability region determiméth full knowledge of the distribution. We note that it is
only necessary to consider < 0, given the results of Theorems 1 and 2.

2.2. Approximating the boundary of the stability region

In practice, we may not know the exact distribution of delsya system, however, we may be able to determine
some statistical properties of the distribution. In thédwing we show how to approximate the true boundary of
stability, using only the first few moments or cumulants af thistribution.

To begin, recall that the moments and cumulants of a digtabwcan by defined and computed using the moment-
cumulant generating function

o0 = [ eg(o)do, (19)
0
The momentsn,, and the cumulants,, are then given by [34]

dm ” n s

dt—n¢(t) . =1"my, and s In ¢(t) . ="Ky

We note that, for any distributiompy = ¢(0) = 1 andxo = In ¢(0) = 0. Further, the first cumulant is equal to the
first moment and represents the mean of a distribution. Temnskecumulant is equal to the variance of a distribution,
and the second moment is the sum of the variance and the sofufieemean. In our case; = m; = 1, since the
mean of our normalized distributigr{v) is one. The higher cumulants can be obtained recursivety the moments
using Faa di Bruno’s formula [24],

Ko = Mo — m%,

20
K3 = m3 — 3mimeo + 2m:1”, (20)
and so on. Expanding(t) in its Taylor series around= 0, we have
o d" s, 1"
o) = %W)LO o= > i U (21)
n=0 = n=0
Similarly, expandindn ¢(¢) we obtain
In¢(t) = i 4" In () e i i”nnﬁ. (22)
o dtm ieo 1! — n!



Substitutingg = —w, from (19), (21) and (22), we obtain

> — WU A o - n:mn wn o - n:n wn
/0 e "g(v)dv = ;(—1) "M = exp {;(—1) ) Iinm} . (23)
From the definitions of’(w) andS(w), we have
C(w) =Re (/ e v g(v) dv) and S(w) =—Im (/ e v g(v) dv) . (24)
0 0
From (23) we obtain the following approximations fGfw) and.S(w) in terms of the moments,
M N
~ (_1)nw2n ~ (_1)nw2n+1
C(w) ~ Z 7.7712” and S(Ld) ~ Z mm2n+1. (25)

n=0

The first two approximations using moments are show in TabWelnote that the first approximation using moments,

Table 1: Approximations fo€(w) and.S(w) using moments.

(M,N) || Cw) Sw)
(1,0) 1— B2u? w
(1,1) 1— 2207 [w— 2803

i.e. substituting the values 6f(w) andS(w) from the first row of Table 1 into (15), recovers the result¥béorem 1,
i.e., that the approximate boundary of the stability regsogiven by

1

Using (23) again, we can also obtain the following approxiores for C'(w) andS(w) in terms of cumulants,
M N
~ (_1)nw2n ] (_1)nw2n+1
C(w) ~ exp {nz_:o Wﬁzn cos 1;) Wﬁznﬂ ) (27)
and y v
~ - (_1)nw2n ) (_l)nw2n+1
S(W) ~ exp {7; WKZQH S 7; Wﬂ2n+l . (28)

The first two approximations using cumulants can be seenlifeT2 We note that the first approximation using

Table 2: Approximations fo€ (w) andS(w) using cumulants.

(M,N) C(w) S(w)
(0,1) cos(w) sin(w)

(1,1) || exp (—/@2“’72) cos(w) | exp (—/@2“’;) sin(w)

cumulants recovers the results for the corresponding sysiith one fixed delay- (i.e. the linear stability region of
the equilibrium point of system (2) with identical neurons). The stability boundary of the scaladeiavith one



fixed delay is analyzed in [10]. Generalizing their resulttten dimensional model, we obtain the stability boundary
for the equilibrium point* of the system with one fixed delay (2),

1 ( o > L @ (29)
T=——arccos | — |, 2 < —=.
3222 —a? Bz g B

Sincearccos («/(Bzx)) > 1 for z;, < —a/8, from (26) and (29), we can conclude that the the first appnakion
using cumulants always lies above the first approximatiagmgusioments. We also notice that the curve described
by (29) has a vertical asymptote gt = —a/ and thus it never enters the delay independent region oilistab
|z1| < «/8 described by result (1) of Theorem 1. On the other hand, teedipproximation using moments given by
(26) hasz;, = 0 as its vertical asymptote, and does enter the delay indepesthbility region at, = —«a/.

