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a b s t r a c t

The pedunculopontine nucleus has been suggested as a target for DBS. In this paper we propose a
single compartment computational model for a PPN Type I cell and compare its dynamic behavior with
experimental data. The model shows bursts after a period of hyperpolarization and spontaneous firing
at 8 Hz. Bifurcation analysis of the single PPN cell shows bistability of fast and slow spiking solutions for
a range of applied currents. A network model for STN, GPe and GPi produces basal ganglia output that
is used as input for the PPN cell. The conductances for projections from the STN and the GPi to the PPN
are determined from experimental data. The resulting behavior of the PPN cell is studied under normal
and Parkinsonian conditions of the basal ganglia network. The effect of high frequency stimulation of the
STN is considered as well as the effect of combined high frequency stimulation of the STN and the PPN at
various frequencies. The relay properties of the PPN cell demonstrate that the combined high frequency
stimulation of STN and low frequency (10 Hz, 25 Hz, 40 Hz) stimulation of PPN hardly improves the effect
of exclusive STN stimulation. Moreover, PPN–DBS at low stimulation amplitude has a better effect than at
higher stimulation amplitude. The effect of PPN output on the basal ganglia is investigated, in particular
the effect of STN–DBS and/or PPN–DBS on the pathological firing pattern of STN and GPe cells. PPN–DBS
eliminates the pathological firing pattern of STN and GPe cells, whereas STN–DBS and combined STN–DBS
and PPN–DBS eliminate the pathological firing pattern only from STN cells.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Parkinson’s disease (PD) is a progressive, neurodegenerative
disorder primarily associated with motor symptoms such as mus-
cle rigidity, tremor of the limbs at rest, slowness and impaired
scaling of voluntary movement (bradykinesia), loss of voluntary
movements (akinesia) and postural instability (Jankovic, 2008).
PD is characterized by the loss of dopaminergic cells in the sub-
stantia nigra pars compacta (SNc). In early stages of PD, treat-
ment with dopaminergic drugs can alleviate tremor, rigidity and
bradykinesia. When medication is no longer effective, deep brain
stimulation (DBS) can be applied to alleviate tremor and other
Parkinson related symptoms successfully, if stimulation amplitude
and frequency are properly chosen. In particular, high frequen-
cies (130–185 Hz) are required. Currently, DBS for PD is widely
applied in the subthalamic nucleus (STN), the globus pallidus pars
interna (GPi) and the ventral intermediate thalamic nucleus.

For many patients STN/GPi–DBS is successful for cardinal
symptoms, but has only limited effect for axial symptoms, such
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as gait disturbances and postural instability. Stimulation of these
targets mainly affects the thalamocortical output of the basal gan-
glia to cortical motor areas, whereas the axial muscles involved
in locomotion and posture are mainly controlled from the brain
stem (Nandi, Aziz, Liu, & Stein, 2002). These symptoms are partic-
ularly resistant to dopaminergic drugs. This suggests the involve-
ment of non-dopaminergic pathways in the pathophysiology of
these symptoms (Hamani, Stone, Laxton, & Lozano, 2007). Since
the pedunculopontine nucleus (PPN) in the brain stem connects
to nuclei in the basal ganglia and the spinal cord and its role in
locomotion and postural control (Hamani et al., 2007; Pahapill &
Lozano, 2000), this nucleus has been suggested as a target for DBS
to improve gait and postural instability (Plaha & Gill, 2005).

The PPN is a rostral brain stem structure consisting of cholin-
ergic and non-cholinergic neurons belonging to the ascending
reticular activating system and the mesencephalic locomotor
region (Mena-Segovia, Bolam, & Magill, 2004). The PPN can be
subdivided into two parts based on neuron density and neuro-
chemical characteristics: the pars compacta (PPNc) and the pars
dissipata (PPNd) (Olszewski & Baxter, 1954). The PPNc consists
mainly of large cholinergic neurons (Jenkinson et al., 2009). The
PPNd consists of small and medium sized neurons with appro-
ximately the same number of cholinergic and non-cholinergic
neurons (Hamani et al., 2007). Non-cholinergic PPN neurons
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are mostly glutamatergic, but also noradrenergic, dopaminer-
gic, GABAergic (interneurons) and peptidergic (Pahapill & Lozano,
2000).

The main input from the basal ganglia to the PPN are the
GABAergic projection from GPi and the substantia nigra pars
compacta (SNc), predominantly to the non-cholinergic neurons of
the PPNd (Pahapill & Lozano, 2000). The glutamatergic neurons
of the PPNd play an important role in the regulation of the basal
ganglia and spinal cord (Pahapill & Lozano, 2000). The cholinergic
PPNc is a principal component in a feedback loop from the
spinal cord and limbic system back into the basal ganglia and
thalamus (Pahapill & Lozano, 2000).

Three types (I, II and III) of the PPN neurons have been char-
acterized based on their intrinsic electrical membrane proper-
ties as obtained from intracellular recording (Kang & Kitai, 1990;
Takakusaki & Kitai, 1997; Takakusaki, Shiroyama, & Kitai, 1997;
Takakusaki, Shiroyama, Yamamoto, & Kitai, 1996). Type I neurons
are characterized by low threshold calciumspikes (LTS),which give
rise to a burst of fast action potentials after the offset of a hyper-
polarizing current. The neurons also fire bursts of spikes when a
depolarized stimulus is given during hyperpolarization. Type I neu-
rons are non-cholinergic (Kang & Kitai, 1990) and probably gluta-
matergic (Takakusaki et al., 1996). Type II neurons do not burst, but
instead they fire single action potentials with a large afterhyperpo-
larization in response to a depolarizing injected current. About 50%
of type II neurons are cholinergic. Type III has neither the charac-
teristics of both type I and type II.

In contrast to the high frequency stimulation of STN/GPi, stim-
ulation of PPN should be applied with low frequency (20–25 Hz) to
improve gait disturbances and postural instability (Mazzone et al.,
2005; Plaha & Gill, 2005). For these symptoms low frequency stim-
ulation of the PPN combinedwith standardDBS of the STN seems to
be clinicallymore effective (Galati, Scarnati, Mazzone, Stanzione, &
Stefani, 2008; Stefani et al., 2007). So the question arises why PPN
should be stimulated at low frequencies. Despite real therapeutic
successes, the fundamental physiological mechanisms underlying
the effect of DBS are still not understood.

