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Abstract

We investigate the linear stability of a neural network withdistributed delay, where the neurons are identical. We
examine the stability of a symmetrical equilibrium point via the analysis of the characteristic equation both when the
connection matrix is symmetric and when it is not. We determine a mean delay and distribution independent stability
region. We then illustrate a way of improving on this conservative result by approximating the true region of stability
when the actual distribution is not known, but some moments or cumulants of the distribution are. Finally, we compare
the approximate stability regions with the stability regions in the case of the uniform and gamma distributions. We
show that the approximations improve as more moments or cumulants are used, and that the approximations using
cumulants give better results than the ones using moments.
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1. Introduction

We consider the following neural network,

Ckv′k(t) = −vk(t)

Rk
+

n
∑

j=1

akjfj(vj(t)) + Ik(t), k = 1, . . . , n, (1)

popularized by Hopfield [21], which is a special case of a moregeneral network first studied by Cohen and Grossberg
[8]. In this model,vk, Ck, andRk denote the voltage, the capacitance, and the resistance of neuronk, respectively.
Parameterakj represents the connection strength (or synaptic weight). The exterior current applied to each neuronk
is given byIk. Functionfj models the nonlinear element, which has the property of limiting the output of the signal
vj . This function [8, 13, 21, 32] is usually taken to be monotonically increasing and differentiable on(−∞,∞), with
fj(0) = 0, f ′

j(x) ≤ f ′
j(0) = γj for anyx ∈ R (whereγj is called the gain of neuronj), and satisfying

lim
x→±∞

fj(x) = ±1, j = 1, . . . , n.

In many biological and physical models, time delays play an important role. They arise for example due to
age structure, gestation, maturation, or for biological neural networks, due to the delay in the propagation of the
electrochemical signal among neurons. Artificial neural systems also exhibit time delays due to the propagation
of the electric signal between nodes and the signal processing inside the nodes. The model (1) assumes that the
communication between two nodes is instantaneous. More realistic models of neural networks should include time
delays to represent the dependence on past states of the system. Neural networks with time delays were first studied
by Grossberg [15, 17, 18, 16]. Marcus and Westervelt [32] introduced time delays into the model (1) to explain
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instabilities of equilibria that occurred when implementing this model using real electrical circuits. The resulting
model is a system of delay differential equations:

Ckv′k(t) = −vk(t)

Rk
+

n
∑

j=1

akjfj(vj(t − τkj)) + Ik(t), k = 1, . . . , n, (2)

where the delayτkj , represents the time it takes for the signal to travel from neuronj to neuronk.
There is a vast literature of neural networks such those in [15, 17, 18, 16] and the model (2) where the delays are

fixed (also called discrete). We will not attempt to review this literature in detail, but refer the reader to some recent
papers [22, 39, 47] which contain extensive references to this literature.

As noted above, the time delays in (2) are assumed to be fixed. But many biological and physical events, such
as regeneration, recovery period from a disease, or signal conduction, may not take exactly the same time in each
instance. Hence the model (2) can be further improved to by including a distribution of delays:

Ckv′k(t) = −vk(t)

Rk
+

n
∑

j=1

akj

∫ ∞

0

fj(vj(t − u))gkj(u) du + Ik(t), k = 1, . . . , n. (3)

Here the delayu, which denotes the time it takes for the signal to travel fromneuronj to neuronk, occurs with
some probability given by the kernelgkj(u), which is a probability density function. Since the time delay must be
nonnegative in order to make sense physically and biologically, we take

∫ ∞

0
gkj(u) du = 1.

Models with distributed delay have been developed mostly inapplications to population biology and epidemiology.
Examples include the work of Thiel et al. [43] on how distributed delays may abolish complex dynamics present with
fixed delays, work on blood cell population models [1, 2, 5], chemostat models [27, 38, 45, 46], epidemic models [3],
ecological models [4, 11, 19, 36], and enzyme kinetics [20].More examples can be found in the references within these
papers. The majority of these studies use specific kernels, usually the gamma distribution or the uniform distribution,
although some [3, 4, 5, 11, 36] obtain results for any distribution. More information on the theory of equations with
distributed delay and its application to biological modelscan be found in several monographs [9, 12, 26, 30, 31].

There are a few papers which have studied neural networks with distributed delays, which we now review. Some
papers [29, 37] have analyzed low dimensional (e.g.n = 2) networks with specific kernels (gamma distribution with
p = 1 or 2). They study the linear stability of equilibrium points, existence of mean delay induced Hopf bifurcation
and stability of the resulting periodic solutions.

The work of Gopalsamy and He [13] investigates the global delay independent region of stability for system
(3), where the kernelgkj is a general gamma distribution. They prove the global asymptotic stability of the unique
equilibrium point using a Liapunov functional.

Chen [7] considers the neural network

x′
i(t) = −hi(xi(t)) +

n
∑

j=1

wij

∫ t

−∞

gij(t − u)fj(xj(u)) du + Ii, i = 1 . . . n, (4)

wherehi, i = 1 . . . n, is differentiable,fj , j = 1 . . . n, is Lipschitz, and the kernelgij is arbitrary. The network (3)
is a special case of this model. Using matrix theory and constructing a Liapunov function, he proves the existence,
uniqueness and global asymptotic stability of the equilibrium point of (4).

Recent work has extended the Lyapunov function/functionalapproach to study stability in networks with time vary-
ing delays [28, 40], networks with impulses [33] and with stochastic perturbations [42, 44]. The Lyapunov functional
approach has also been used to formulate linear matrix inequality (LMI) conditions for stability [35].

In his Master’s Thesis, Grégoire-Lacoste [14] investigates the global stability of an equilibrium of system (3). He
also performs local stability analysis to determine the boundary of stability of the equilibrium point for the uniform,
exponential, triangular, and gamma distributions. The results are compared to the results of the corresponding system
with a fixed delay.

In this paper, we analyze the linear stability of the network(3) when the neurons are identical, where the kernel
g represents a general distribution. We determine the delay independent region of stability and try to improve on
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this conservative result by approximating the boundary of stability using the first few moments or cumulants of a
distribution. We are able to also show that as the mean delayτ of the distribution becomes larger and larger, the
stability region of the network with a distributed delay is also less conservative than the corresponding system with
one fixed delayτ . Hence we are able to partially prove the conjecture that a system with distributions of delays is
more stable than the corresponding one with a fixed delay.

We note that the distributed delay model (3) includes the fixed delay case, i.e. model (2) corresponds to setting
gkj(u) = δ(u − τkj) in (3), whereδ is the Dirac distribution.