Substituting the values @f(w) andS(w) from the second row of Table 2 into (15), we obtain the secqmmiax-
imation using cumulants,

2
welaw /2

" Bz sin(w)’

wherew € (w/2,7) in order to obtain the curve closest to theaxis. But as seen in (20), the second cumulant
represents the variance of a distribution, ke. = o2, wherec is the standard deviation, and thus is always
nonnegative. Therefore, comparing the above equatioréip & can also conclude that second approximation using
cumulants always lies above first approximation using mdsen

In the next two sections we compute several approximatontsé uniform and gamma distributions and compare
them to the true region of stability.

T =

2.3. Verifying the approximations for the uniform distriiaun

In this section we apply the approximation procedure wevedrin the previous section to the uniform distribution,
thus determining approximations for the boundary of théoregf stability. We will then compare these approxima-
tions with the true boundary derived from the characteristjuation. The normalized uniform distribution is given
by

1
1 ifvel—£2,1+£]
~ _ P’ 29 2
9(v) { 0, elsewhere.

M = m%w [(1 + g)w ~(1- g)w] :

Using this and the recursive formula in (20), we compute tfs few moments and cumulants for= 1 andp = 2,
as shown in Table 3.

(30)

The moments are given by

Table 3: Moments and cumulants of the uniform distribution.

Pl ™Mo | T m2 ms3 Ko | K1 K2 K3
1 1 13/12 | 5/4 0 1]11/12( 0
2 1 1 4/3 2 0 1 1/3 0

[

Using (30), we determine the exact form f@fw) andS(w),

1+p/2 .
Clw) = l/ cos(wv) dv = 2 cos(w) sm(pw/2)’
P J1—p/2 pw (31)
1+p/2 . .
S(w) = l/ sin(wv) dv = 2sin(w) sm(pw/2).
P J1—p/2 pw
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Figure 3: Stability region for the uniform distribution Wip = 1 andp = 2. The region of distribution independent stability liesveetn the
solid and dashed gray lines. The true region of stability between the solid gray line and the solid black curve. Thtedand dash curves
show the first and second approximations using the momessectively. The curves depicted by crosses and circlesgenpt the first and second

approximation using the cumulants, respectively.

Substituting these into equations (15), we obtain the taumbary of stability in ther—plane, as shown by the black
solid curve in Figures 3(a) and 3(b) (detail on how theseesiare obtained is presented in [6]). Thus the true region of
stability lies between the solid gray line and the solid klegrve, where the region of distribution independent $itgbi

lies between the solid and dashed gray lines. Substitutiagpproximations using moments, i.e. equations (25), into
(15) we get approximations to the true boundary of stabd#picted as the dotted and dash lines in Figures 3(a) and
3(b). And finally, the first two approximations using cumukafturves depicted by crosses and circles) in Figures 3(a)

and 3(b) are obtained by substituting (27) and (28) into.(15)

2.4. Verifying the approximations for the gamma distribati
In this section we will apply the approximations to the gantisé&ribution and compare these approximations with
the true boundary of stability derived from the characterisquation. The normalized gamma distribution is given by

) pPyP~Le—PY
9(v) = ———, (32)
(p—1)!
and then™ moment is
! (»—1)!

Using this and (20), we obtain the first few moments and cuntsiforp = 2 andp = 3, which are shown in Table 4.
We here note that fopy = 1, the true region of stability is given by the entire planehte teft of the linez, = o/
and that the second approximation using moments and théfwsipproximations using cumulants recover this true

region of stability.
Using the identityfoOO v"e™PY dv = n!/p™ T, we obtain the exact expression fdfw) andsS(w),

D 0o ) 2\ ~P . p
C(w) =Re P / wPlem i gy ) = (14 2 Re(1-% ,
(p— 1! Jo p? p 33)
S(w) = —Im (L /OO pPlem (PHiwv dv) =— (1 + w—2)p Im (1 - i_w)p
(»=1!Jo p? p)




Table 4: Moments and cumulants of the gamma distribution.

mo mq mo ms Ko K1 K2 K3
I [ 1 [3/2] 3 0|1 ]1/2]1/2
311 [4/3720/9] 01 [1/3]2/9
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Figure 4: Stability region for the gamma distribution wjth= 2 andp = 3. The region of distribution independent stability liesvioeen the
solid and dashed gray lines. The true region of stability between the solid gray line and the solid black curve. Thtedand dash curves
show the first and second approximations using the momessectively. The curves depicted by crosses and circlessenpt the first and second

approximation using the cumulants, respectively.

