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Abstract
Autoencoders are unsupervised machine learning circuits, with typically one hidden layer, whose
learning goal is to minimize an average distortion measure between inputs and outputs. Linear
autoencoders correspond to the special case where only linear transformations between visible and
hidden variables are used. While linear autoencoders can be defined over any field, only real-
valued linear autoencoders have been studied so far. Here we study complex-valued linear
autoencoders where the components of the training vectors and adjustable matrices are defined
over the complex field with the L2 norm. We provide simpler and more general proofs that unify
the real-valued and complex-valued cases, showing that in both cases the landscape of the error
function is invariant under certain groups of transformations. The landscape has no local minima,
a family of global minima associated with Principal Component Analysis, and many families of
saddle points associated with orthogonal projections onto sub-space spanned by sub-optimal
subsets of eigenvectors of the covariance matrix. The theory yields several iterative, convergent,
learning algorithms, a clear understanding of the generalization properties of the trained
autoencoders, and can equally be applied to the hetero-associative case when external targets are
provided. Partial results on deep architecture as well as the differential geometry of autoencoders
are also presented. The general framework described here is useful to classify autoencoders and
identify general properties that ought to be investigated for each class, illuminating some of the
connections between autoencoders, unsupervised learning, clustering, Hebbian learning, and
information theory.

Keywords
autoencoders; unsupervised learning; complex numbers; complex neural networks; critical points;
linear networks; Principal Component Analysis; EM algorithm; deep architectures; differential
geometry

1. Introduction
Autoencoder circuits, which try to minimize a distortion measure between inputs and
outputs, play a fundamental role in machine learning. They were introduced in the 1980s by
the Parallel Distributed Processing (PDP) group [22] as a way to address the problem of
unsupervised learning, in contrast to supervised learning in backpropagation networks, by
using the inputs as learning targets. More recently, autoencoders have been used extensively
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in the “deep architecture” approach [12, 13, 6, 11], where autoencoders in the form of
Restricted Boltzmann Machines (RBMS) are stacked and trained bottom up in unsupervised
fashion to extract hidden features and efficient representations that can then be used to
address supervised classification or regression tasks. In spite of the interest they have
generated, and with a few exceptions [21], little theoretical understanding of autoencoders
and deep architectures has been obtained to date. One possible strategy for addressing these
issues is to partition the autoencoder universe into different classes, for instance linear
versus non-linear autoencoders, and identify classes that can be analyzed mathematically,
with the hope that the precise understanding of several specific classes may lead to a clearer
general picture. Within this background and strategy, the main purpose of this article is to
provide a complete theory for a particular class of autoencoders, namely linear autoencoders
over the complex field.

In addition to trying to progressively derive a more complete theoretical understanding of
autoencoders, there are several other reasons, primarily theoretical ones, for looking at linear
complex-valued autoencoders. First, linear autoencoders over the real numbers were solved
by Baldi and Hornik [4] (see also [7]). It is thus natural to ask whether linear autoencoders
over the complex numbers share the same basic properties or not, and whether unified
proofs can be derived to cover both the real- and complex-valued cases. More generally
linear autoencoders can be defined over any field and therefore one can raise similar
questions for linear autoencoders over other fields, such as finite Galois fields [15].

Second, a specific class of non-linear autoencoders was recently introduced and analyzed
mathematically [3]. This is the class of Boolean autoencoders where all circuit operations
are Boolean functions. It can be shown that this class of autoencoders is intimately
connected to clustering and so it is reasonable to both compare Boolean autoencoders to
linear autoencoders, and to examine linear autoencoders from a clustering perspective.

Third, there has been a trend in recent years towards the use of linear networks and methods
to address difficult tasks, such as building recommender systems (e.g. the Netflix prize
challenge [5, 24]) or modeling the development of sensory systems, in clever ways by
introducing particular restrictions on the relevant matrices, such as sparsity or low-rank [9,
8]. Autoencoders discussed in this paper can be viewed as linear, low-rank, approximations
to the identity function and therefore fall within this general trend.

Finally, complex vector spaces and matrices have several areas of specific application,
ranging from quantum mechanics, to fast Fourier transforms, to complex-valued neural
networks [14], and ought to be studied in their own right. Complex-valued linear
autoencoders can be viewed as a particular class of complex-valued neural networks and
may be used in applications involving complex-valued data.