Dividing (3) byCk and assuming that the injected current is constant, we obtain

v′k(t) = −αkvk(t) +
n

∑

j=1

wkj

∫ ∞

0

fj(vj(t − u))gkj(u) du + Fk, k = 1, . . . , n, (5)

whereαk = 1/(RkCk), wkj = akj/Ck, andFk = Ik/Ck.
For the rest of the paper, we shall assume that all neurons areidentical, henceαk ≡ α, fk(v) ≡ f(v), γk ≡ γ, and

gkj(u) ≡ g(u). Then the above model is reduced to

v′k(t) = −αvk(t) +

n
∑

j=1

wkj

∫ ∞

0

f(vj(t − u))g(u) du + Fk, k = 1, . . . , n. (6)

This equation possesses a symmetric equilibrium point,v
∗ = (v∗, v∗, . . . , v∗)T , if the following equations are satisfied

αv∗ − Fk =





n
∑

j=1

wkj



 f(v∗), k = 1, . . . , n. (7)

Given the properties off , we can always guarantee the existence of such an equilibrium by either adjusting the external
inputs for a particular connection matrix, or by adjusting the connection strengths when particular external inputs are
applied. In particular, ifFk = 0, k = 1, 2, . . . , n the system admits the trivial equilibrium point,v

∗ = 0.
Let xk(t) = vk(t)− v∗, andβ = f ′(v∗). Using (7) and expandingf(vj) into its Taylor series aroundvj = v∗, we

obtain the linearization of (6) aboutv
∗,

x′
k(t) = −αxk(t) + β

n
∑

j=1

wkj

∫ ∞

0

xj(t − u)g(u) du, k = 1, . . . , n. (8)

We next transform the above equation so that the mean delay

τ =

∫ ∞

0

ug(u) du

appears explicitly. First we note that asτ → 0, then the distribution functiong(u) approaches the Dirac distribution
δ(u), sinceg(u) is nonzero on(0,∞) and thus, as the mean delay approaches0, the entire weight of the distribution
gets compressed closer and closer tou = 0. Hence asτ → 0, we recover the non-delayed model

x′
k(t) = −αxk(t) + β

n
∑

j=1

wkjxj(t), k = 1, . . . , n, (9)

which is the linearization about the equilibrium point of system (1) withn identical neurons. Having dealt with the
caseτ = 0, we now restrict to the caseτ > 0. Making the change of variabless = t/τ, v = u/τ and defining
ĝ(v) = τg(τv), model (8) becomes

ẋk(s) = −ατxk(s) + βτ

n
∑

j=1

wkj

∫ ∞

0

xj(s − v)ĝ(v) dv, k = 1, . . . , n, (10)
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where the dot represents the derivative with respect tos. We note that the mean of the new distributionĝ is one.
In order to analyze the linear stability of the trivial solution of (10), we compute the characteristic equation asso-

ciated with the above system. To do so, it is easier to look at the analogous vector form of (10),

ẋ(s) = −ατx(s) + βτW

∫ ∞

0

x(s − v)ĝ(v) dv, (11)

wherex = (x1, . . . , xn)T andW is ann × n matrix with the(kj)th entry given bywkj . Let zk, k = 1, . . . , n be the
eigenvalues ofW , then there exists a matrixP such thatW = P EP−1, whereE is an upper triangular matrix with
zk, k = 1, . . . , n as diagonal elements. With the change of variablesx = Py, equation (11) becomes

ẏ(s) = −ατy(s) + βτE

∫ ∞

0

ĝ(v)y(s − v) dv.

Substitutingy = eλsc and noticing that the coefficient matrix is upper triangular, the characteristic equation becomes,

∆(λ) =

n
∏

k=1

∆k(λ) =

n
∏

k=1

(

λ + ατ − βτzk

∫ ∞

0

e−λv ĝ(v) dv

)

= 0. (12)

Since the characteristic equation is a product of the∆k(λ)’s, λ is a root of∆(λ) if and only if it is a root of∆k(λ)
for somek. Therefore, the linear stability of (10) may be determined by studying the roots of∆k(λ), k = 1, . . . , n.
In section 2 we will do this by assuming that the connection matrix W is symmetric, i.e. all its eigenvalueszk are real.
In section 3, we consider the case whenW is not symmetric, i.e. its eigenvalues may be complex.

2. Connection Matrix with Real Eigenvalues

In this section we assume that the eigenvalues of the connection matrixW are real. We start by describing the
delay independent region of stability, which we present in the following subsection. This is a conservative result
which is useful in practice when one cannot estimate the delay in a system. And then in the following subsection, we
improve on this conservative result by approximating the region of stability using just the some statistical properties
of a distribution.

2.1. Distribution independent results

In this section we will give one result which is independent of all aspects of the distribution and one which is
independent of all aspects save the mean delay. The main results of this section generalize ton dimensions the
theorems presented in [6] for the scalar case (i.e., (8) withn = 1). The proofs are very similar to the proofs in [6],
hence we omit them.

Theorem 1. Assume that
∫ ∞

0 ĝ(v)e−λv dv is analytic inRe(λ) ≥ 0. Then the equilibrium pointv∗ of (6) is locally
asymptotically stable if, for eachk = 1, . . . , n, either

(1) |zk| <
α

β
,

or

(2) − 1

βτ
< zk ≤ −α

β
.

We note that if allzk, k = 1, . . . , n satisfy the condition in(1), then the equilibriumv∗ of (6) is locally asymptot-
ically stable for any value of the mean delayτ and for all distributionŝg(v). We will call this thedelay independent
stability region. The following result determines a regionin the parameter space where the equilibrium point is unsta-
ble for any distribution.

Theorem 2. The equilibrium pointv∗ of (6) is unstable if at least onezk, k = 1, . . . , n, satisfieszk > α/β.
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Figure 1: Illustration of the distribution independent stability results described by Theorems 1 and 2. (I) No distribution independent stability results
are known for this region. (II) Region of stability described by Theorem 1: allzk ’s must lie to the right of the curve−1/(βτ) and be less than
−α/β, or have norm less thanα/β. (III) Region of instability described by Theorem 2: at least one of thezk ’s must be greater thanα/β.

The results of Theorems 1 and 2 are illustrated in Figure 1. The stability region in the shaded area is a conservative
result and is independent of the distribution, save the meandelay.

In practice the results of Theorem 1 are useful only if one is able to computeβ = f ′(v∗). This might not be trivial
since one has to solve the nonlinear system (7). But since we know thatβ ≤ f ′(0) = γ, we can use this to obtain the
following corollary to Theorem 1:

Corollary 1. Assume that
∫ ∞

0
ĝ(v)e−λv dv is analytic inRe(λ) ≥ 0. Then the equilibrium pointv∗ of (6) is locally

asymptotically stable if, for eachk = 1, . . . , n, either

(1) |zk| <
α

γ
,

or

(2) − 1

γτ
< zk ≤ −α

γ
.

The results of the above corollary and their comparison to Theorem 1 are presented in Figure 2. Sinceβ ≤ γ, it is
clear that the stability result presented in Corollary 1 is more conservative than the result of Theorem 1, but it might
be more useful in practice since one only needs to know the neuron gain,γ = f ′(0).

Theorem 1 gives an approximation to the stability region of the equilibrium point. The exact stability region has
a boundary consisting of points in the parameter space wherethe characteristic equation (12) has roots with zero real
part. We now investigate this boundary.

Note that for any distribution, the characteristic equation has a zero root if for at least onek, βzk = α. To further
define the boundary of stability, we need to determine where the characteristic equation has a pair of pure imaginary
roots,λ = ±iω. We consider the most generic case: suppose that for onek, ∆k(λ) has a pair of pure imaginary roots,
i.e.

iω + ατ − βτzk

∫ ∞

0

e−iωvĝ(v) dv = 0. (13)

Separating this into real and imaginary parts we find

ατ = βτzk

∫ ∞

0 cos(ωv) ĝ(v) dv
def
= βτzkC(ω),

−ω = βτzk

∫ ∞

0 sin(ωv) ĝ(v) dv
def
= βτzkS(ω).