Substituting the exact expressions€iw) andS(w) into equations (15), we obtain the true boundary of statiilithe
zT—plane, as shown by the black solid curve in Figures 4(g) fer2 and 4(b) forp = 3 (detail on how these curves are
obtained is presented in [6]). Thus the true region of stalhiés between the solid gray line and the solid black curve
where the region of distribution independent stability Ietween the solid and dashed gray lines. Substituting the
approximations using moments, i.e. equations (25), ink) {de get approximations to the true boundary of stability
depicted as the dotted and dash lines in Figures 4(a) and Big) approximations using cumulants are obtained by
substituting (27) and (28) into (15). In Figures 4(a) and) 4itie first and second approximations using cumulants are

represented by the curves depicted by crosses and ciresgmatively.
We note that for the uniform distribution (Figure 3) and floe gamma distribution (Figure 4), the approximations

using cumulants give better results than the approximatisming moments. This is expected since for the approx-
imations using cumulants, the truncation in the expansmouis inside the exponential, sine and cosine functions,
therefore we expect better numerical results. As a genalal all approximations improve as more moments or
cumulants are added. For all cases, the second approximegiog cumulants lies very close to the true boundary
of stability. The first approximation using moments entéues distribution independent region in all four cases and
the second approximation using moments also enters thisrég case of the uniform distribution with = 1. No

approximation using cumulants enters the distributiomrpehdent region. We also notice that all approximations giv

good results for large negative values:@f
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3. Connection Matrix with Complex Eigenvalues

In this section we analyze the stability of the equilibriugirg v* of (6), for a general interconnection mat#ix.
In this case, the eigenvaluesBf can be complexz, = ay + ibk, with ax, b, € R. We will determine conditions
on these eigenvalues, in terms of the model paramatgtsandr, that guarantee that the equilibrium point is locally
asymptotically stable or unstable.

With definition of z;, above, the characteristic equation (12) becomes

0=A0N=J]a:M=]] (/\ + ar — Br(ay + iby) / G(v)e dv) , (34)
k=1 k=1 0
wherea, 5 > 0. To determine the stability region we need to determine itimmd such that all roots of (34) have

negative real parts.

Theorem 3. In the limit7 — 0, the equilibrium pointv* of (6) is locally asymptotically stable if, < «/3 for
k=1,2,... n.

Proof. As mentioned in Section 1, when — 0, the linearized model with delay (8) approaches the noaydel
linerized model (9). Now the characteristic equation ofi§9)

0=J](A\+a—Bax +ibi)).
k=1
Thus all roots of the characteristic equation have negageeparts ifa, < o/ for k = 1,2,...,n. The result

follows. O

Now consider the case > 0. We will study the roots of (34) by considering the roots aflefactor,Ax(A). From
Section 2, we know that #;, = 0 and|ay| < o/ then all roots oA, (A) have negative real parts. Further, a standard
result [25, 41] indicates that as the coefficients\gf(\) are varied, the number of roots with positive real parts can
only change by a root passing through the imaginary axis. NewO0 is a root of A, () only whena;,, = a/3 and
b, = 0. Further, using the definitions 6f(w) andS(w) in (14),\ = iw is a root of A, (\) whenay, by, «, 3, T satisfy
the following equation

0 = Ag(iw) = iw + at — fr(ag + iby) (C(w) —iS(w)) . (35)

Separating (35) into the real and imaginary parts we obtain

a = fapC(w) + BbrS(w),

—w = fBraS(w) — 10 C(w). (36)

To analyze these equations we need the following basic piep®fC(w) andS(w).

Lemma 1. Let C(w) and S(w) be defined as in (14). Thefi(0) = 1, S(0) = 0, C’(0) = 0, S’(0) = 1 and
C?(w) + S?%(w) < 1 for any distribution.