Pathophysiology of PD is characterized by increased firing rates
of cells in the basal ganglia, a tendency toward bursting and
abnormal synchronization in the cells of STNandGP (Brown, 2003).
In particular, the synchronization at low frequencies (<30) are
thought to be related to motor impairment in PD (Brown, 2003).
A hypothesis is that high frequency stimulation of basal ganglia
nuclei masks the pathological synchronized firing patterns of the
basal ganglia with a regularized firing pattern. In the usual targets
for high frequency stimulation in the basal ganglia, the neurons
fire spontaneously at frequencies around 50 Hz and can easily
follow the high frequencies of the stimulation. By following the
high frequencies of the stimulation, the basal ganglia neurons are
driving in a tonic mode, that prevents them relapsing into the
pathological synchronized firing pattern. On the other hand, PPN
neurons fire spontaneously at lower frequencies around 10 Hz
and high frequency stimulation would probably silence rather
than drive them. Androulidakis, Khan et al. (2008); Androulidakis,
Mazzone et al. (2008) shows that when akinesia is successfully
alleviated in PD by L-Dopa, this is associated with the return of
a 10 Hz component in the correlation between the PPN and the
sensorimotor cortex. It seems that low frequency stimulation will
assist PPN to return to its natural 10 Hz oscillations, which in turn
facilitates locomotion and postural control.

The aim of this paper is to investigate, with a computational
model, how the PPN responds to physiological and pathological
inputs of the basal ganglia. Moreover, we will investigate the
effects of DBS in STN and PPN on the behavior of the network. To
achieve this aim we first develop a computational conductance-
based model for PPN, as such model is not yet available. Wemodel
PPN type I neurons, because projections from the basal ganglia
are primarily to the glutamatergic PPN neurons (type I) and these
neurons provide the prominent descending PPN output to the
spinal cord. Second, we generate basal ganglia input to the PPN
type I model using the basal ganglia model as proposed by Rubin
and Terman (2004). The model of Rubin and Terman (2004) has
well defined physiological and pathological (Parkinsonian) states.
To investigate the effect of STN–DBS and/or PPN–DBS we look
at relay capability of the PPN cell to relay excitatory cortical
input. Finally we make projections from the PPN back to the basal
ganglia to investigate the effect of STN–DBS and/or PPN–DBS on the
pathological firing pattern of STN and globus pallidus pars externa
(GPe) cells.

2. Methods

2.1. PPN model

We have modeled the PPN type I neuron as a single compart-
ment model. Based on the work of Takakusaki and Kitai (1997) we
include in ourmodel a persistent sodium current (INa,p) and T-type
calcium current (IT). The persistent sodium current is responsi-
ble for subthreshold membrane oscillations in PPN type I neurons,
which underlies spontaneous repetitive firing. T-type calcium cur-
rent is responsible for bursts of low threshold spikes. To produce
action potentials in response to depolarizing current the model
includes a sodium current (INa) and potassium current (IK). The
resting potential is defined by sodium (INa,L) and potassium (IK,L)
leak currents. In addition the model contains a hyperpolarization-
activated current (Ihyp) to recover faster from hyperpolarization
and facilitate the burst. The time-derivative of the membrane
potential (Vm,PPN) of the PPN type I neuron is given by:

C
dVm,PPN

dt
= −INa,L − IK,L − INa − IK − IT − Ihyp − INa,p + Iapp, (1)

where C is the membrane capacitance, Iapp is the applied current.
The ionic currents are conductance-based and described according
to the Hodgkin–Huxley formalism, except for the T-type calcium
current which includes the Goldman–Hodgkin–Katz ion current
equation (Appendix). The exact voltage dependence and kinetics of
PPN ionic currents are based on similar neurons, namely the thala-
mocortical relay neuron (Destexhe, Neubig, Ulrich, & Huguenard,
1998; Huguenard & McCormick, 1992; McCormick & Huguenard,
1992) and the pre-Bötzinger neuron (Rybak, Ptak, Shevtsova, &Mc-
Crimmon, 2003; Rybak, Shevtsova, St-John, Paton, & Pierrefiche,
2003), as there are no reports in literature of such data for the PPN.

2.2. The network model

In order to investigate the effect of the basal ganglia input to
the PPN cell, we have generated such input using the basal ganglia
model as proposed by Rubin and Terman (2004). Theymodeled the
indirect pathway of the basal ganglia that includes a population of
STN, GPe, GPi and thalamic relay cells. In theirmodel each STN, GPe
and GPi cell is represented as a single compartment conductance-
based model. Our network consist of 8 STN cells, 8 GPe cells, 8 GPi
cells and 1 PPN cell and excludes the thalamic relay cells.

For the synaptic connections between the STN and GPe cells
we use the structured sparsely connected architecture (Fig. 1),
as in Terman, Rubin, Yew, and Wilson (2002). This network
can reproduce both correlated rhythmic activity (clustered) and
uncorrelated spiking. Each STN cell receives inhibitory input from
two GPe cells. Each GPe cell receives excitatory input from one STN
cell and inhibitory input from two immediate GPe neighbors. Each
GPe cell also receives a constant current input representing striatal
input. Each GPi cell receives excitatory input from one STN cell and
inhibitory input from one GPe cell (Rubin & Terman, 2004). Finally,
four STN cells and four GPi cells project excitatory (glutamatergic)
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Fig. 1. The network architecture. For the STN–GPe connection the structured
sparsely architecture from Terman et al. (2002) is adopted. GPe cell i inhibits its
two immediate GPe neighbors (i + 1 and i − 1) as well as two STN cells (i − 2 and
i + 2) by skipping the three STN cells located nearest to it. Here i runs from 1 to 8.
In addition, GPe cells uniformly receive constant current inhibition from striatum.
Each STN cell sends excitation to its nearest GPe cell (same index). Each GPi cell
receives inhibition from the nearest GPe cell and excitation from the nearest STN
cell. The PPN cell receives inhibition from GPi cell 1, 2, 5 and 6 and excitation from
STN cell 1, 2, 5 and 6. In our PD simulations the STN cells 1, 2, 5 and 6 are active as a
cluster. In our network of Section 2.6 the PPN cell sends also excitation to STN cell
1, 2, 3 and 4. The network architecture has a periodic structure. Lines ending with
arrows and open circles indicate excitatory glutamatergic and inhibitory GABAergic
synaptic connections, respectively.

respectively inhibitory (GABAergic) to the PPN cell, see Fig. 1. As
in Rubin and Terman (2004) the synaptic current to the PPN is
modeled as

Iα→PPN = gα→PPN(Vm,PPN − Eα→PPN)
−

j

sjα, (2)
where Iα→PPN is the synaptic current from structure α to the PPN
cell, α is STN or GPi, gα→PPN is the maximal synaptic conductance
and Eα→PPN the reversal potential. For STN we take gSTN→PPN
= 0.15 mS cm−2 and ESTN→PPN = 0 mV, and for GPi we take
gGPi→PPN = 0.1mS cm−2 and EGPi→PPN = −95mV. The summation
is taken over the STN/GPi cells that project to the PPN cell. Each
synaptic variable sjα satisfies a first-order differential equation of
the form:

dsα
dt

= Aα(1 − sα)H∞(Vm,α − θα) − Bαsα, (3)

where H∞ is a smooth approximation of the Heaviside step
function. The kinetic parameters for STN andGPi are [Aα, Bα, θα] =

(1, 5, 30), (2, 0.1, 20), respectively.