(14)
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βγ
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β
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Figure 2: Comparison between the stability results described by Corollary 1 and the ones presented in Theorem 1. The stability region guaranteed
by Corollary 1 (the dark gray region) is more conservative than the one guaranteed by Theorem 1 (the light gray region), but it is easier to obtain
since it is only dependent on the neuron gainγ.

Consider

z =
α

βC(ω)
, τ = −ωC(ω)

αS(ω)
, (15)

for all ω > 0 such thatC(ω) andS(ω) are nonzero. Equations (15) represent curves in thezτ–plane parameterized
by ω. We then choose the curve which is the closest to theτ–axis. If all zk, k = 1, . . . , n lie on or below this curve
then the equilibrium point of (10) is stable. Hence the curvedescribed by (15) and closest to theτ–axis forms part of
the boundary of stability.

We next determine whether the real part of the eigenvalue increases or decreases as we cross the lines in (15).
Taking the derivative ofτ in (15) with respect toω we obtain

dτ

dω
= − 1

αS(ω)

(

C(ω) + ω
C′(ω)S(ω) − S′(ω)C(ω)

S(ω)

)

. (16)

Using the definitions in (14), we have

∆k(iω) = iω + ατ − βτzk (C(ω) − iS(ω)) = 0. (17)

Next we compute the rate of change of the real part ofλ with respect tozk. Using (17), we first compute

∂∆

∂zk

∣

∣

∣

∣

λ=iω

= −βτ [C(ω) − iS(ω)]

n
∏

r=1
r 6=k

(iω + ατ − βτzr (C(ω) − iS(ω))) ,

and
∂∆

∂λ

∣

∣

∣

∣

λ=iω

= [1 + βτzk (S′(ω) + iC′(ω))]

n
∏

r=1
r 6=k

(iω + ατ − βτzr (C(ω) − iS(ω))) .
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Therefore

dRe(λ)

dzk

∣

∣

∣

∣

λ=iω

= −Re

(

∂∆k

∂βzk
/
∂∆k

∂λ

∣

∣

∣

∣

λ=iω

)

= −Re

( −βτ(C(ω) − iS(ω))

1 + βτzk(S′(ω) + iC′(ω))

)

=
βτ

H2(ω)

(

C(ω) + ω
C′(ω)S(ω) − S′(ω)C(ω)

S(ω)

)

, (18)

whereH2(ω) = (1 + βτzkS′(ω))2 + (βτzkC′(ω))2 is a positive function ofω and we have used thatβτzk =
−ω/S(ω) from (15). Comparing with (16) we see that

dRe(λ)

dzk

∣

∣

∣

∣

λ=iω

=
αω

zkH2(ω)

dτ

dω
.

Thus whether the number of eigenvalues with positive real part is increasing or decreasing aszk is increased through
a point on one of the curves defined by (15) depends on the sign of zk and whetherτ is an increasing or decreasing
function ofω at the point.

To further characterize the stability region we need to use information from the distribution. In the next subsection
we will show how one may find a better approximation to the region of stability than that given by Theorem 1 (shaded
area in Figure 1) by using more information from the distribution. In subsection 2.3 we will compare the various
approximations with the exact stability region determinedwith full knowledge of the distribution. We note that it is
only necessary to considerzk < 0, given the results of Theorems 1 and 2.

2.2. Approximating the boundary of the stability region
In practice, we may not know the exact distribution of delaysin a system, however, we may be able to determine

some statistical properties of the distribution. In the following we show how to approximate the true boundary of
stability, using only the first few moments or cumulants of the distribution.

To begin, recall that the moments and cumulants of a distribution can by defined and computed using the moment-
cumulant generating function

φ(t) =

∫ ∞

0

eitvĝ(v) dv. (19)

The momentsmn and the cumulantsκn are then given by [34]

dn

dtn
φ(t)

∣

∣

∣

∣

t=0

= inmn and
dn

dtn
lnφ(t)

∣

∣

∣

∣

t=0

= inκn.

We note that, for any distribution,m0 = φ(0) = 1 andκ0 = lnφ(0) = 0. Further, the first cumulant is equal to the
first moment and represents the mean of a distribution. The second cumulant is equal to the variance of a distribution,
and the second moment is the sum of the variance and the squareof the mean. In our caseκ1 = m1 = 1, since the
mean of our normalized distribution̂g(v) is one. The higher cumulants can be obtained recursively from the moments
using Faá di Bruno’s formula [24],

κ2 = m2 − m2
1,

κ3 = m3 − 3m1m2 + 2m3
1,

(20)

and so on. Expandingφ(t) in its Taylor series aroundt = 0, we have

φ(t) =

∞
∑

n=0

dn

dtn
φ(t)

∣

∣

∣

∣

t=0

tn

n!
=

∞
∑

n=0

inmn
tn

n!
. (21)

Similarly, expandinglnφ(t) we obtain

lnφ(t) =
∞
∑

n=0

dn

dtn
lnφ(t)

∣

∣

∣

∣

t=0

tn

n!
=

∞
∑

n=0

inκn
tn

n!
. (22)

7



Substitutingt = −ω, from (19), (21) and (22), we obtain

∫ ∞

0

e−iωv ĝ(v) dv =

∞
∑

n=0

(−1)ninmn
ωn

n!
= exp

{

∞
∑

n=0

(−1)ninκn
ωn

n!

}

. (23)

From the definitions ofC(ω) andS(ω), we have

C(ω) = Re

(∫ ∞

0

e−iωv ĝ(v) dv

)

and S(ω) = −Im

(∫ ∞

0

e−iωv ĝ(v) dv

)

. (24)

From (23) we obtain the following approximations forC(ω) andS(ω) in terms of the moments,

C(ω) ≈
M
∑

n=0

(−1)nω2n

(2n)!
m2n and S(ω) ≈

N
∑

n=0

(−1)nω2n+1

(2n + 1)!
m2n+1. (25)

The first two approximations using moments are show in Table 1. We note that the first approximation using moments,

Table 1: Approximations forC(ω) andS(ω) using moments.

(M, N) C(ω) S(ω)
(1, 0) 1 − m2

2 ω2 ω
(1, 1) 1 − m2

2 ω2 ω − m3

6 ω3

i.e. substituting the values ofC(ω) andS(ω) from the first row of Table 1 into (15), recovers the results ofTheorem 1,
i.e., that the approximate boundary of the stability regionis given by

τ = − 1

βzk
. (26)

Using (23) again, we can also obtain the following approximations forC(ω) andS(ω) in terms of cumulants,

C(ω) ≈ exp

{

M
∑

n=0

(−1)nω2n

(2n)!
κ2n

}

cos

{

N
∑

n=0

(−1)nω2n+1

(2n + 1)!
κ2n+1

}

, (27)

and

S(ω) ≈ exp

{

M
∑

n=1

(−1)nω2n

(2n)!
κ2n

}

sin

{

N
∑

n=1

(−1)nω2n+1

(2n + 1)!
κ2n+1

}

. (28)

The first two approximations using cumulants can be seen in Table 2. We note that the first approximation using

Table 2: Approximations forC(ω) andS(ω) using cumulants.