Proof. The first four results follow directly from the definitions6fw) andS(w) in (14). For the last result, note that

C*(w) = </000 cos(wv) §(v) dv>2
_ /0 "~ cos(wv) §(v) dv /O "~ cos(ww) §lw) dw
_ /0 - /O "~ cos(wr) cos(ww) §(0)g(w) dw do,

12



Similarly,
2(w) :/ / sin(wv) sin(ww) §(v)g§(w) dw dv.
0 0
Adding the two expressions we get

C?(w) + S*(w / / cos(wv — ww) §(v)g(w) dw dv
// [cos(wn — ww)] ()3 (w) dw du

S/O g(v)dv/o G(w) dw = 1.

Now we can obtain extensions of result (1) of Theorem 1 ancbitellary to the case when the eigenvalues of the
connection matrix are complex.

O

Theorem 4. The equilibrium pointv* of (6) is locally asymptotically stable for any distributiog, if |zx| < a/f,
k=1,2,....n

Proof. Squaring and adding equations (36) and Lemma 1 we obtainessay condition on the magnitudezqffor
a pure imaginary root af\; () to exist:

ol = /o272 £ 2
BT/ C?(w) + 52 (w)
«
> =
g
Clearly this cannot be satisfied|ify| < «/(3, so the result follows. O

Note that this region is the delay independent region ofilétabf the corresponding model with one fixed delay
T.

Coroallary 2. Lety = f/(0). The equilibrium point* of (6) is locally asymptotically stable for any distributigy, if
|zl < a/v, k=1,2,...,n

These conditions are easier to check, since they only re§niowledge of the neuron gain= f/(0).
To get more precise conditions for stability, we solvedgrandb;, from (36),

TaC(w) — wS(w)
Br(C*(w) + 5*(w))
TaS(w) + wC(w)  def

K e m N %9

For fixeda, 5 andr, equations (37) and (38) represent a curve in the complaregarameterized hy. It is easy to
check that this curve has the following properties

“ Rw), (37)

ap =

e Itis symmetric about thé, = 0.
e Whenw = 0, it passes through the poifit/3, 0) with infinite slope.
e Itlies outside the circle? + b7 = o?/3%.

Let w be the smallest positive value such thét) = 0. If I(w) # 0 for w # 0, then letw = co. Then we have the
following distribution dependernesult.
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Theorem 5. Let o, 5 and 7 be fixed. The equilibrium point* of (6) is locally asymptotically stable if for each
k=1,2,...,nthe point(ax, b) lies inside the curvéR(w), I(w)), w € [—&, ] whereR(w) andI(w) are defined
by (37)-(38).

Proof. From Theorem 4, all roots of\;(\) have negative real parts jf;| < «/8. For fixeda, 3 and 7, this
corresponds to the poirtti, b;) lying inside the circlea + b7 = «?/3%. As discussed above, if, andb,, are
moved outside this circle the number of roots2of(\) with positive real parts can only change if there is root with
zero real part for some values of andb,. From the properties of the curve given above, this will sgoshen

ar = R(w), by, = I(w) for somew € [—o,®]. The result follows. O

Figure 5: lllustration of the stability region described Diyeorems 3 — 5. The region to the left of the grey line is thbiktaregion for - — 0.
If all eigenvalues of the connection matrix lie inside thekdgray disk with boundaryz, | = «/3, then the equilibrium point* of (10) is stable
for any mean delay or any distribution. The actual stabikgion (the light gray tear drop region) will depend on thetipalar distribution and the
value of the mean delay. The region inside the smaller circle of radiug~y also guarantees stability for any mean delay and any disioify, it is
more conservative, but it is easier to obtain, since it oalyuires knowledge of the neuron gajin= f/(0).

The results of Theorems 4 and 5 are depicted in Figure 5. A32} fve represent the condition given by each
theorem by a region in the complex plane such that if allthée inside this region then the condition is satisfied.
We will refer this region as the stability region of the edrilum pointv* of (6). The region to the left of the grey
line is the stability region for — 0 given by Theorem 3. The distribution independent regiortaibitity (for 7 > 0)
is shown in dark gray. The larger circle shows the result a¢drem 4 and the smaller one that of Corollary 2. The
actual stability region (light grey) described by Theoremngompasses this conservative region. Its shape depends
on the particular distribution and the value of the meanydela

A commonly held belief is that a system with a distributiondefays is more stable than the same system with a
fixed delay. The following shows this is true for our systear,large enough mean delay.