2.3. Normal and parkinsonian states of the basal ganglia

Depending on the architecture and strengths of synaptic
connections between the STN and GPe, within the GPe, and the
striatal input to the STN–GPe network the model shows correlated
rhythmic activity, uncorrelated spiking and propagating waves. It
has been found in experiments that during PD there is an increased
synchrony between nuclei in the basal ganglia while neurons fire
in a bursty mode. As demonstrated in Terman et al. (2002), STN
and GPe cells connected through a structured sparse architecture
can fire irregularly with weak correlation between the cells as well
as in clusters with high correlation between the cells. By using
a structured sparse architecture we mimic a basal ganglia input
to the PPN cell that represents a normal (uncorrelated spiking)
or PD (correlated rhythmic activity) situation, see Fig. 2 (top
and middle). Following the approach of Pirini, Rocchi, Sensi, and
Chiari (2009) and Rubin and Terman (2004), only two parameters
(A) STN. (B) GPi.

Fig. 2. Raster plots of the spike times for all eight STN cells (A) and all eight GPi cells (B) in the normal (top), PD (middle) and PD with STN–DBS (bottom) state. In the normal
state the firing patterns of both types of cells are irregular and uncorrelated. In the PD state STN cells fire in a bursty and clustered pattern around 3 Hz and the cells within
each cluster are almost synchronized (small lag). The GPi cells fire in a similar manner, but are less bursty. In the PD state with STN–DBS the STN cells are locked to the DBS
frequency and GPi cells are partially locked by half the DBS frequency.
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are used to switch between the normal and the PD state: the
indirect striatal current to GPe cells (Istriatum→GPe) and the intra-GPe
inhibitory synaptic conductance (gGPe→GPe). In the normal state we
use Istriatum→GPe = 1.1 µA cm−2 and gGPe→GPe = 1 mS cm−2.
In the PD state Istriatum→GPe = −3.5 µA cm−2 and gGPe→GPe =

0.05mS cm−2. The increase in inhibitory striatal input to theGPe in
PD is motivated by the fact that the activation of the D2-receptors
in the striatum in PD is decreased, due to dopamine depletion
in PD. This decreased activation leads to less inhibition of the
striatal input to the GPe. Rubin and Terman (2004) motivated the
decrease of the intra-GPe inhibitory synaptic conductance in PD
on experimental results in rats (Ogura & Kita, 2000; Stanford &
Cooper, 1999).

2.4. Deep brain stimulation

In our networkmodelwe apply DBS to STN and PPN. As in Rubin
and Terman (2004) the effect of DBS on its target cells is modeled
as a train of positive current pulses, injected directly into the target
cells:
IDBS = iDH∞(sin(2π fDBSt))(1 − H∞(sin(2π fDBS(t + δDBS)))), (4)
where H∞ is a smooth approximation of the Heaviside step
function, iD is the amplitude of the injected current, fDBS is the
frequency of the DBS pulse train and δDBS is the duration of each
impulse.

In the case of STN–DBS we assume that each STN cell receives
the same DBS signal. STN–DBS is only applied in the PD state, with
iD = 400 µA cm−2, fDBS = 130 Hz and δDBS = 0.15 ms. Pirini et al.
(2009) have demonstrated that these values for STN–DBS ensure a
1:1 ratio between DBS pulses and the action potentials of the STN
cells (Fig. 2(A) (bottom)).

Our PPN cell receives DBS in the PD state of the network as
well in the PD with STN–DBS state, as the combined stimulation
seems to be clinically more effective (Galati et al., 2008; Stefani
et al., 2007). The settings for PPN–DBS are δDBS = 0.15 ms, fDBS =

10–25–40Hz and iD = 10–100µA cm−2.We use these frequencies
as it was claimed that 25 Hz was optimal (Mazzone et al., 2005;
Plaha & Gill, 2005).

2.5. Cortical input

In addition to input from the basal ganglia the PPN type I
cell also receives excitatory cortical input (Jenkinson et al., 2009).
To investigate the functionality of the PPN cell under normal,
Parkinsonian, Parkinsonian with STN–DBS and/or PPN–DBS condi-
tions, we test the relay capability of the PPN cell with excitatory,
conductance-based, synaptic current ICort.:
ICort. = gCort.s(Vm,PPN − EGlut.), (5)
where s is the synaptic variable of the presynaptic cortex cell. The
maximal conductance (gCort.) and the reversal potential (EGlut.) are
set to 0.15 mS cm−2 and 0 mV, respectively. At each spike of the
cortex cell the synaptic variable is reset to 1, after which it decays
exponentially with time constant BCort.:

ds
dt

= −BCort.s. (6)

BCort. is set to 1 ms−1. The spikes for the cortical input are
selected from a Poisson distribution, with an enforced pause of
10 ms between spikes to avoid excessive firing. We use cortical
Poisson inputs with mean rates of 12, 25 and 45 Hz.

2.6. PPN output to basal ganglia

The two key functions of the PPN is to relay and to regulate the
basal ganglia activity (Mena-Segovia et al., 2004). In particular, the
function of the PPN type I cell can be seen as regulator of the basal
ganglia (Pahapill & Lozano, 2000). These functions imply that the
PPN and the basal ganglia are highly interconnected. To investigate
the regulation function of the PPN type I under normal, Parkinso-
nian, Parkinsonian with STN–DBS and/or PPN–DBS conditions, we
have also extended our model with PPN connections back to the
basal ganglia. Themajor projections from the PPN to the basal gan-
glia are the projections to the STN and SNc (Jenkinson et al., 2009).
The PPN projections to STN are distributed uniformly throughout
the STN (Jenkinson et al., 2009) and are cholinergic, glutamater-
gic and GABAergic (Mena-Segovia et al., 2004). We choose for a
total of four glutamatergic projections by our PPN type I cell; two
to adjacent STN cells, that connect to PPN, forming reciprocal con-
nections, and two to adjacent STN cells, which are not connected
to PPN (Fig. 1).