(M, N) C(ω) S(ω)
(0, 1) cos(ω) sin(ω)

(1, 1) exp
(

−κ2
ω2

2

)

cos(ω) exp
(

−κ2
ω2

2

)

sin(ω)

cumulants recovers the results for the corresponding system with one fixed delayτ (i.e. the linear stability region of
the equilibrium point of system (2) withn identical neurons). The stability boundary of the scalar model with one
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fixed delay is analyzed in [10]. Generalizing their result tothen dimensional model, we obtain the stability boundary
for the equilibrium pointv∗ of the system with one fixed delay (2),

τ =
1

√

β2z2
k − α2

arccos

(

α

βzk

)

, zk < −α

β
. (29)

Sincearccos (α/(βzk)) > 1 for zk < −α/β, from (26) and (29), we can conclude that the the first approximation
using cumulants always lies above the first approximation using moments. We also notice that the curve described
by (29) has a vertical asymptote atzk = −α/β and thus it never enters the delay independent region of stability,
|zk| ≤ α/β described by result (1) of Theorem 1. On the other hand, the first approximation using moments given by
(26) haszk = 0 as its vertical asymptote, and does enter the delay independent stability region atzk = −α/β.

Substituting the values ofC(ω) andS(ω) from the second row of Table 2 into (15), we obtain the second approx-
imation using cumulants,

τ = − ωeκ2ω2/2

βzk sin(ω)
,

whereω ∈ (π/2, π) in order to obtain the curve closest to theτ -axis. But as seen in (20), the second cumulant
represents the variance of a distribution, i.e.κ2 = σ2, whereσ is the standard deviation, and thusκ2 is always
nonnegative. Therefore, comparing the above equation to (26), we can also conclude that second approximation using
cumulants always lies above first approximation using moments.

In the next two sections we compute several approximations for the uniform and gamma distributions and compare
them to the true region of stability.

2.3. Verifying the approximations for the uniform distribution

In this section we apply the approximation procedure we derived in the previous section to the uniform distribution,
thus determining approximations for the boundary of the region of stability. We will then compare these approxima-
tions with the true boundary derived from the characteristic equation. The normalized uniform distribution is given
by

ĝ(v) =

{ 1
ρ , if v ∈ [1 − ρ

2 , 1 + ρ
2 ]

0, elsewhere.
(30)

The moments are given by

mn =
1

(n + 1)ρ

[

(

1 +
ρ

2

)n+1

−
(

1 − ρ

2

)n+1
]

.

Using this and the recursive formula in (20), we compute the first few moments and cumulants forρ = 1 andρ = 2,
as shown in Table 3.

Table 3: Moments and cumulants of the uniform distribution.

ρ m0 m1 m2 m3 κ0 κ1 κ2 κ3

1 1 1 13/12 5/4 0 1 1/12 0
2 1 1 4/3 2 0 1 1/3 0

Using (30), we determine the exact form forC(ω) andS(ω),

C(ω) =
1

ρ

∫ 1+ρ/2

1−ρ/2

cos(ωv) dv =
2 cos(ω) sin(ρω/2)

ρω
,

S(ω) =
1

ρ

∫ 1+ρ/2

1−ρ/2

sin(ωv) dv =
2 sin(ω) sin(ρω/2)

ρω
.

(31)
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Figure 3: Stability region for the uniform distribution with ρ = 1 andρ = 2. The region of distribution independent stability lies between the
solid and dashed gray lines. The true region of stability lies between the solid gray line and the solid black curve. The dotted and dash curves
show the first and second approximations using the moments, respectively. The curves depicted by crosses and circles represent the first and second
approximation using the cumulants, respectively.

Substituting these into equations (15), we obtain the true boundary of stability in thezτ–plane, as shown by the black
solid curve in Figures 3(a) and 3(b) (detail on how these curves are obtained is presented in [6]). Thus the true region of
stability lies between the solid gray line and the solid black curve, where the region of distribution independent stability
lies between the solid and dashed gray lines. Substituting the approximations using moments, i.e. equations (25), into
(15) we get approximations to the true boundary of stabilitydepicted as the dotted and dash lines in Figures 3(a) and
3(b). And finally, the first two approximations using cumulants (curves depicted by crosses and circles) in Figures 3(a)
and 3(b) are obtained by substituting (27) and (28) into (15).

2.4. Verifying the approximations for the gamma distribution

In this section we will apply the approximations to the gammadistribution and compare these approximations with
the true boundary of stability derived from the characteristic equation. The normalized gamma distribution is given by

ĝ(v) =
ppvp−1e−pv

(p − 1)!
, (32)

and thenth moment is

mn = p−n (n + p − 1)!

(p − 1)!
.

Using this and (20), we obtain the first few moments and cumulants forp = 2 andp = 3, which are shown in Table 4.
We here note that forp = 1, the true region of stability is given by the entire plane to the left of the linezk = α/β
and that the second approximation using moments and the firsttwo approximations using cumulants recover this true
region of stability.

Using the identity
∫ ∞

0
vne−pv dv = n!/pn+1, we obtain the exact expression forC(ω) andS(ω),

C(ω) = Re

(

pp

(p − 1)!

∫ ∞

0

vp−1e−(p+iω)v dv

)

=

(

1 +
ω2

p2

)−p

Re

(

1 − iω

p

)p

,

S(ω) = −Im

(

pp

(p − 1)!

∫ ∞

0

vp−1e−(p+iω)v dv

)

= −
(

1 +
ω2

p2

)−p

Im

(

1 − iω

p

)p

.

(33)
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Table 4: Moments and cumulants of the gamma distribution.

p m0 m1 m2 m3 κ0 κ1 κ2 κ3

2 1 1 3/2 3 0 1 1/2 1/2
3 1 1 4/3 20/9 0 1 1/3 2/9

1

β β
−α α

α

τ

z

(a) p = 2

α
1

τ

z
β β

−α α

(b) p = 3

Figure 4: Stability region for the gamma distribution withp = 2 andp = 3. The region of distribution independent stability lies between the
solid and dashed gray lines. The true region of stability lies between the solid gray line and the solid black curve. The dotted and dash curves
show the first and second approximations using the moments, respectively. The curves depicted by crosses and circles represent the first and second
approximation using the cumulants, respectively.

Substituting the exact expressions forC(ω) andS(ω) into equations (15), we obtain the true boundary of stability in the
zτ–plane, as shown by the black solid curve in Figures 4(a) forp = 2 and 4(b) forp = 3 (detail on how these curves are
obtained is presented in [6]). Thus the true region of stability lies between the solid gray line and the solid black curve,
where the region of distribution independent stability lies between the solid and dashed gray lines. Substituting the
approximations using moments, i.e. equations (25), into (15) we get approximations to the true boundary of stability
depicted as the dotted and dash lines in Figures 4(a) and 4(b). The approximations using cumulants are obtained by
substituting (27) and (28) into (15). In Figures 4(a) and 4(b), the first and second approximations using cumulants are
represented by the curves depicted by crosses and circles, respectively.