Theorem 6. In the limitT — oo, the stability region of the equilibrium™* of (6) with the Dirac distribution (i.e. a
fixed delay) lies inside or is the same as the stability regitme equilibriumv* of (6) with any other distribution.

Proof. From Theorem 5 the stability region of the equilibrium pdimt any distribution is the region in the complex
plane enclosed by the curn&(w), I (w)), w € [—&, @] whereR(w) andI(w) are defined by (37)-(38). In the limit
atT — oo this curve is given by R (w), Ioo (w)), w € [—©, ®] WhereR (w) andl (w) are defined by

. B aC(w)
Roow) = m Rw) = G g2
. B aS(w)

Ioolw) = Bm I(w) = greary 57 ))
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Tc

(a) Realz;'s (b) Complexz;'s

Figure 6: (a) Asr increases, the region of stability decreases till it reacheninimum stability region at = 7., represented by the most inner
black curve. For > 7., the region of stability increases till it reaches a maxinatability region ag- — oo, depicted by the outer gray curve.
Thusifallz;,k = 1,...,n, are inside the boundary corresponding-te= 7., the equilibrium point is stable for any value of the mearage(b)
For real eigenvalues of the connection matrix, the value.@orresponds to the maximum on the boundary of stability tie curve has a vertical
slope in thezr-plane). Thus in the region between the dash black and said@irve, the equilibrium is stable for any value of the meelay.

For the case of a delta distribution, i.e. a fixed delay, thbibty region is as defined above, wiff{w) = cos(w) and
S(w) = sin(w). AsT — oo this region becomes the circle] = /3. The result then follows from the fact that

a? a?

2 2 _
Rl + 10 = ey v 820)) = 3

O

We note that the behaviour of the stability region as the ntEday ~ varies can be quite different for different
distributions. As presented in [32], the size of the regibstability of the model with fixed delay decreases monoton-
ically asT increases. As — oo, the stability region approaches the delay independerdmey stability, |z, | < «/.

For the model with other distributions, we do not necesgédudve this uniform convergence as the mean delay be-
comes larger and larger. For example, for the gamma disioibwith p = 2, there exists a particular value of the
mean delayr = 7., such that if all eigenvalues of the connection matrix asédi@ the tear drop region given by

0627'2 (4}2
o = — Y2 Te & , (39)
B1er/C?(w) + S?(w)

then the equilibrium point is locally asymptotically staldbr any value of the mean delay. But unlike the model
with fixed delay, the value of. is not infinity. This is depicted in Figure 6(a). Asincreases the region of stability
decreases until it reaches a minimum stability regionatr., represented by the inner most black curve. #or 7,
the region of stability increases till it reaches a maximuab#ity region asr — oo, depicted by the outer gray curve.
Hence stability can be regained as we increase the mean ediah cannot be achieved for the model with fixed
delay. For real eigenvalues of the connection matrix, theevaf 7. corresponds to the maximum of the boundary of
stability. As seen in Figure 6(b), at this maximum, the banyaf stability has a vertical slope (depicted as the dash
black line) and if allz;, £k = 1,...,n, are to the right of this line and less tha#i3, then the equilibrium point is
stable for any value of the mean delay. If any of thé& are located to the left of the vertical line, the stabitign be
regained for sufficiently large.

We illustrate our results with an example, where we analytheee dimensional network with a particular connec-
tion matrix. We investigate the stability region of the difuium point of the nonlinear model in (6) with = 3 and
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of its corresponding model with a fixed delay as we vary
Example Consider the connection matrix

0 1 0
W=| —65/64 0 1/16
65/64 1 0

with eigenvalues; = 1/4, 293 = —1/8 £ i. In the following simulations, we lek = 1 andF}, = 0 for k = 1,2, 3,
andr = 3 (this value ofr is in fact the critical value of the mean delay, i.e. if thestheigenvalues dV are inside the
region given by (39) withr. = 3, then the equilibrium point is stable for any value of the mdalay). We compare
the stability region of the equilibrium point of the threerginsional nonlinear model in (6) to the stability regiontedf t
equilibrium point of the corresponding model with a fixedajet = 3. We letg(u) to represent a gamma distribution
with p = 3 and the signal function to b&(v) = tanh(Sv).