The synaptic current from PPN to STN cell j (IPPN→STN,j) is
modeled as

IPPN→STN,j = gPPN→STN(Vm,STN,j − EPPN→STN)sPPN, (7)

where sPPN is the synaptic variable of the PPN cell and Vm,STN,j
the membrane potential of STN cell j. The maximal synaptic
conductance(gPPN→STN) and the reversal potential EPPN→STN are set
to 0.15 mS cm−2 and 0 mV, respectively. The dynamics of the
synaptic variable of the PPN cell is modeled with Eqs. (3) and use
the same kinetic parameters as we used for the STN cell, namely
[Aα, Bα, θα] = (1, 5, 30).

We use the same parameters setting that we employed for the
network without feedback to switch between a normal and PD
behavior.

2.7. Simulation

The PPN type I model and the network model are implemented
in MATLAB (Mathworks, Inc., Natick, MA, USA). To simulate
the firing properties of the isolated PPN cell we use a stiff
integrator (ODE15s in MATLAB) with maximum step size 0.1 ms
and relative tolerance 10−6. We exclude effects of initial transients
by ignoring the first 400ms of PPN cell simulations. The bifurcation
analysis of the PPN cell is done within MATCONT, a bifurcation
analysis tool (Dhooge, Govaerts, & Kuznetsov, 2003). For the
network model without projections from PPN to STN the same
numerical method is used except for the relative tolerance, which
is now set to 10−4 for the integration of the STN-GPe-GPi network.
For the simulation of the STN-GPe-GPi network we ignore the first
6 s before we use it as input to the PPN cell. For the simulations
with PPN projections to the STN we used the fourth-order Adams
Predictor–Corrector method with fixed step size of 0.01 ms
to integrate the STN-GPe-GPi-PPN network. To speed up the
calculation we have made a minor modification to the PPN model.
The voltage depending time constants for the (in)activations gating
variables of the persistent sodium channels are bounded from
below by 0.01ms. Thismodification does not effect the response of
the PPN cell to depolarizing and hyperpolarizing stimuli. For these
simulations we ignore the first 2 s.

Spectral analysis is done with MATLAB using Neurospec
(http://www.neurospec.org) and is based on Halliday et al. (1995).
Autospectra of the PPN spike times are calculated by dividing
10 s simulation data in 6 equal-length segments, providing a
resolution of 0.6 Hz, and by averaging their Fourier transform.
For additional smoothing of the autospectra we use a Hanning
filter. The spike times are obtained from the voltage trace by a
thresholding method (threshold is −20 mV).

To quantify the reliability and accuracy with which the PPN
cell responds to the excitatory cortical inputs (Eq. (5)) we use the
relay index (RI): The ratio of successfully relayed input and the
total number of excitatory inputs. Specifically, for each excitatory
cortical input, we record a successfully relayed input if at least

http://www.neurospec.org
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Fig. 3. Properties of the PPNmodel type I: first second spontaneous firing at approximately 8Hz; after the first second response to a depolarizing stimulus; last 1.5 s response
to a hyperpolarizing stimulus and depolarizing stimulus during hyperpolarization. Below the voltage trace the applied stimulus is shown (I [µA/cm2]).
one PPN spike occurs within a window of 5 ms after the input
arrives. Thus a RI of zero means no relay at all of the Poisson input,
whereas a RI of one means a perfect relay. Each RI is averaged over
10 trials of 10 s simulation. The cortical Poisson input in each trial
is different, but has the same mean rate.

3. Results

3.1. Firing properties of the isolated PPN neuron

The cell fires spontaneously at approximately 8 Hz (Fig. 3). The
cell responds with high frequency spiking when a small depolariz-
ing stimulus is given (Fig. 3). When the PPN cell is hyperpolarized,
a burst appears at the end of the stimulus period or when a depo-
larizing stimulus is given during hyperpolarization (Fig. 3).

3.2. Bifurcation analysis of the isolated PPN neuron

Fig. 4 shows the bifurcation diagram of the PPN model with
the applied current (Iapp) as parameter. As the applied current
increases the stable equilibrium (rest state) becomes unstable
via a subcritical Hopf bifurcation (H1), with unstable limit cycles
bifurcating. The equilibrium is unstable until the second Hopf
bifurcation (H2). This Hopf bifurcation is supercritical, which
means that stable limit cycles emerge. A stable limit cycle
corresponds to continuous spiking.

Continuation of the limit cycle starting from H2 shows a
decrease in frequency as the applied current decreases. The limit
cycle becomes unstable via a limit point bifurcation of limit cycles
(Fig. 5, LPC1). Continuing the limit cycle further it regains stability
through a period doubling bifurcation (Fig. 5). The period then is
nearly constant around 100 ms. This low frequency spiking limit
cycle corresponds to the spontaneous firing of the PPN.

Both tonic spiking regimes have a type II phase response curve
(Fig. 6), meaning that a perturbation of the limit cycle can produce
a phase advance or phase delay depending on the timing. The phase
shift of both the low and high frequency spiking solution becomes
larger upon increasing, respectively decreasing, Iapp towards the
bifurcation points where they lose stability.

3.3. PPN with basal ganglia input

3.3.1. Normal
Fig. 7 shows the mean frequency of the PPN cell with normal

input for different choices for the strength of the synaptic
conductances from STN and GPi to PPN. The mean frequency is
Fig. 4. Bifurcation analysis of the PPN model with Iapp as free parameter. Solid
curve shows the equilibrium value of the membrane potential (Vm,PPN). Labels S
and U denote stable and unstable branches respectively. H1 is a subcritical Hopf
bifurcation, H2 is a supercritical Hopf bifurcation and LP is a limit point bifurcation.
Dashed curve shows the min/max value of the stable limit cycle.

Fig. 5. Partial information about dynamical behavior: period of the spiking
solutions as function of Iapp . LPC is a limit point bifurcation of limit cycles and PD is
a period doubling bifurcation.
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A B

Fig. 6. PRCs of limit cycles in the PPN model, at different parameter values
Iapp [µA cm−2]: (A) high frequency spiking; (B) low frequency spiking.
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Fig. 7. Contour plot of the mean frequency of the PPN in the normal state for
different choices for gGPi→PPN and gSTN→PPN . See text for details about calculation of
the mean frequency. The marker ⋆ indicates the values for the chosen parameters.

calculated from the reciprocal of the mean interspike interval over
a period of 10 s. This figure was almost equal to the average
number of spikes per second indicating that the response was not
very bursty. We simulate a STN lesion in our model by setting
the STN conductance to zero and adjust the GPi conductance
to get a firing rate according to experiments of Breit, Bouali-
Benazzouz, Benabid, and Benazzouz (2001) (2.9–6.6 Hz). Having
the GPi conductancewe then adjust the STN conductance to obtain
a firing rate of the PPN cell under normal conditions. Experiments
in anesthetized rat (Scarnati, Proia, Loreto, & Pacitti, 1987), and
in monkeys (Matsumura, Watanabe, & Ohye, 1997) show that
the majority of the PPN cells with a narrow spike width have a
irregular firing pattern and a discharge rate of 10–20 Hz during
spontaneous activity. It is proposed that the narrow spike width
PPN cells are non-cholinergic and probably correspond to type I
cells (Takakusaki & Kitai, 1997). This procedure yields a 10 Hz
irregular firing rate for the normal input when we set gGPi→PPN =

0.1mS cm−2 and gSTN→PPN = 0.15mS cm−2, see Fig. 7.Wewill not
change these settings between the normal and PD states.