We note that for the uniform distribution (Figure 3) and for the gamma distribution (Figure 4), the approximations
using cumulants give better results than the approximations using moments. This is expected since for the approx-
imations using cumulants, the truncation in the expansion occurs inside the exponential, sine and cosine functions,
therefore we expect better numerical results. As a general rule, all approximations improve as more moments or
cumulants are added. For all cases, the second approximation using cumulants lies very close to the true boundary
of stability. The first approximation using moments enters the distribution independent region in all four cases and
the second approximation using moments also enters this region in case of the uniform distribution withρ = 1. No
approximation using cumulants enters the distribution independent region. We also notice that all approximations give
good results for large negative values ofzk.
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3. Connection Matrix with Complex Eigenvalues

In this section we analyze the stability of the equilibrium point v∗ of (6), for a general interconnection matrixW .
In this case, the eigenvalues ofW can be complex,zk = ak + ibk, with ak, bk ∈ R. We will determine conditions
on these eigenvalues, in terms of the model parametersα, β andτ , that guarantee that the equilibrium point is locally
asymptotically stable or unstable.

With definition ofzk above, the characteristic equation (12) becomes

0 = ∆(λ) =
n

∏

k=1

∆k(λ) =
n

∏

k=1

(

λ + ατ − βτ(ak + ibk)

∫ ∞

0

ĝ(v)e−λv dv

)

, (34)

whereα, β > 0. To determine the stability region we need to determine conditions such that all roots of (34) have
negative real parts.

Theorem 3. In the limit τ → 0, the equilibrium pointv∗ of (6) is locally asymptotically stable ifak < α/β for
k = 1, 2, . . . , n.

Proof. As mentioned in Section 1, whenτ → 0, the linearized model with delay (8) approaches the non-delayed
linerized model (9). Now the characteristic equation of (9)is

0 =

n
∏

k=1

(λ + α − β(ak + ibk)).

Thus all roots of the characteristic equation have negativereal parts ifak < α/β for k = 1, 2, . . . , n. The result
follows.

Now consider the caseτ > 0. We will study the roots of (34) by considering the roots of each factor,∆k(λ). From
Section 2, we know that ifbk = 0 and|ak| < α/β then all roots of∆k(λ) have negative real parts. Further, a standard
result [25, 41] indicates that as the coefficients of∆k(λ) are varied, the number of roots with positive real parts can
only change by a root passing through the imaginary axis. Nowλ = 0 is a root of∆k(λ) only whenak = α/β and
bk = 0. Further, using the definitions ofC(ω) andS(ω) in (14),λ = iω is a root of∆k(λ) whenak, bk, α, β, τ satisfy
the following equation

0 = ∆k(iω) = iω + ατ − βτ(ak + ibk) (C(ω) − iS(ω)) . (35)

Separating (35) into the real and imaginary parts we obtain

α = βakC(ω) + βbkS(ω),

−ω = βτakS(ω) − βτbkC(ω).
(36)

To analyze these equations we need the following basic properties ofC(ω) andS(ω).

Lemma 1. Let C(ω) and S(ω) be defined as in (14). ThenC(0) = 1, S(0) = 0, C′(0) = 0, S′(0) = 1 and
C2(ω) + S2(ω) ≤ 1 for any distribution.

Proof. The first four results follow directly from the definitions ofC(ω) andS(ω) in (14). For the last result, note that

C2(ω) =

(∫ ∞

0

cos(ωv) ĝ(v) dv

)2

=

∫ ∞

0

cos(ωv) ĝ(v) dv

∫ ∞

0

cos(ωw) ĝ(w) dw

=

∫ ∞

0

∫ ∞

0

cos(ωv) cos(ωw) ĝ(v)ĝ(w) dw dv.
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Similarly,

S2(ω) =

∫ ∞

0

∫ ∞

0

sin(ωv) sin(ωw) ĝ(v)ĝ(w) dw dv.

Adding the two expressions we get

C2(ω) + S2(ω) =

∫ ∞

0

∫ ∞

0

cos(ωv − ωw) ĝ(v)ĝ(w) dw dv

≤
∫ ∞

0

∫ ∞

0

|cos(ωv − ωw)| ĝ(v)ĝ(w) dw dv

≤
∫ ∞

0

ĝ(v) dv

∫ ∞

0

ĝ(w) dw = 1.

Now we can obtain extensions of result (1) of Theorem 1 and itscorollary to the case when the eigenvalues of the
connection matrix are complex.

Theorem 4. The equilibrium pointv∗ of (6) is locally asymptotically stable for any distribution, g, if |zk| < α/β,
k = 1, 2, . . . , n.

Proof. Squaring and adding equations (36) and Lemma 1 we obtain a necessary condition on the magnitude ofzk for
a pure imaginary root of∆k(λ) to exist:

|zk| =

√
α2τ2 + ω2

βτ
√

C2(ω) + S2(ω)

≥ α

β
.

Clearly this cannot be satisfied if|zk| < α/β, so the result follows.

Note that this region is the delay independent region of stability of the corresponding model with one fixed delay
τ .

Corollary 2. Letγ = f ′(0). The equilibrium pointv∗ of (6) is locally asymptotically stable for any distribution, g, if
|zk| < α/γ, k = 1, 2, . . . , n.

These conditions are easier to check, since they only require knowledge of the neuron gainγ = f ′(0).
To get more precise conditions for stability, we solve forak andbk from (36),

ak =
ταC(ω) − ωS(ω)

βτ(C2(ω) + S2(ω))

def
= R(ω), (37)

bk =
ταS(ω) + ωC(ω)

βτ(C2(ω) + S2(ω))

def
= I(ω). (38)

For fixedα, β andτ , equations (37) and (38) represent a curve in the complex plane parameterized byω. It is easy to
check that this curve has the following properties

• It is symmetric about thebk = 0.

• Whenω = 0, it passes through the point(α/β, 0) with infinite slope.

• It lies outside the circlea2
k + b2

k = α2/β2.

Let ω̄ be the smallest positive value such thatI(ω̄) = 0. If I(ω) 6= 0 for ω 6= 0, then letω̄ = ∞. Then we have the
following distribution dependentresult.
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Theorem 5. Let α, β and τ be fixed. The equilibrium pointv∗ of (6) is locally asymptotically stable if for each
k = 1, 2, . . . , n the point(ak, bk) lies inside the curve(R(ω), I(ω)), ω ∈ [−ω̄, ω̄] whereR(ω) andI(ω) are defined
by (37)-(38).

Proof. From Theorem 4, all roots of∆k(λ) have negative real parts if|zk| < α/β. For fixedα, β and τ , this
corresponds to the point(ak, bk) lying inside the circlea2

k + b2
k = α2/β2. As discussed above, ifak and bk are

moved outside this circle the number of roots of∆k(λ) with positive real parts can only change if there is root with
zero real part for some values ofak and bk. From the properties of the curve given above, this will occur when
ak = R(ω), bk = I(ω) for someω ∈ [−ω̄, ω̄]. The result follows.