For 8 = 0.5 the three eigenvalues of the connection matrix lie withmlloundary of stability for the distributed
delay model (the solid black curve) and also within the baugaf stability for the model with one fixed delay (the
curve depicted by crosses), as seen in Figure 7(a). In thés tae three eigenvaluesidf also lie inside the delay and
distribution independent region of stability (the graycta), hence Theorem 4 or Theorem 5 predicts that the egailibr
of the model with both distributed and fixed delay are stablas is seen in Figures 7(b) and (c), where all neurons
converge to the steady state solution.

For 8 = 1.2 the three eigenvalues of the connection matrix lie withlloundary of stability for the distributed
delay model (the solid black curve), but two of them lie odesihe boundary of stability for the fixed delay model (the
curve depicted by crosses), as seen in Figure 8(a). Thug&meppredicts that the equilibrium of the distributed delay
model is stable, but cannot predict anything about thelgtabf the equilibrium of the fixed delay model. Figure 8(b)
shows the neurons in the distributed delay model convettgittige steady state solution, whereas the neurons in the
fixed delay model oscillate, as seen in Figure 8(c).

For 3 = 1.5 the three eigenvalues of the connection matrix lie outsiolt the boundary of stability for the
distributed and fixed delay models, as seen in Figure 9(aus Tiiheorem 5 cannot be applied to predict anything
about the stability of the equilibria of the two models. Figgsi9(b) and (c) show the three neurons oscillating for both
the distributed and fixed delay models.

We note that for3 = 1.5, the stability of the equilibrium point of the distribute@ldy model can be recovered
by increasing the mean delay. Ads increased beyond the critical valae= 3, the boundary of the stability region
becomes larger and eventually encompasses the three a@ligesivas seen in Figure 10(a). Whegs- 20, Theorem 5
predicts that the equilibrium of the distributed delay maglstable. On the other hand, for the fixed delay modet, as
becomes larger, the boundary of the stability region besdmeeomes smaller and thus the stability of the equilibrium
point can never be recovered. Figure 10(b) shows the neurdhs distributed delay model converging to the steady
state solution, whereas the neurons in the fixed delay matélaie, as seen in Figure 10(c).CJ

We can obtain approximations for the boundary of the stghiéigion, (R(w), I(w))w € [, o], by using the
approximations foC’(w) andS(w) derived in subsection 2.2. In the following subsections ampare these approx-
imations with the exact boundary for the uniform and gamnséithutions.

3.1. Verifying the approximations for the uniform distriioun
In this section we plot the true region of stability for thaform distribution in order to compare it to the approx-
imations using the moments and the cumulants. From (31) warob

4 pw
2 20\ _ 2
C(w)—i—S(w)—pQwQsm (2)

Substituting this and the exact expression@gw) and.S(w) from (31) into (37) and (38) we obtain

pw (T cos(w) — wsin(w))
267 sin (2) ’
pw (Tasin(w) + w cos(w))

237 sin (%)

ap =

b, =
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Figure 7: (a) The stability boundary of the distributed gietaodel is given by the black curve and of the model with fixethgdy the curve
depicted by crosses. The gray circle represents the dethyliatribution independent region of stability given by dhem 4. The eigenvalues
of the connection matrix are plotted as dots. Theorem 4 ooime 5 predicts that, fof = 0.5, the equilibrium of the model is stable for both
distributed and fixed delays. This is confirmed by numerigalgations: all three neurons converge to the steady stédii@n in the model with
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Figure 8: (a) The stability boundary of the distributed glet@odel is given by the black curve and of the fixed delay mog¢hk curve depicted by
crosses. The gray circle represents the delay and distribimdependent region of stability given by Theorem 4. Tigeevalues of the connection
matrix are plotted as dots. Theorem 5 predicts that3fer 1.2, the equilibrium of the distributed delay model is stablet, dannot predict anything

about the stability of the equilibrium point of the fixed delaodel. This is confirmed by numerical simulations: (b) hliee neurons in the
distributed delay model converge to the steady state safuft) all three neurons in the fixed delay model oscillate.
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Figure 9: (a) The stability boundary of the distributed giet@odel is given by the black curve and of the fixed delay mogtehle gray curve. The
eigenvalues of the connection matrix are plotted as dots3Fe 1.8, Theorem 4 cannot be applied to predict the stability of tipeildria of the
distributed and fixed delay models. This is confirmed by nuraesimulations: all three neurons in the (b) distributed #c) fixed delay models
oscillate.
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(b) Distributed delayt (gamma, = 3) (c) Fixed delay