Fig. 8(A) (top) shows the total synaptic input from STN and
GPi to the PPN cell during the normal state. In the normal state,
the STN and GPi cells fire irregularly and uncorrelated (Fig. 2)
leading to an irregular total synaptic input of the four STN and GPi
cells projecting to PPN. The PPN cell fires with a mean frequency
of 10.3 Hz which is slightly faster than its spontaneous behavior
(Fig. 8(A) (middle)). In the autospectrum there is no clear peak
above the confidence level (Fig. 8(A) (bottom)). We conclude that
the PPN cell fires in an irregular manner in response to irregular
(Normal) input.

3.3.2. PD
The STN cells fire in a bursty and clustered pattern in the PD

state (Fig. 2(A)). One cluster projects to the PPN cell resulting in
excitation from STN in this bursting pattern around 3 Hz. The
GPi cells behave similarly but fire less bursty (Fig. 2(B)) resulting
in flatter level of inhibition, see Fig. 8(B) (top). The inhibitory
input of GPi is relatively high compared to the excitatory input
of STN, preventing the PPN from firing. At the onset of the STN
clustered input the excitation to PPN becomes sufficiently high
to overcome the inhibition of GPi, allowing the PPN to fire. In
response to this increased excitation of the STN the inhibitory
input of GPi increases, preventing the PPN cell to fire with the
burst frequency of the STN input. The PPN cell responds with
subthreshold oscillations during the STN clustered input. This
regular input of STN and GPi resulting in a regular firing pattern
of the PPN cell with a mean frequency of 3.19 Hz (Fig. 8(B)
(middle)). This regularity is also reflected in the autospectrum of
the PPN output. Clear peaks occur at the mean frequency and its
superharmonics 6.4, 9.6, 12.8 Hz, etc. (Fig. 8(B) (bottom)).

3.3.3. PD with STN–DBS
Applying STN–DBS in the PD state, the bursting element in the

STN input disappears and the STN input becomes tonic (130 Hz,
DBS frequency) (Fig. 8(C) (top)). Also the GPi inhibition becomes
more tonic. As a result the level of excitation to PPN is higher and
the mean firing rate increases to 36.4 Hz (Fig. 8(C) (middle)). The
autospectrum has a clear peak at the STN–DBS frequency and its
subharmonics 86.7 and 43.3 Hz, but no clear peak at the PPNmean
frequency (Fig. 8(C) (bottom)). Thus, STN–DBS makes the regular
firing pattern of the PPN cell in PD more irregular, and introduces
components of its frequency in the PPN output.

3.4. Effect of PPN–DBS

Fig. 9 shows the response of the PPN cell to PPN–DBS with
amplitude of 100 µA cm−2 and frequencies of 10, 25 and 40 Hz.
In the PD state and without STN stimulation, the PPN cell is
locked to its own stimulation frequency. This can be seen from
the peaks in the autospectra at the PPN–DBS frequency and its
subharmonics (Fig. 9(A)). At the higher frequencies (25 and 40 Hz)
this locking is perfect, meaning the PPN cell fires with its own
stimulation frequency. When STN–DBS is applied in the PD state
and the PPN cell is stimulated, the locking of the PPN cell to its
own stimulation frequency is less prominent, as seen in Fig. 9(B).
STN–DBS disturbs the total synchronization between the PPN cell
and its own stimulation. This effect of STN–DBS is less if the
PPN–DBS frequency increases. This can be seen from the peaks at
the STN–DBS frequency and its subharmonics in the autospectra of
10 and 25 Hz PPN stimulation, whereas the autospectrum of 40 Hz
PPN stimulation has no clear peaks at the STN–DBS frequency.

Fig. 10 shows again the effect of PPN–DBS, but now with a
lower stimulation amplitude of 10µA cm−2. In both network states
(PD and PD with STN–DBS) and for all stimulation frequencies,
the PPN–DBS is too weak to lock the PPN firing to the stimulus
frequency. The regular 3 Hz firing of the PPN cell in the PD
state disappears as the PPN–DBS frequency increases and becomes
more irregular (peaks at 3 Hz and superharmonics disappear). The
effect of STN–DBS is compared to the weak PPN–DBS strong and
dominates the firing behavior of the PPN cell.
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Fig. 8. Response of the PPN cell to inputs from the STN and GPi under normal (A), PD (B) and PD with STN–DBS conditions. Top: total synaptic input from GPi and STN
received by the PPN cell under the different conditions. The synaptic input of GPi is defined as the normalized sum of the synaptic variables over the four GPi cells projecting
to the PPN cell. Same definition holds for the STN input.Middle: voltage trace of the PPN cell. Bottom: autospectrum of the PPN spike times; see Section 2.7 for computational
details.
Table 1
The Relay index (RI) of the PPN cell for the different situation in response to a cortical Poisson input to the PPN cell withmean frequency of 12, 25 and 45 Hz and conductance
of 0.15 mS cm−2 . For STN–DBS the DBS settings are iD,STN = 400 µA cm−2 , fDBS,STN = 130 Hz and δDBS,STN = 0.15 ms and for PPN–DBS the pulse width is δDBS,PPN = 0.15 ms.
State Mean frequency of the cortical Poisson input

12 Hz 25 Hz 45 Hz

Normal 0.75 0.71 0.65
PD 0.75 0.71 0.64
PD with STN–DBS 0.70 0.74 0.76

iD,PPN = 100 iD,PPN = 10 iD,PPN = 100 iD,PPN = 10 iD,PPN = 100 iD,PPN = 10

PD with PPN–DBS of 10 Hz 0.66 0.75 0.65 0.71 0.60 0.65
PD with PPN–DBS of 25 Hz 0.57 0.75 0.59 0.72 0.57 0.66
PD with PPN–DBS of 40 Hz 0.54 0.77 0.54 0.73 0.55 0.67

PD with STN and PPN–DBS of 10 Hz 0.71 0.70 0.72 0.74 0.74 0.77
PD with STN and PPN–DBS of 25 Hz 0.67 0.69 0.72 0.73 0.71 0.77
PD with STN and PPN–DBS of 40 Hz 0.66 0.69 0.67 0.73 0.68 0.78
3.5. Relay function of the PPN cell

Table 1 shows the relay index (RI) of the PPN cell for the
different situations and for three mean rates of the Poisson trains.
The RI in the normal state for the three different forms of input
is almost the same as in the PD state: except for the Poisson
trains with mean rate 45 Hz the normal state is slightly better
than the PD state. Compared to the normal and the PD state,
STN–DBS improves the relay function of the PPN cell for the Poisson
trains with mean rates 25 and 45 Hz. The relay functionality
during high frequency STN–DBS simulation is almost never higher
with additional PPN–DBS stimulation. When PPN–DBS is applied,
a lower amplitude (10 µA cm−2) and higher frequency (40 Hz)
shows better results than a higher amplitude (100 µA cm−2) and
lower frequencies (10 and 25 Hz).