−α
γ γ

α−α α Re(z)

Im(z)

β β

Figure 5: Illustration of the stability region described byTheorems 3 – 5. The region to the left of the grey line is the stability region for τ → 0.
If all eigenvalues of the connection matrix lie inside the dark gray disk with boundary|zk| = α/β, then the equilibrium pointv∗ of (10) is stable
for any mean delay or any distribution. The actual stabilityregion (the light gray tear drop region) will depend on the particular distribution and the
value of the mean delayτ . The region inside the smaller circle of radiusα/γ also guarantees stability for any mean delay and any distribution; it is
more conservative, but it is easier to obtain, since it only requires knowledge of the neuron gainγ = f ′(0).

The results of Theorems 4 and 5 are depicted in Figure 5. As in [32], we represent the condition given by each
theorem by a region in the complex plane such that if all thezk lie inside this region then the condition is satisfied.
We will refer this region as the stability region of the equilibrium pointv∗ of (6). The region to the left of the grey
line is the stability region forτ → 0 given by Theorem 3. The distribution independent region of stability (for τ > 0)
is shown in dark gray. The larger circle shows the result of Theorem 4 and the smaller one that of Corollary 2. The
actual stability region (light grey) described by Theorem 5encompasses this conservative region. Its shape depends
on the particular distribution and the value of the mean delay.

A commonly held belief is that a system with a distribution ofdelays is more stable than the same system with a
fixed delay. The following shows this is true for our system, for large enough mean delay.

Theorem 6. In the limit τ → ∞, the stability region of the equilibriumv∗ of (6) with the Dirac distribution (i.e. a
fixed delay) lies inside or is the same as the stability regionof the equilibriumv

∗ of (6) with any other distribution.

Proof. From Theorem 5 the stability region of the equilibrium pointfor any distribution is the region in the complex
plane enclosed by the curve(R(ω), I(ω)), ω ∈ [−ω̄, ω̄] whereR(ω) andI(ω) are defined by (37)-(38). In the limit
at τ → ∞ this curve is given by(R∞(ω), I∞(ω)), ω ∈ [−ω̄, ω̄] whereR∞(ω) andI∞(ω) are defined by

R∞(ω) = lim
τ→∞

R(ω) =
αC(ω)

β(C2(ω) + S2(ω))
,

I∞(ω) = lim
τ→∞

I(ω) =
αS(ω)

β(C2(ω) + S2(ω))
.
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(b) Complexzk’s

Figure 6: (a) Asτ increases, the region of stability decreases till it reaches a minimum stability region atτ = τc, represented by the most inner
black curve. Forτ > τc, the region of stability increases till it reaches a maximumstability region asτ → ∞, depicted by the outer gray curve.
Thus if all zk, k = 1, . . . , n, are inside the boundary corresponding toτ = τc, the equilibrium point is stable for any value of the mean delay. (b)
For real eigenvalues of the connection matrix, the value ofτc corresponds to the maximum on the boundary of stability (i.e. the curve has a vertical
slope in thezτ -plane). Thus in the region between the dash black and solid gray curve, the equilibrium is stable for any value of the meandelay.

For the case of a delta distribution, i.e. a fixed delay, the stability region is as defined above, withC(ω) = cos(ω) and
S(ω) = sin(ω). As τ → ∞ this region becomes the circle|z| = α/β. The result then follows from the fact that

R∞(ω)2 + I∞(ω)2 =
α2

β2(C2(ω) + S2(ω))
≥ α2

β2
.

We note that the behaviour of the stability region as the meandelayτ varies can be quite different for different
distributions. As presented in [32], the size of the region of stability of the model with fixed delay decreases monoton-
ically asτ increases. Asτ → ∞, the stability region approaches the delay independent region of stability,|zk| < α/β.
For the model with other distributions, we do not necessarily have this uniform convergence as the mean delay be-
comes larger and larger. For example, for the gamma distribution with p = 2, there exists a particular value of the
mean delay,τ = τc, such that if all eigenvalues of the connection matrix are inside the tear drop region given by

|zk| =

√

α2τ2
c + ω2

βτc

√

C2(ω) + S2(ω)
, (39)

then the equilibrium point is locally asymptotically stable for any value of the mean delay. But unlike the model
with fixed delay, the value ofτc is not infinity. This is depicted in Figure 6(a). Asτ increases the region of stability
decreases until it reaches a minimum stability region atτ = τc, represented by the inner most black curve. Forτ > τc,
the region of stability increases till it reaches a maximum stability region asτ → ∞, depicted by the outer gray curve.
Hence stability can be regained as we increase the mean delay, which cannot be achieved for the model with fixed
delay. For real eigenvalues of the connection matrix, the value of τc corresponds to the maximum of the boundary of
stability. As seen in Figure 6(b), at this maximum, the boundary of stability has a vertical slope (depicted as the dash
black line) and if allzk, k = 1, . . . , n, are to the right of this line and less thanα/β, then the equilibrium point is
stable for any value of the mean delay. If any of thezk ’s are located to the left of the vertical line, the stabilitycan be
regained for sufficiently largeτ .

We illustrate our results with an example, where we analyze athree dimensional network with a particular connec-
tion matrix. We investigate the stability region of the equilibrium point of the nonlinear model in (6) withn = 3 and
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of its corresponding model with a fixed delay as we varyβ.
Example. Consider the connection matrix

W =





0 1 0
−65/64 0 1/16
65/64 1 0





with eigenvaluesz1 = 1/4, z2,3 = −1/8 ± i. In the following simulations, we letα = 1 andFk = 0 for k = 1, 2, 3,
andτ = 3 (this value ofτ is in fact the critical value of the mean delay, i.e. if the three eigenvalues ofW are inside the
region given by (39) withτc = 3, then the equilibrium point is stable for any value of the mean delay). We compare
the stability region of the equilibrium point of the three dimensional nonlinear model in (6) to the stability region of the
equilibrium point of the corresponding model with a fixed delayτ = 3. We letg(u) to represent a gamma distribution
with p = 3 and the signal function to bef(v) = tanh(βv).

Forβ = 0.5 the three eigenvalues of the connection matrix lie within the boundary of stability for the distributed
delay model (the solid black curve) and also within the boundary of stability for the model with one fixed delay (the
curve depicted by crosses), as seen in Figure 7(a). In this case, the three eigenvalues ofW also lie inside the delay and
distribution independent region of stability (the gray circle), hence Theorem 4 or Theorem 5 predicts that the equilibria
of the model with both distributed and fixed delay are stable.This is seen in Figures 7(b) and (c), where all neurons
converge to the steady state solution.

Forβ = 1.2 the three eigenvalues of the connection matrix lie within the boundary of stability for the distributed
delay model (the solid black curve), but two of them lie outside the boundary of stability for the fixed delay model (the
curve depicted by crosses), as seen in Figure 8(a). Thus Theorem 5 predicts that the equilibrium of the distributed delay
model is stable, but cannot predict anything about the stability of the equilibrium of the fixed delay model. Figure 8(b)
shows the neurons in the distributed delay model convergingto the steady state solution, whereas the neurons in the
fixed delay model oscillate, as seen in Figure 8(c).