Figure 10: (a) For the distributed delay model, the boundétie stability whenr = 20 is represented by the dark gray curve, and:fee 3 by

the black curve. Whem = 20, the boundary of stability is larger than the one whesa: 3, encompassing the three eigenvalue$iafand hence
the stability of the equilibrium point of the distributedlag model is recovered by increasing the delay. For the fixadydmodel, the boundary of
the stability whenr = 20 is represented by the gray crosses, and-fer 3 by the black crosses. When= 20, the boundary of stability is smaller
than the one whem = 3, thus the stability of the equilibrium point of the fixed delmodel is never recovered by increasing the delay. This is
confirmed by numerical simulations: when= 20, (b) all three neurons in the distributed delay model caywéo the steady state solution; (c) all
three neurons in the fixed delay model oscillate.
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Re(z

Figure 11: Stability region for the uniform distributiontivip = 1 andp = 2 whenr = 1/2. The true region of stability lies between the solid
black black and the real-axis. The dotted and dash curvesg gtefirst and second approximations using the momentsecégely. The first and
second approximations using cumulants are given by theesudepicted as crosses and circles, respectively. Witleay,dhe stability region lies
to the left of the solid gray line.

The above two equations represents the true boundary dfitstétp the case of the uniform distribution, and it is
represented by the solid black line in Figure 11(a)dfet 1, and in Figure 11(b) fop = 2.

Substituting (25) into (37) and (38), we obtain the appraienstability boundary using the moments of the
uniform distribution. In Figure 11, the first and second apjmations using the moments are represented by the dotted
and dash curves, respectively. Substituting (27) and (&8)(87) and (38), we obtain the approximate boundaries of
stability using cumulants. The first and second approxiomatusing cumulants are seen in Figure 11 as the curves
depicted by crosses and circles, respectively.

3.2. Verifying the approximations for the gamma distribati

In this section we plot the true region of stability for thengaa distribution in order to compare it to the approxi-
mations using the moments and the cumulants. First, weentstat from (33) we have

st (5) (5] o (-] (5

Substituting this and (33) into (37) and (38) we obtain
a iw\?  w ( iw)p
ar=—=Re(l—— )] —=—Im(1——| ,
"B ( P ) Br P
a iw\?  w ( iw)p
bp==Im(l1—-—) +—Re(1-—] .
"B < P > Br P
The above two equations represents the true boundary dfitgtad the case of the gamma distribution, and it is
represented by the solid black line in Figure 12(a)for 2, and in Figure 12(b) fop = 3. Substituting (25) into
(37) and (38), we obtain the approximate stability boundasing moments. The approximations to the boundary
of stability using cumulants are obtained by substitutiag) @nd (28) into (37) and (38). In Figure 12, the first and

second approximations using the moments are representént lwotted and dash curves, respectively, and the first
and second approximations using cumulants are given byutives depicted as crosses and circles, respectively.
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Figure 12: Stability region for the gamma distribution wjth= 2 andp = 3 whenT = 1/2. The true region of stability lies between the solid
black black and the real-axis. The dotted and dash curvesg gtefirst and second approximations using the momentsecégely. The first and
second approximations using cumulants are given by theesudepicted as crosses and circles, respectively. Witleay,dhe stability region lies
to the left of the solid gray line.

We note that for both the uniform and gamma cases, the appatixins improve as more moments or cumulants
are added, and that the second approximation using cursuiastvery close to the true boundary of stability. We
again notice that the approximations using cumulants gitebresults than the ones using moments. In Figure 13 we
plot the true boundary of stability (for the uniform distutipn with p = 1) for different values ofr. In contrast with
Figure 6 which plots the stability region for the gamma disttion for different values of, we can see that for the
uniform distribution, the true stability region and the eppmations of the stability region decrease as the meaydel
7 increases. In Figure 13(a) we show a comparison betweemubedgion of stability and the first approximations
using moments and how they behaverdacreases. In Figure 13(b) we compare the true region ofligyadnd the
first approximations using cumulants for different valués-o It is again confirmed that the approximations using
cumulants give better results. We note again that the fipgtosgimation using cumulants recovers the stability result
of the corresponding model with fixed delay Hence in Figure 13(b) also shows a comparison betweenadbditst
regions of the distributed and fixed delay models for diffieralues ofr.