3.6. The closed loop network

3.6.1. Normal, PD and PD with STN–DBS
In Section 3.3 we considered the output of the PPN receiving

input of the basal ganglia in three different states. In this section
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(A) PD. (B) PD with STN–DBS.

Fig. 9. Autospectrum of the PPN spike times with PPN–DBS applied. The PPN–DBS settings are δDBS = 0.15 ms, fDBS = 10–25–40 Hz and iD = 100 µA cm−2 . f. mean is the
mean firing frequency of the PPN cell.
we consider again the three different states of the basal ganglia,
but nowwe include feedback of the PPN type I cell to the STN cells
as described in Section 2.6, to form the closed loop network.

Similarly as for the network without connections from the PPN
to STN we examine how the mean frequency of the PPN cell with
normal input changes as function of the synaptic conductances
gGPi→PPN and gSTN→PPN, see Fig. 11. The result closely resembles the
result of the network without feedback of PPN to STN (Fig. 7). We
conclude that the feedback of PPN to STN has a minor effect on
the mean frequency of the PPN under normal input conditions.
For the other simulations we use gGPi→PPN = 0.1 mS cm−2 and
gSTN→PPN = 0.15 mS cm−2.

Fig. 12 (top) shows the total synaptic input from STN and GPi
to the PPN cell in the three different basal ganglia states. The
total synaptic input in all three states is very similar to the case
when there is no feedback of PPN to STN. We observe that the
firing pattern of the basal ganglia cells in the normal and PD state
is not altered by our adding projections from the PPN to STN.
Moreover, the PPN cell responds to these synaptic inputs in a
similar manner as without the PPN to STN connections (Fig. 12
(middle and bottom)). The PPN cell fires irregular in the normal
state with a mean frequency of 8.7 Hz. In the PD state, the firing
pattern is regular and the mean frequency is decreased to 3.39 Hz.
STN–DBS makes the regular firing pattern of the PPN cell in PD
more irregular, and introduces components of its frequency in the
PPN output.
3.6.2. Effects of PPN and STN–DBS in the closed loop network
Fig. 13 shows the effect of PPN–DBS stimulation (no STN–DBS)

with low and high stimulation amplitude on STN and PPN activity.
Initially, without external stimulation (until 1 s), the STN cells
fire in a bursty and clustered pattern, which characterize the PD
state. The PPN cell fires regularly around 3 Hz. When PPN–DBS
is switched on, indicated by the arrow at 1 s, low amplitude
(10µA cm−2) stimulation changes the firing pattern of the PPN cell
from regular to irregularwhile doubling itsmean firing rate to 6Hz.
This lowamplitude stimulation of the PPN influences the activity of
the STN clusters only episodically. In contrast, at high stimulation
amplitude, the PPN activity is immediately overwritten by the
stimulation, i.e. firing becomes locked to the stimulus. In turn some
of the STN cells start firing regularly at a rate around 20 Hz. For low
stimulus frequencies some clustering and bursting remains.

Next STN–DBS is turned on as well. We observe that the PPN
activity becomes similar as described in Section 3.4 (Figs. 9(B) and
10(B)) and STN cells are locked to the STN–DBS.

STN–DBS does not interrupt the GPe bursty clustered firing
patterns, also not when combined with PPN–DBS (Fig. 14(A)).
PPN–DBS alone does disrupt this pattern and eliminates this
activity from the entire network (Fig. 14(B)). The GPe cells start
firing regularly at a rate around 20Hz, like the STN cells do (Fig. 13).
Switching on STN–DBS reintroduces the clusters in GPe activity
(not shown). Finally we stress that in all simulations we see that



M.A.J. Lourens et al. / Neural Networks 24 (2011) 617–630 625
(A) PD. (B) PD with STN–DBS.

Fig. 10. Autospectrum of the PPN spike times with PPN–DBS applied. The PPN–DBS settings are δDBS = 0.15 ms, fDBS = 10–25–40 Hz and iD = 10 µA cm−2 . f. mean is the
mean firing frequency of the PPN cell.
effects of PPN–DBS in the GPe and STN cells appears after several
seconds.

4. Discussion

This study investigates the response of a single PPN type I cell
to various inputs of the basal ganglia representing physiological,
pathological and therapeutic cases. In particular, we look at the
PPN spike output, that modulate the basal ganglia, and the relay
of excitatory inputs as these are the key functions of the PPN cells
(Mena-Segovia et al., 2004).

First, we have developed a computational model for a PPN
type I cell and tuned it such that it reproduced known firing
patterns (Takakusaki & Kitai, 1997): bursts after a period of
hyperpolarization and spontaneous firing at 8 Hz (Fig. 3). The
model shows that switching between low and high frequency
spiking is possible. Bifurcation analysis confirms this and reveals
that there is a bistability between high and low frequency tonic
spiking (Fig. 5). For increasing current our PPN model shows
an increasing frequency with a maximum of 450 Hz at Iapp =

50 µA cm−2, where the periodic orbit disappears through a Hopf
bifurcation (Fig. 5). For higher currents the PPN cell is silent due to
a depolarization blockade. Recently, Simon et al. (2010) did whole
patch clamp recordings on rat brain stem slices and found that PPN
cells have a gamma frequency (40–60 Hz) plateau when they are
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Fig. 11. Contour plot of the mean frequency of the PPN for different choices for
gGPi→PPN and gSTN→PPN . The PPN receives normal input and sends excitatory input
to the STN cells. The synaptic conductance from PPN to STN is constant and set to
0.15 mS cm−2 .

depolarized with increasing current steps. This behavior was not
significantly different among the three PPN cell types, except that
PPN type I cells fire faster than PPN type II or PPN type III cells
during the beginning of the current injection. Simon et al. (2010)
did not show hyperpolarization steps. In addition they did not
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Fig. 12. Response of the PPN cell to inputs from the STN and GPi under normal (A), PD (B) and PD with STN–DBS conditions. The PPN cell sends also projections back to
the STN; see Section 2.6. Top: total synaptic input from GPi and STN received by the PPN cell under the different conditions. The synaptic input of GPi is defined as the
normalized sum of the synaptic variables over the four GPi cells projecting to the PPN cell. Same definition holds for the STN input. Middle: voltage trace of the PPN cell.
Bottom: autospectrum of the PPN spike times; see Section 2.7 for computational details.
observe an abrupt switch between high and low frequency spiking
as the applied current increases. In the low frequency range where
we operate this discrepancy can be neglected.