With these motivations in mind, in order to provide a complete treatment of linear complex-
valued autoencoders here we first introduce a general framework and notation, essential for
a better understanding and classification of autoencoders, and for the identification of
common properties that ought to be studied in any new specific autoencoder case. We then
proceed to analytically solve the complex-valued linear autoencoder. While in the end the
results obtained in the complex-valued case are similar to those previously obtained in the
real-valued case [4] interchanging conjugate transposition with simple transposition, the
approach adopted here allow us to derive simpler and more general proofs that unify both
cases. In addition, we derive several new properties and results, addressing for instance
learning algorithms and their convergence properties, and some of the connections to
clustering, deep architectures, and other kinds of autoencoders. Finally, in the Appendix, we
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begin the study of real- and complex-valued autoencoders from a differential geometry
perspective.

2. General Autoencoder Framework and Preliminaries
2.1. General Autoencoder Framework

To derive a fairly general framework, an n/p/n autoencoder is defined by a t-uple
, Δ where:

1.  and  are sets.

2. n and p are positive integers. Here we consider primarily the case where 0 < p < n.

3.  is a class of functions from  to .

4.  is a class of functions from  to .

5.  is a set of m (training) vectors in . When external targets are
present, we let  denote the corresponding set of target vectors in .

6. Δ is a dissimilarity or distortion function defined over .

For any  and , the autoencoder transforms an input vector  into an output
vector  (Figure 2). The corresponding autoencoder problem is to find 
and  that minimize the overall distortion (or error/energy) function:

(1)

In the non auto-associative case, when external targets yt are provided, the minimization
problem becomes:

(2)

Note that p < n corresponds to the regime where the autoencoder tries to implement some
form of compression or feature extraction. The case p > n is not treated here but can be
interesting in situations which either (1) prevent the use of trivial solutions by enforcing
additional constraints, such as sparsity, or (2) include noise in the hidden layer,
corresponding to transmission over a noisy channel.

Obviously, from this general framework, different kinds of autoencoders can be derived
depending, for instance, on the choice of sets  and , transformation classes  and ,
distortion function Δ, as well as the presence of additional constraints. Linear autoencoders
correspond to the case where  and  are fields and  and  are the classes of linear
transformations, hence A and B are matrices of size n × p and p × n respectively. The linear
real case where  and Δ is the squared Euclidean distance was addressed in [4] (see
also [7]).

2.2. Complex Linear Autoencoder
Here we consider the corresponding complex linear case where  and the goal is the
minimization of the squared Euclidean distance
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(3)

Unless otherwise specified, all vectors are column vectors and we use x* (resp. X*) to
denote the conjugate transpose of a vector x (resp. of a matrix X). Note that the same
notation works for both the complex and real case. As we shall see, in the linear complex
case as in the linear real case, one can also address the case where external targets are
available, in which case the goal is the minimization of the distance

(4)

In practical applications, it is often preferable to work with centered data, after substraction
of the mean. The centered and non- centered versions of the problem are two different
problems with in general two different solutions. The general equations to be derived apply
equally to both cases.

In general, we define the covariance matrices as follows

(5)

Using this definition, ΣXX; ΣYY are Hermitian matrices (ΣXX)* = ΣXX and (ΣYY)* = ΣYY,
and (ΣXY)* = ΣYX. We let also

(6)

Σ is also Hermitian. In the auto-associative case, xt = yt for all t resulting in Σ = ΣXX. Note
that any Hermitian matrix admits a set of orthonormal eigenvectors and all its eigenvalues
are real. Finally, we let Im denote the m × m identity matrix.

For several results, we make the assumption that Σ is invertible. This is not a very restrictive
assumption for several reasons. First, by adding a small amount of noise to the data, a non-
invertible Σ could be converted to an invertible Σ, although this could potentially raise some
numerical issues. More importantly, in most settings one can expect the training vectors to
span the entire input space and thus Σ to be invertible. If the training vectors span a smaller
subspace, then the original problem can be transformed to an equivalent problem defined on
the smaller subspace.