4. Conclusions

In this paper, we investigated the linear stability of th@imensional neural network with identical neurons via the
analysis of the characteristic equation. When the conmeatiatrix is symmetric, we showed that the conditions for
stability are just the generalizationitodimensions of the results in [6]. When the connection madgriot necessarily
symmetric, its eigenvalues, may be complex and we formulated conditions gnfor the linear stability of the
equilibrium point of (10). Our main results are outlinedd»el

We obtained severdlistribution independemesults. For the case of a symmetric connection matrix, viaioéd
a conservative region of stability which is independenthef properties of the distribution save the mean delay, and
guarantees the linear stability of the equilibrium point(@0). For the case of a general connection matrix, we
determined the region of stability as— 0 for any distribution, and showed that in the limit— oo, the region of
stability of the distributed delay model is always greateequal to the region of stability of the fixed delay model.
We also obtained a conservative region of stability for aalue of the mean delay and for any distribution, which
coincides with the delay independent region of stabilitytfe fixed delay model.
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Figure 13: The stability region for the uniform distributivith p = 1 for different values of- is compared to the first approximation using moments
in (a) and to the first approximation using cumulants in (bjthaut delay, the stability region lies to the left of the ditdine z, = «/3. The true
boundary of stability is depicted as the thin gray line, tiiek gray line, the thick black line, and the thin black lime f = 0.05, 7 = 0.2, 7 = 0.5,
andr = 100, respectively. The first approximations using moments amndants are shown as gray circles, gray dash line, blaclesirand black
dotted line forr = 0.05, 7 = 0.2, 7 = 0.5, andT = 100, respectively.

Our distribution independent results compare favorabti wihers found in the literature. To see this, we compare
our mean independent stability result described by Thedretith an equivalent result obtained in [13] using Liapunov
functionals. In their paper, without assuming that the @mtion matrix is symmetric or that neurons are identical,
Gopalsamy and He find sufficient conditions that guaranteexistence and stability of a global attractor for systems
of the form (3) and (5) with a gamma distributed delay. Formuodel, their condition translates into

n

(0%

W lloe = a3 s | < 5. (40)
)=

where||W|| represents the maximum row sum matrix normiBf Whereas, our conservative mean delay and

distribution independent stability region given by Theoré is

«
p(W) = ggﬂl%l <3
wherep(W) is called the spectral radius & . But by Theorem 5.6.9 from [23] we have tHa/ || < p(W) for
any matrixW. Therefore the stability result using Liapunov functie@ibm [13] always gives a stronger, but more
conservative result than our result in Theorem 4. We ilatstthis through our example presented in Section 3. In this
case||W||« = 2andp(W) = 1. Using (40) we cannot conclude anything about the stahifithe equilibrium point
for values ofg greater tha.5. Whereas our most conservative result guarantees syabili < 1.

Our distribution independent results are all conservastanates of the true stability region, thus we gave a gen-
eral formulation for this boundary region. See equatior) {&6the symmetric connection matrix case and Theorem 5
for the general connection matrix case. Using examples,howad that the variation of boundary of the stability
region as the mean delay varies can be quite different féerdifit distributions. There exists a particular value of
the mean delay = 7., such that if all eigenvalues of the connection matrix astdia the boundary of stability with
T = 7., then the equilibrium point is stable, but unlike the fixethgtanodel, the value of, is not necessarily infinity
for other distributions.

Finally, for both symmetric and general connection matsig,showed how the boundary of the region of stability
can be approximated using the first few moments or cumuldntiseodistribution. The first approximation using
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cumulants always recovers the results of the correspomdautel with one fixed delay. The approximations give good
results when compared to the true region of stability of theiléorium point of the uniform and gamma distributed
models. We found that the approximations using cumulamiays give better results than the approximations using
moments, and that the approximations improve as more cuntsut® moments are added.
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