The PPN is an output structure to many brain structures and
receives modulatory input from the basal ganglia. We generated
such basal ganglia input for three scenarios (Normal, PD and PD
with STN–DBS) using an existing computational model of the STN-
GPe-GPi subnetwork (Rubin & Terman, 2004). The response of the
PPN model depends on the balance between the excitatory input
from STN and inhibitory input from GPi, see Figs. 7 and 11. In
general, the firing pattern of the PPN cell is more irregular for
normal input, while the rate decreases and the pattern regularizes
under PD conditions.

Experimental results are not conclusive about the balance
between excitatory and inhibitory inputs to PPN and our
simulations depend critically on this balance. On the one hand,
Nandi, Aziz, Giladi, Winter, and Stein (2002) have shown that
injection of a GABA antagonist into the PPN of MPTP treated
primatesmarkedly attenuates akinesia. This result suggests that in
PD the neuronal activity of the PPN is suppressed by an excess of
inhibition from GPi and SNr leading to the hypoactivity symptoms.
On the other hand, Breit et al. (2001) shows that in anesthetized
dopamine depleted rats PPN cells fire more irregularly and in
burstswith an increased firing rate as compared to controls (18–20
vs. 10–11 Hz). After lesion of the overactive STN in PD, the activity
of the PPN is diminished, suggesting that the PPN is under major
control of the STN.
In our model STN–DBS can modulate the activity of the PPN
cell via a direct projection and via an indirect pathway via GPi.
Florio et al. (2007) found that in normal and dopamine depleted
rats approximately 40% of the recorded PPN neurons respond to
STN–DBS, resulting from an unbalance between the excitatory
and inhibitory pathways. Our simulations with and without PPN
feedback to the STN show an increased mean firing rate of the
PPN if STN–DBS is applied. This suggests that the PPN cell receives
more direct than indirect STN–DBS input. As a result the PPN
cell locks to the STN–DBS input, but does not fire on every cycle.
On the contrary, Florio et al. (2007) found that approximately
85% of the responding PPN neurons responded to STN–DBS with
inhibition, suggesting that the STN–DBS influence via the indirect
inhibitory inputs are stronger. Moreover, they found that the
balance between excitatory and inhibitory effects of the STN–DBS
is independent from the dopaminergic nigral neurons. The balance
is disturbed in rats with entopeduncular (rodents equivalent of
GPi) lesion. In that case 75% of the PPN neurons become responsive
to STN–DBS and are mostly (85%) excited by the STN–DBS.

A first report on PPN stimulation in human has shown that
low frequency (20–25 Hz) stimulation of the pedunculopontine
nucleus have acute improvement in motor function, such as gait
and postural stability (Plaha & Gill, 2005). For frequencies higher
than 30 Hz, the improvement in motor scores was variable, while
very high frequencies (>180) worsenedmotor scores. Stefani et al.
(2007) studied at combined stimulation of the PPN and STN. Their
key finding was that PPN–DBS with medication was inferior to
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Fig. 13. Response of the STN cells in PD to different PPN–DBS settings. For each PPN–DBS setting the spike trains of all eight STN cells and the PPN cell are shown. The arrow
above the PPN spike trains at 1 s indicates when PPN–DBS is switched on. The pulse width for all settings is 0.15 ms.
medication only, while it improved motor scores in combination
with medication and STN–DBS as compared to medication and
STN–DBS only. These results were obtained after 6 months.
Another clinical validation of PPN–DBS did not show significant
improvements in combination with or without medication and
with or without STN–DBS, after 1 year (Ferraye et al., 2010). One
may conclude that results of PPN–DBS vary from case to case.

To investigate the effect of STN–DBS and/or PPN–DBS in the
network without projections from PPN to STN, we look at relay
properties of the PPN cell (relay index). For the relay properties of
the PPN cell it turns out that combined high frequency stimulation
of the STN and PPN stimulation at low frequencies (10 Hz, 25 Hz,
40Hz) is almost never better than exclusive STN stimulation. There
are some doubts about the validity of the relay index. In the first
place the main function of PPN type I cells is to regulate the basal
ganglia activity. No improvement in the relay capability does not
imply that PPN–DBS will not improve the basal ganglia activity.
Second, thewaywedefine the relay index.We record a successfully
relayed excitatory cortical input if at least one PPN spike occurs
in a specific time window after the input. As the PPN cell has a
spontaneous activity, the spike can be the result of the cortical
input or the result of its own spontaneous activity.

We also investigate the effect of STN–DBS and/or PPN–DBS on
the pathological firing pattern of STN and GPe. For this purpose we
extended our network with feedback projection from PPN to STN.
Our main finding is that high amplitude (100 µA cm−2) PPN–DBS
alone eliminates the pathological bursty clustered firing pattern
from the STN and GPe cells and replaces it with regular firing
pattern around 20 Hz. This 20 Hz is independent from the stimulus
frequency, but for the low frequencies (10 and 25 Hz) some
clustering andbursting remain. In contrast STN–DBS and combined
STN–DBS and PPN–DBS eliminate the pathological firing pattern
only from the STN cells and lock the STN activity to the STN–DBS.
We conclude that PPN–DBS alone is the best way to eliminate
the clusters and thereby the low frequency (3 Hz, associated
with tremor) oscillations from the entiremodel network. However
PPN–DBS creates a 20 Hz oscillation in the STN and GPe cells,
which could also be pathological. Bradykinesia is associated with
maintained oscillations in the β band in the STN (Kühn et al.,
2008).
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Fig. 14. Effect of PPN–DBS and STN–DBS on the activity of GPe cells. PPN–DBS is applied with high amplitude (100 µA cm−2) at 40 Hz and STN–DBS is applied at 130 Hz
with amplitude of 400 µA cm−2 . For both stimulus a pulse width of 0.15 ms is used. Stimulation start at 1 and 4 s indicated by the arrow.With STN–DBS stimulation clusters
remain and longer in duration. Addition of PPN–DBS shows no change (A). With only PPN–DBS (B) the GPe clusters are disrupted after some transients.
Capozzo et al. (2009) have reported the effect of PPN–DBS
on STN cells depend on the frequency and intensity of the
stimulus. PPN stimulus with low frequency (10–40 Hz) and
moderate intensity (50–400 µA) has an activated working on
STN neurons. Either a higher intensity or a higher frequency
of the stimulus suppress the STN firing. We have only looked
at low frequencies (≤40 Hz) and moderate intensities (10 and
100 µA cm−2). We observe also an activated working on STN cells.
Galati et al. (2008) have shown in PDpatient that PPN–DBS at 25Hz
change the mean firing of STN neurons. In particular, the firing
rate of the bursting STN neurons decrease and the firing rate of the
irregular and regular STN neurons increase.