2.3. Useful Reminders
Standard Linear Regression—Consider the standard linear regression problem of
minimizing E(B) = Σt ||yt – Bxt||2, where B is a p × n matrix, corresponding to a linear neural
network without any hidden layers. Then we can write

(7)

Thus E is a convex function in B because the associated quadratic form is equal to

(8)
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Let B be a critical point. Then by definition for any p × n matrix C we must have lim∊→0
[E(B + ∊C) – E(B)]/∊ = 0. Expanding and simplifying this expression gives

(9)

for all p × n matrices C. Using the linearity of the trace operator and its invariance under
circular permutation of its arguments1, this is equivalent to

(10)

for any C. Thus we have ΣXXB* – ΣXY = 0 and therefore

(11)

If ΣXX is invertible, then Cxt = 0 for any t is equivalent to C = 0, and thus the function E(B)

is strictly convex in B. The unique critical point is the global minimum given by .
As we shall see, the solution to the standard linear regression problem, together with the
general approach given here to solve it, is also key for solving the more general linear
autoencoder problem. The solution will also involve projection matrices.

Projection Matrices
For any n × k matrix A with k ≤ n, let PA denote the orthogonal projection onto the subspace

generated by the columns of A. Then PA is a Hermitian symmetric matrix and , PAA
= A since the image of PA is spanned by the columns of A and these are invariant under PA.
The kernel of PA is the space  orthogonal to the space spanned by the columns of A.

Obviously, we have  and A* PA = A*. The projection onto the space orthogonal to
the space spanned by the columns of A is given by In – PA. In addition, if the columns of A
are independent (i.e. A has full rank k), then the matrix of the orthogonal projection is given

by PA = A(A* A)–1 A* [17] and . Note that all these relationships are true even when
the columns of A are not orthonormal.

2.4. Some Misconceptions
As we shall see, in the complex case as in the real case, the global minimum corresponds to
Principal Component Analysis. While the global minimum solution of linear autoencoders
over infinite fields can be expressed analytically, it is often not well appreciated that there is
more to be understood about linear autoencoders and the landscape of E. In particular, if one
is interested in learning algorithms that proceed through incremental and somewhat “blind”
weight adjustments, then one must study the entire landscape of E, including all the critical
points of E, and derive and compare different learning algorithms. A second misconception
is to believe that the problem is a convex optimization problem, hence somewhat trivial,
since after all the error function is quadratic and the transformation W = AB is linear. The
problem with this argument is that the small layer of size p forces W to be of rank p or less,
and the set of matrices or rank at most p is not convex. Furthermore, the problem is not
convex when finite fields are considered. What is true and crucial for solving the linear
autoencoders over infinite fields is that the problem becomes convex when A or B is fixed.
A third misconception, related to the illusion of convexity, is that the L2 landscape of linear
neural networks never has any local minima. In general this is not true, especially if there

1It is easy to show directly that for any matrices A and B of the proper size, Tr(AB) = Tr(BA) [15]. Therefore for any matrices A, B,
and C of the proper size, we have Tr(ABC) = Tr(CAB) = Tr(BCA).
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are additional constraints on the linear transformation, such as restricted connectivity
between layers so that some of the matrix entries are constrained to assume fixed values.

3. Group Invariances
For any autoencoder, it is important to investigate whether there are any group of
transformations that leave its properties invariant.

Change of Coordinates in the Hidden Layer
Note that for any invertible p × p complex matrix C, we have W = AB = ACC–1 B and E(A,
B) = E(AC, C– B). Thus all the properties of the linear autoencoder are fundamentally
invariant with respect to any change of coordinates in the hidden layer.

Change of Coordinates in the Input/Output Spaces
Consider an orthonormal change of coordinates in the output space defined by an orthogonal
(or unitary) n × n matrix D, and any change of coordinates in the input space defined by an
invertible n × n matrix C. This leads to a new autoencoder problem with input vectors
Cx1, . . . , Cxm and target output vectors of the form Dy1, . . . , Dym with reconstruction error
of the form

(12)

If we use the one-to-one mapping between pairs of matrices (A, B) and (A′, B′) defined by
A′ = DA and B′ = BC–1, we have

(13)

the last equality using the fact that D is an isometry which preserves distances. Thus, using
the transformation A′ = DA and B′ = BC–1 the original problem and the transformed
problem are equivalent and the function E(A, B) and E(A′, B′) have the same landscape. In
particular, in the auto-associative case, we can take C = D to be a unitary matrix. This leads
to an equivalent autoencoder problems with input vectors Cxt and covariance matrix CΣC–1.
For the proper choice of C there is an equivalent problem where basis of the space is
provided by the eigenvectors of the covariance matrix and the covariance matrix is a
diagonal matrix with diagonal entries equal to the eigenvalues of the original covariance
matrix Σ.