For β = 1.5 the three eigenvalues of the connection matrix lie outside both the boundary of stability for the
distributed and fixed delay models, as seen in Figure 9(a). Thus Theorem 5 cannot be applied to predict anything
about the stability of the equilibria of the two models. Figures 9(b) and (c) show the three neurons oscillating for both
the distributed and fixed delay models.

We note that forβ = 1.5, the stability of the equilibrium point of the distributed delay model can be recovered
by increasing the mean delay. Asτ is increased beyond the critical valueτc = 3, the boundary of the stability region
becomes larger and eventually encompasses the three eigenvalues, as seen in Figure 10(a). Whenτ = 20, Theorem 5
predicts that the equilibrium of the distributed delay model is stable. On the other hand, for the fixed delay model, asτ
becomes larger, the boundary of the stability region becomes becomes smaller and thus the stability of the equilibrium
point can never be recovered. Figure 10(b) shows the neuronsin the distributed delay model converging to the steady
state solution, whereas the neurons in the fixed delay model oscillate, as seen in Figure 10(c).

We can obtain approximations for the boundary of the stability region,(R(ω), I(ω))ω ∈ [−ω̄, ω̄], by using the
approximations forC(ω) andS(ω) derived in subsection 2.2. In the following subsections we compare these approx-
imations with the exact boundary for the uniform and gamma distributions.

3.1. Verifying the approximations for the uniform distribution
In this section we plot the true region of stability for the uniform distribution in order to compare it to the approx-

imations using the moments and the cumulants. From (31) we obtain

C2(ω) + S2(ω) =
4

ρ2ω2
sin2

(ρω

2

)

.

Substituting this and the exact expression forC(ω) andS(ω) from (31) into (37) and (38) we obtain

ak =
ρω (τα cos(ω) − ω sin(ω))

2βτ sin
(

ωρ
2

) ,

bk =
ρω (τα sin(ω) + ω cos(ω))

2βτ sin
(

ωρ
2

) .
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(b) Distributed delay (gamma,p = 3)
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Figure 7: (a) The stability boundary of the distributed delay model is given by the black curve and of the model with fixed delay by the curve
depicted by crosses. The gray circle represents the delay and distribution independent region of stability given by Theorem 4. The eigenvalues
of the connection matrix are plotted as dots. Theorem 4 or Theorem 5 predicts that, forβ = 0.5, the equilibrium of the model is stable for both
distributed and fixed delays. This is confirmed by numerical simulations: all three neurons converge to the steady state solution in the model with
(b) distributed and (c) fixed delay .
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Figure 8: (a) The stability boundary of the distributed delay model is given by the black curve and of the fixed delay model by the curve depicted by
crosses. The gray circle represents the delay and distribution independent region of stability given by Theorem 4. The eigenvalues of the connection
matrix are plotted as dots. Theorem 5 predicts that, forβ = 1.2, the equilibrium of the distributed delay model is stable, but cannot predict anything
about the stability of the equilibrium point of the fixed delay model. This is confirmed by numerical simulations: (b) all three neurons in the
distributed delay model converge to the steady state solution; (c) all three neurons in the fixed delay model oscillate.
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Figure 9: (a) The stability boundary of the distributed delay model is given by the black curve and of the fixed delay model by the gray curve. The
eigenvalues of the connection matrix are plotted as dots. For β = 1.8, Theorem 4 cannot be applied to predict the stability of the equilibria of the
distributed and fixed delay models. This is confirmed by numerical simulations: all three neurons in the (b) distributed and (c) fixed delay models
oscillate.
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Figure 10: (a) For the distributed delay model, the boundaryof the stability whenτ = 20 is represented by the dark gray curve, and forτ = 3 by
the black curve. Whenτ = 20, the boundary of stability is larger than the one whenτ = 3, encompassing the three eigenvalues ofW , and hence
the stability of the equilibrium point of the distributed delay model is recovered by increasing the delay. For the fixed delay model, the boundary of
the stability whenτ = 20 is represented by the gray crosses, and forτ = 3 by the black crosses. Whenτ = 20, the boundary of stability is smaller
than the one whenτ = 3, thus the stability of the equilibrium point of the fixed delay model is never recovered by increasing the delay. This is
confirmed by numerical simulations: whenτ = 20, (b) all three neurons in the distributed delay model converge to the steady state solution; (c) all
three neurons in the fixed delay model oscillate.
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Figure 11: Stability region for the uniform distribution with ρ = 1 andρ = 2 whenτ = 1/2. The true region of stability lies between the solid
black black and the real-axis. The dotted and dash curves show the first and second approximations using the moments, respectively. The first and
second approximations using cumulants are given by the curves depicted as crosses and circles, respectively. Without delay, the stability region lies
to the left of the solid gray line.

The above two equations represents the true boundary of stability in the case of the uniform distribution, and it is
represented by the solid black line in Figure 11(a) forρ = 1, and in Figure 11(b) forρ = 2.

Substituting (25) into (37) and (38), we obtain the approximate stability boundary using the moments of the
uniform distribution. In Figure 11, the first and second approximations using the moments are represented by the dotted
and dash curves, respectively. Substituting (27) and (28) into (37) and (38), we obtain the approximate boundaries of
stability using cumulants. The first and second approximations using cumulants are seen in Figure 11 as the curves
depicted by crosses and circles, respectively.

3.2. Verifying the approximations for the gamma distribution

In this section we plot the true region of stability for the gamma distribution in order to compare it to the approxi-
mations using the moments and the cumulants. First, we notice that from (33) we have

C(ω)2 + S2(ω) =

(

1 +
ω2

p2

)−2p [

Re2

(

1 − iω

p

)p

+ Im2

(

1 − iω

p

)p]

=

(

1 +
ω2

p2

)−p

Substituting this and (33) into (37) and (38) we obtain

ak =
α

β
Re

(

1 − iω

p

)p

− ω

βτ
Im

(

1 − iω

p

)p

,

bk =
α

β
Im

(

1 − iω

p

)p

+
ω

βτ
Re

(

1 − iω

p

)p

.

The above two equations represents the true boundary of stability in the case of the gamma distribution, and it is
represented by the solid black line in Figure 12(a) forp = 2, and in Figure 12(b) forp = 3. Substituting (25) into
(37) and (38), we obtain the approximate stability boundaryusing moments. The approximations to the boundary
of stability using cumulants are obtained by substituting (27) and (28) into (37) and (38). In Figure 12, the first and
second approximations using the moments are represented bythe dotted and dash curves, respectively, and the first
and second approximations using cumulants are given by the curves depicted as crosses and circles, respectively.
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Figure 12: Stability region for the gamma distribution withp = 2 andp = 3 whenτ = 1/2. The true region of stability lies between the solid
black black and the real-axis. The dotted and dash curves show the first and second approximations using the moments, respectively. The first and
second approximations using cumulants are given by the curves depicted as crosses and circles, respectively. Without delay, the stability region lies
to the left of the solid gray line.