In many respects, our modeling approach is a first investigation
how the PPN could be integrated into a larger network. A
first extension can be made by investigating how various
experimentally recorded LFP’s would generate input to the PPN.
Here a distinction must be made between medication on and off
since axial signs are unresponsive to medication in late stages of
PD. For instance, Androulidakis, Khan et al. (2008); Androulidakis,
Mazzone et al. (2008) found prominent 7–11 Hz oscillations in
on medication states. Subsequently, Weinberger et al. (2008)
found prominent beta oscillations in LFP in three PD patients
off medication. Neuronal firing did not show these oscillations,
rather there pattern was bursty or regular. More recently, Tsang
et al. (2010) showedbeta synchronization in premovement activity
in the on medication state, but not in the off medication. It is
important to note that these inconsistencies could be due to
slightly different recording areas.

Second, one could study the effect of the output of the PPN
model on receiving descending pathways and nuclei, e.g. to spinal
motor neurons. For the connection to motor neurons it would
be interesting whether experimental results of Pierantozzi et al.
(2007) can be reproduced with our model. They hypothesize
that PPN–DBS acts on spinal cord excitability improving the
reticulospinal pathway. This could be tested with the output of our
model.

Further tuning of our PPN type I model according to recent data
of Simon et al. (2010) should be done. This requires more about
the dynamics of the ionic currents, than currently available. At
present the dynamics is based on neurophysiological data of the
thalamocortical relay neuron (INa,leak, IK,leak, INa, IK, I and Ih) and
the pre-Bötzinger neuron (INa,p).
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Appendix. The ionic current equations for the PPN model

We assume that INa,L, IK,L, INa, IK, Ih and INa,p are linear functions
of the membrane potential (Vm), with a ionic driving force given
by the Nernst equation. These currents have the following general
form:

Iion = gmaxmahb(Vm − Eion) a, b ∈ N0, (A.1)

where gmax is the maximum ion channel conductance, m is the
activation gating variable, h is the inactivation gating variable and
Eion is the reversal potential. The reversal potential is defined by the
Nernst equation. We assume the ionic concentrations are constant
during our simulations. The current–voltage relation for IT has a
non-linear dependence upon driving force that is described by the
Goldman–Hodgkin–Katz current equation (G(Vm, [ion]i, [ion]o)).
Thus,

IT = m2hG(Vm, [Ca]i, [Ca]o)
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with

G(Vm, [Ca]i, [Ca]o) = pCa
z2F 2Vm

RT
[Ca]i − [Ca]o exp


−

zFV
RT


1 − exp


−

zFV
RT

 , (A.2)

where pCa = 10−4 cm s−1 is themaximum T-type calcium channel
permeability, z = 2 is the valence of calcium ion, F is the Faraday’s
constant in J V−1 mol−1, R is the gas constant in J K−1 mol−1,
T = 309.15 K is the absolute temperature, [Ca]o = 2 mM is
the extracellular Ca2+ concentration of themodel cell. Intracellular
Ca2+ concentration ([Ca]i) depends on T-type calcium current and
is given by the following equation
d[Ca]i
dt

=
[Ca]buff − [Ca]i

τCa
− kCaIT,

where [Ca]buff = 0.00024 mM, τCa = 5 ms, kCa = 5.1821e − 5 is a
unit conversion factor.

The (in)activation gating variables in Eqs. (A.1) and (A.2) are
described by differential equations of the form:
dX
dt

= (X∞(Vm) − X)/τX (Vm) X = m, h

where X∞(Vm) = αX (Vm)/(αX (Vm) + βX (Vm)) is the steady-state
voltage-dependent (in)activation function of X and τX (Vm) = 1/
(αX (Vm) + βX (Vm)) is the voltage-dependent time constant.
These functions are based on neurophysiological data of the
thalamocortical relay neuron (Destexhe et al., 1998; Huguenard
& McCormick, 1992; McCormick & Huguenard, 1992), except
for the persistent sodium gating variables which are based
neurophysiological data of the pre-Bötzinger neuron (Rybak, Ptak
et al., 2003; Rybak, Shevtsova et al., 2003).
Sodium and potassium leak currents
INa,L = gNa,L(Vm − ENa)
IK,L = gK,L(Vm − EK).
Sodium current
INa = gNam3h(Vm − ENa)
αm = 0.32(Vm + 55)/(1 − exp(−(Vm + 55)/4))
βm = −0.28(Vm + 28)/(1 − exp((V + 28)/5))
αh = 0.12 exp(−(Vm + 51)/18)
βh = 4/(1 + exp(−(Vm + 28)/5)).
Potassium current
IK = gKm4(Vm − EK)
αm = 0.032(Vm + 63.8)/(1 − exp(−(Vm + 63.8)/5))
βm = 0.5(exp(−(Vm + 68.8)/40)).
Hyperpolarization-activated current
Ihyp = ghypm3(Vm − Ehyp)
m∞ = 1/(1 + exp((Vm + 85)/5.5))
τm = 1/(exp(−15.45 − 0.086Vm) + exp(−1.17 + 0.0701Vm)).

Persistent sodium current
INa,p = gNa,pmh(Vm − ENa)
m∞ = 1/(1 + exp(−(Vm + 47.1)/3.1))
τm = 0.9/ cosh((Vm + 47.1)/6.2)
h∞ = 1/(1 + exp((Vm + 57)/3))
τh = 20 000/ cosh((Vm + 57)/6).
In the model, time is in ms, voltages are in mV, ion concentrations
are in mM, currents are in µA cm−2, conductance are in mS cm−2

and the membrane capacitance is in µF cm−2. The membrane
capacitance is assumed to be unity and the reversal potentials are
set to ENa = 45, EK = −95, Ehyp = −43 mV, the conductances
to gNa,L = 0.0207, gK,L = 0.05, gNa = 30, gK = 3.2, ghyp = 0.4,
gNa,p = 45 mS cm−2.
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