4. Fixed-Layer and Convexity Results
A key technique for studying any autoencoder, is to simplify the problem by fixing all its
transformations but one. Thus in this section we study what happens to the complex-valued
linear autoencoder problem when either A or B is fixed, essentially reducing the problem to
standard linear regression. The same approach can be applied to an autoencoder with more
than one hidden layer (see section on Deep Architectures).

Theorem 1. (Fixed A) For any fixed n × p matrix A, the function E(A, B) is convex in the
coefficients of B and attains its minimum for any B satisfying the equation

(14)
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If ΣXX is invertible and A is of full rank p, then E is strictly convex and has a unique
minimum reached when

(15)

In the auto-associative case, if ΣXX is invertible and A is of full rank p, then the optimal B
has full rank p and does not depend on the data. It is given by

(16)

and in this case, W = AB = A(A*A)–1A* = PA and BA = Ip.

Proof. We write

(17)

Then for fixed A, E is a convex function because the associated quadratic form is equal to

(18)

for any p × n matrix C. Let B be a critical point. Then by definition for any p × n matrix C
we must have lim∊→0 [E(A, B + ∊C) – E(A, B)]∊ = 0. Expanding and simplifying this
expression gives

(19)

for all p × n matrices C. Using the linearity of the trace operator and its invariance under
circular permutation of its arguments, this is equivalent to

(20)

for any C. Thus we have ΣXXB*A*A – ΣXY A = 0 and therefore

(21)

Finally, if ΣXX is invertible and if A is of full rank, then ACxt = 0 for any t is equivalent to C
= 0, and thus the function E(A, B) is strictly convex in B. Since A*A is invertible, the
unique critical point is obtained by solving Equation 14.

In similar fashion, we have the following theorem.

Theorem 2 (Fixed B). For any fixed p × n matrix B, the function E(A, B) is convex in the
coefficients of A and attains its minimum for any A satisfying the equation

(22)

If ΣXX is invertible and B is of full rank, then E is strictly convex and has a unique minimum
reached when

(23)
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In the auto-associative case, if ΣXX is invertible and B is of full rank, then the optimal A has
full rank p and depends on the data. It is given by

(24)

and BA = Ip.

Proof. From Equation 17, the function E(A, B) is a convex function in A. The condition for
A to be a critical point is

(25)

for any p × n matrix C, which is equivalent to

(26)

for any matrix C. Thus BΣXXB*A* – BΣXY = 0 which implies Equation 22. The other
assertions of the theorem can easily be deduced.

Remark 1. Note that from Theorems 1 and 2 and their proofs, we have that (A, B) is a
critical point of E(A, B) if and only if Equation 14 and Equation 22 are simultaneously
satisfied, that is if and only if A*ABΣXX = A*YX and ABΣXXB* = ΣYXB*.

5. Critical Points and the Landscape of E
In this section we further study the landscape of E, its critical points, and the properties of W
= AB at those critical points.

Theorem 3. (Critical Points) Assume that ΣXX is invertible. Then two matrices (A, B)
define a critical point of E, if and only if the global map W = AB is of the form

(27)

with A satisfying

(28)

In the auto-associative case, the above becomes

(29)

and

(30)

If A is of full rank, then the pair (A, B) defines a critical point of E if and only if A satisfies
Equation 28 and B satisfies Equation 16. Hence B must also be of full rank.

Proof. If (A, B) is a critical point of E, then from Equation 14, we must have

(31)

Let
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(32)

Then since A*PA = A*, we have A*S = 0. Thus the space spanned by the columns of S is a
subset of the space orthogonal to the space spanned by the columns of A (i.e. S ∊ A##). On
the other hand, since

(33)

S is also in the space spanned by the columns of A (i.e. S ∊ Span(A)). Taken together, these

two facts imply that S = 0, resulting in , which proves Equation 27. Note
that for this result, we need only B to be critical (i.e. optimized with respect to A). Using the
definition of Σ, we have

(34)

Since S = 0, we have  and thus

(35)

Similarly, we have

(36)

and

(37)

Then Equation 28 result immediately by combining Equations 35, 36, and 37 using Equation
22. The rest of the theorem follows easily.