We note that for both the uniform and gamma cases, the approximations improve as more moments or cumulants
are added, and that the second approximation using cumulants lies very close to the true boundary of stability. We
again notice that the approximations using cumulants give better results than the ones using moments. In Figure 13 we
plot the true boundary of stability (for the uniform distribution with ρ = 1) for different values ofτ . In contrast with
Figure 6 which plots the stability region for the gamma distribution for different values ofτ , we can see that for the
uniform distribution, the true stability region and the approximations of the stability region decrease as the mean delay
τ increases. In Figure 13(a) we show a comparison between the true region of stability and the first approximations
using moments and how they behave asτ increases. In Figure 13(b) we compare the true region of stability and the
first approximations using cumulants for different values of τ . It is again confirmed that the approximations using
cumulants give better results. We note again that the first approximation using cumulants recovers the stability results
of the corresponding model with fixed delayτ . Hence in Figure 13(b) also shows a comparison between the stability
regions of the distributed and fixed delay models for different values ofτ .

4. Conclusions

In this paper, we investigated the linear stability of then dimensional neural network with identical neurons via the
analysis of the characteristic equation. When the connection matrix is symmetric, we showed that the conditions for
stability are just the generalization ton dimensions of the results in [6]. When the connection matrixis not necessarily
symmetric, its eigenvalueszk may be complex and we formulated conditions onzk for the linear stability of the
equilibrium point of (10). Our main results are outlined below.

We obtained severaldistribution independentresults. For the case of a symmetric connection matrix, we obtained
a conservative region of stability which is independent of the properties of the distribution save the mean delay, and
guarantees the linear stability of the equilibrium point of(10). For the case of a general connection matrix, we
determined the region of stability asτ → 0 for any distribution, and showed that in the limitτ → ∞, the region of
stability of the distributed delay model is always greater or equal to the region of stability of the fixed delay model.
We also obtained a conservative region of stability for any value of the mean delay and for any distribution, which
coincides with the delay independent region of stability for the fixed delay model.
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Figure 13: The stability region for the uniform distribution withρ = 1 for different values ofτ is compared to the first approximation using moments
in (a) and to the first approximation using cumulants in (b). Without delay, the stability region lies to the left of the black line zk = α/β. The true
boundary of stability is depicted as the thin gray line, the thick gray line, the thick black line, and the thin black line for τ = 0.05, τ = 0.2, τ = 0.5,
andτ = 100, respectively. The first approximations using moments or cumulants are shown as gray circles, gray dash line, black circles, and black
dotted line forτ = 0.05, τ = 0.2, τ = 0.5, andτ = 100, respectively.

Our distribution independent results compare favorably with others found in the literature. To see this, we compare
our mean independent stability result described by Theorem4 with an equivalent result obtained in [13] using Liapunov
functionals. In their paper, without assuming that the connection matrix is symmetric or that neurons are identical,
Gopalsamy and He find sufficient conditions that guarantee the existence and stability of a global attractor for systems
of the form (3) and (5) with a gamma distributed delay. For ourmodel, their condition translates into

||W ||∞ = max
1≤k≤n

n
∑

j=1

|wkj | <
α

β
, (40)

where||W ||∞ represents the maximum row sum matrix norm ofW . Whereas, our conservative mean delay and
distribution independent stability region given by Theorem 4 is

ρ(W ) = max
1≤k≤n

|zk| <
α

β
,

whereρ(W ) is called the spectral radius ofW . But by Theorem 5.6.9 from [23] we have that||W ||∞ ≤ ρ(W ) for
any matrixW . Therefore the stability result using Liapunov functionals from [13] always gives a stronger, but more
conservative result than our result in Theorem 4. We illustrate this through our example presented in Section 3. In this
case,||W ||∞ ≈ 2 andρ(W ) ≈ 1. Using (40) we cannot conclude anything about the stabilityof the equilibrium point
for values ofβ greater than0.5. Whereas our most conservative result guarantees stability for β < 1.

Our distribution independent results are all conservativeestimates of the true stability region, thus we gave a gen-
eral formulation for this boundary region. See equation (15) for the symmetric connection matrix case and Theorem 5
for the general connection matrix case. Using examples, we showed that the variation of boundary of the stability
region as the mean delay varies can be quite different for different distributions. There exists a particular value of
the mean delayτ = τc, such that if all eigenvalues of the connection matrix are inside the boundary of stability with
τ = τc, then the equilibrium point is stable, but unlike the fixed delay model, the value ofτc is not necessarily infinity
for other distributions.

Finally, for both symmetric and general connection matrix,we showed how the boundary of the region of stability
can be approximated using the first few moments or cumulants of the distribution. The first approximation using
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cumulants always recovers the results of the correspondingmodel with one fixed delay. The approximations give good
results when compared to the true region of stability of the equilibrium point of the uniform and gamma distributed
models. We found that the approximations using cumulants always give better results than the approximations using
moments, and that the approximations improve as more cumulants or moments are added.

Acknowledgements

SAC acknowledges support of NSERC.

References

[1] M. Adimy, F. Crauste, and S. Ruan. A mathematical study ofthe hematopoiesis process with applications to
chronic myelogenous leukemia.SIAM J. Appl. Math., 65(4):1328–1352, 2005.

[2] M. Adimy, F. Crauste, and S. Ruan. Stability and Hopf bifurcation in a mathematical model of pluripotent stem
cell dynamics.Nonlin. Anal.: Real World Appl., 6:651–670, 2005.

[3] J. Arino and P. van den Driessche. Time delays in epidemicmodels: Modeling and numerical considerations. In
Delay Diff. Eqs. and Appl., chapter 13, pages 539–558. Springer, Dordrecht, 2006.

[4] L. Berezansky and E. Braverman. Linearized oscillationthoery for a nonlinear equation with distributed delay.
Mathem. and Comp. Model., 48:287–304, 2008.

[5] S. Bernard, J. Bélair, and M.C. Mackey. Sufficient conditions for stability of linear differential equations with
distributed delay.DCDS, 1B:233–256, 2001.

[6] S.A. Campbell and R. Jessop. Approximating the stability region for a differential equation with a distributed
delay.Math. Model. Nat. Phenom., 4(2):1–27, 2009.

[7] Y. Chen. Global stability of neural networks with distributed delays.Neur. Net., 15:867–871, 2002.

[8] M. Cohen and S. Grossberg. Absolute stability of global pattern formation and parallel memory storage by
competitive neural networks.IEEE Trans. Systems Man Cybernet., 13(5):815–826, 1983.

[9] J.M. Cushing.Integrodifferential Equations and Delay Models in Population Dynamics, volume 20 ofLecture
Notes in Biomathematics. Springer-Verlag, Berlin; New York, 1977.

[10] L.E. El’sgol’ts and S.B. Norkin. Introduction to the Theory and Applications of Differential Equations with
Deviating Arguments, volume 105 ofMathematics in Science and Engineering Series. Academic Press, New
York, 1977.

[11] T. Faria and J.J. Oliveira. Local and global stability for Lotka-Volterra systems with distributed delays and
instantaneous negative feedbacks.J. Diff. Eqs., 244:1049–1079, 2008.

[12] K. Gopalsamy.Stability and oscillations in delay differential equations of population dynamics. Kluwer, Dor-
drecht, 1992.

[13] K. Gopalsamy and X.-Z. He. Stability in asymmetric Hopfield nets with transmission delays.Physica D, 76:344–
358, 1994.
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