Remark 2. The above proof unifies the cases when AB is of rank p and less than p and
avoids the need for two separate proofs, as was done in earlier work [4] for the real-valued
case.

Theorem 4. (Critical Points of Full Rank) Assume that Σ is of full rank with n distinct
eigenvalues λ1 > ··· > λn and let u1,...,un denote a corresponding basis of orthonormal

eigenvectors. If  is any ordered set of indices of size p, let

 denote the matrix formed using the corresponding column eigenvectors.
Then two full rank matrices A, B define a critical point of E if and only if there exists an
ordered p-index set  and an invertible p × p matrix C such that

(38)

For such critical point, we have

(39)

and
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(40)

In the auto-associative case, these equations reduce to

(41)

(42)

and

(43)

where  is the complement of .

Proof. Since PAΣ = ΣPA, we have

(44)

Thus the columns of A form an invariant space of Σ. Thus A is of the form . The
conclusion for B follows from Equation 27 and the rest is easily deduced, as in the real case.
Equation 43 can be derived easily by using the remarks in Section 3 and using the unitary
change of coordinates under which ΣXX becomes a diagonal matrix. In this system of
coordinates, we have

Therefore, using the invariance property of the trace under permutation, we have

Since AB is a projection operator, this yields Equation 43. In the auto-associative case with
these coordinates it is easy to see that W(xt) and E(A, B) = Σt E(xt) are easily computed

from the values of W(ui). In particular, . In addition, at the
critical points, we have W(ui) = ui if i ∊ I, and W(ui) = 0) otherwise.

Remark 3. All the previous theorems are true in the hetero-associative case with targets yt.
Thus they can readily be applied to address the linear denoising autoencoder [26, 25] over 
or . The linear denoising autoencoder is an autoencoder trained to remove noise by having
to associate noisy versions of the inputs with the correct inputs. In other words, using the
current notation, it is an autoencoder where the inputs xt are replaced by xt + nt where nt is
the noise vector and the target outputs yt are of the form yt = xt. Thus the previous theorems
can be applied using the following replacements: ΣXX = ΣXX + ΣNN + ΣNX + ΣXN, ΣXY =
ΣXX + ΣNX, ΣYX = ΣXX + ΣXN. Further simplifications can be obtained using particular
assumptions on the noise, such as ΣNX = ΣXN = 0.
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Theorem 5. (Absence of Local Minima) The global minimum of the complex linear
autoencoder is achieved by full rank matrices A and B associated with the index set 1,..., p

of the p largest eigenvalues of Σ with  and  (and where C is any invertible
p × p matrix). When C = I, A = B*. All other critical points are saddle points associated with
corresponding projections onto non-optimal sets of eigenvectors of Σ of size p or less.

Proof. The proof is by a perturbation argument, as in the real case, showing that critical
points that are not associated with the global minimum there is always a direction of escape
that can be derived using unused eigenvectors associated with higher eigenvalues in order to
lower the error E (see [4] for more details). The proof can be made very simple by using the
group invariance properties under transformation of the coordinates by a unitary matrix.
With such a transformation, it is sufficient to study the landscape of E when Σ is a diagonal
matrix and .

Remark 4. At the global minimum, if C is the p × p identity matrix (C = I), in the auto-

associative case then the activities in the hidden layer are given by ,
corresponding to the coordinates of x along the first p eigenvectors of ΣXX. These are the so
called principal components of x and the autoencoder implements a form of Principal
Component Analysis (PCA) also closely related to Singular Value Decomposition (SVD).

The theorem above shows that when Σ is full rank, there is a special class of critical points
associated with C = I. In the auto-associative case, this class is characterized by the fact that
A and B are conjugate transpose of each other (A = B*) in the complex-valued case, or
transpose of each other (A = B*) in the real-valued case. This class of critical points is
special for several reasons. For instance, in the related Restricted Boltzmann Machine
Autoencoders the weights between visible and hidden units are require to be symmetric
corresponding to A = B*. More importantly, these critical points are closely connected to
Hebbian learning (see also [18, 19, 20]). In particular, for linear real-valued autoencoders, if
A = B* and E = 0 so that inputs are equal to outputs, any learning rule that is symmetric
with respect to the pre- and post- synaptic activities—which is typically the case for
Hebbian rules—will modify A and B but preserve the property that A = B*. This remains
roughly true even if E is not exactly zero. Thus for linear real-valued autoencoders, there is
something special about transposition operating on A and B and more generally on can
suspect a similar role is played by conjugate transposition in the case of linear complex-
valued autoencoders. The next theorem and the following section on learning algorithm
further clarify this point.

Theorem 6. (Conjugate Transposition) Assume ΣXX is of full rank in the auto-associative
case. Consider any point (A, B) where B has been optimized with respect to A, including all
critical points. Then

(45)

Furthermore, when A is full rank

(46)

Proof. By Theorem 1, in the auto-associate case, we have
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Thus, by taking the complex conjugate of each side, we have

It follows that

which proves Equation 45. If in addition A is full rank, then by Theorem 1 W = AB = PA
and the rest follows immediately.

Remark 5. Note the following. Starting from a pair (A, B) with W = AB and where B has
been optimized with respect to A, let A′ = B* and optimize B again so that B′ =
(A′A′*)–1A′*. Then we also have

(47)

6. Optimization or Learning Algorithms
Although mathematical formula for the global minimum solution of the linear autoencoder
have been derived, the global solution may not be available immediately to a self-adjusting
learning circuit capable of making only small adjustments at each learning steps. Small
adjustments may also be preferable in a non-stationary environment where the set  of
training vectors changes with time. Furthermore, the study of small adjustment algorithms in
linear circuits may shed some light on similar incremental algorithms applied to non-linear
circuits where the global optimum cannot be derived analytically. Thus, from a learning
algorithm standpoint, it is still useful to consider incremental optimization algorithms, such
as gradient descent or partial EM steps, even when such algorithms are slower or less
accurate than direct global optimization. The previous theorems suggest two kinds of
operations that could be used in various combinations to iteratively minimize E, taking full
or partial steps: (1) Partial minimization: fix A (resp. B) and minimize for B (resp. A); (2)
Conjugate Transposition: fix A (resp. B), and set B = A* (resp. A = B*) (the latter being
reserved for the auto-associative case, and particularly so if one is interested in converging
to solutions where A and B are conjugate transpose of each other, i.e. where C = I).

Theorem 7. (Alternate Minimization) Consider the algorithm where A and B are
optimized in alternation (starting from A or B), holding the other one fixed. This algorithm
will converge to a critical point of E. Furthermore, if the starting value of A or B is
initialized randomly, then with probability one the algorithm will converge to a critical point
where both A and B are full rank.

Proof: A direct proof of convergence is given in Appendix B. Here we give an indirect, but
perhaps more illuminating proof, by remarking that the alternate minimization algorithm is
in fact an instance of the general EM algorithm [10] combined with a hard decision, similar
to the Viterbi learning algorithm for HMM or the k-means clustering algorithm with hard
assignment. For this, consider that we have a probabilistic model over the data with
parameters A and hidden variables B, or vice versa, with parameters B and hidden variables
A. The conditional probability of the data and the hidden variables is given by:
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(48)

or

(49)

where Z1 and Z2 denote the proper normalizing constants (partition functions). During the E
step, we find the most probable value of the hidden variables given the data and current
value of the parameters. Since E is quadratic, the model in Equation 49 is Gaussian and the
mean and mode are identical. Thus the hard assignment of the hidden variables in the E step
corresponds to optimizing A or B using Theorem 3 or Theorem 4. During the M step, the
parameters are optimized given the value of the hidden variables. Thus the M step also
corresponds to optimizing A or B using Theorem 3 or Theorem 4. As a result, convergence
to a critical point of E is ensured by the general convergence theorem of the EM algorithm
[10]. Since A and B are initialized randomly, they are full rank with probability one and, by
Theorem 1 and 2 they retain their full rank after each optimization step. Note that the error E
is always positive, strictly convex in A or B, decreases at each optimization step, and thus E
must converge to a limit. By looking at every other step in the algorithm, it is easy to see
that PA must converge. From which one can see that A must converge, and so must B.

Given the importance of conjugate transposition (Theorem 6) in the auto-associative case,
one may also consider algorithms where the operations of conjugate transposition and partial
optimization of A and B are interleaved. This can be carried in many ways. Let A → B
denote that B is obtained from A by optimization (Equation 16) and A ⇒ B denote that B is
obtained from A by conjugate transposition (B ⇒ A*), and similarly for B → A (Equation
24) and B ⇒ A (A = B*). Let also ⇔ denote the operation where both A and B are obtained
by simultaneous conjugate transposition from their current values. Then starting from
(random) A and B, here are several possible algorithms:

• Algorithm 1: B → A → B → A → B ....

• Algorithm 2: A → B → A → B → A ....

• Algorithm 3: B → A → B ⇒ A → B → A → B ⇒ A ....

• Algorithm 4: A → B → A ⇒ B → A → B → A ⇒ B ....

• Algorithm 5: B → A → B ⇔ B → A → B ....

• Algorithm 6: A → B → A ⇔ A → B → A ⇔ ....

• Algorithm 7: A ← B ⇔ A ← B ⇔ ....

The theory presented so far allows us to understand their behavior easily (Figure 3),
considering a consecutive update of A and B as one iteration. Algorithms 1 and 2 converge
with probability one to a critical point where A and B are full rank. Algorithm 1 may be
slightly faster than Algorithm 2 at the beginning since in the first step Algorithm 1 takes into
account the data (Equation 24, whereas Algorithm 2 ignores it. Algorithms 3, 4, and 5
converge and lead to a solution where A = B* (or, equivalently, C = I). Algorithms 3 and 5
take the same time and are faster than Algorithm 4. Algorithm 2 and Algorithm 4 take the
same time. Algorithm 3 requires almost twice the number of steps of Algorithm 1. But
Algorithm 4 is faster than Algorithm 3. This is because in Algorithm 3, the steps B ⇔ A →
B is basically like switching the matrices A and B, and the error after the step B → A → B
is the same as the error after the step B ⇒ A → B. Algorithms 6 and 7 in general will not
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converge. Only optimization steps with respect to the B matrix are being carried and
therefore the data is never considered.

7. Generalization Properties
One of the most fundamental problems in machine learning is to understand the
generalization properties of a learning system. Although in general this is not a simple
problem, in the case of the autoencoder the generalization properties can easily be
understood. After learning, A and B must be at a critical point. Assuming without much loss
of generality that A is also full rank and ΣXX is invertible, then from Theorem 1 we know in
the auto-associative case that W = PA. Thus we have the following result.

Theorem 8. (Generalization Properties) Assume in the auto-associative case that ΣXX is
invertible. For any learning algorithm that converges to a point where B is optimized with
respect to A and A is full rank (including all full rank critical points), then for any vector x
we have Wx = ABx = PAx and

(50)

Remark 6. Thus the reconstruction error of any vector is equal to the square of its distance
to the subspace spanned by the columns of A, or the square of the norm of its projection
onto the orthogonal subspace. The general hetero-associative case can also be treated using

Theorem 1. In this case, under the same assumptions, we have: 

8. Recycling or Iteration Properties
Likewise, for the linear auto-associative case, one can also easily understand what happens
when the outputs of the network are recycled into the inputs after learning. In the RBMs
case, this is similar to alternatively sampling from the input and hidden layer. Interestingly,
this provides also an alternative characterization of the critical points. At a critical points
where W is a projection, we must have W2 = W . Thus, after learning, the iterates Wmx are
easy to understand and converge after a single cycle and all points become stable after a
single cycle. If x is in the space spanned by the columns of A we have Wm(x) = x for any m
≥ 1. If x is not in the space spanned by the columns of A, then Wmx = y for m ≥ 2, where y
is the projection of x onto the space spanned by the columns of A (Wx = PAx = y).

Theorem 9. (Generalization Properties) Assume in the auto-associative case that ΣXX is
invertible. For any learning algorithm that converges to a point where B is optimized with
respect to A and A is full rank (including all full rank critical points), then for any vector x
and any integer m > 1, we have

(51)

Remark 7. There is a partial converse to this result, in the following sense. Assume that W
is a projection (W2 = W) and therefore ABAB = AB. If A is of full rank, then BAB = B.
Furthermore, if B is of full rank, then BA = Ip (note that BA = Ip immediately implies that
W 2 = W ). Multiplying this relation by A*A on the left and A on the right, yields A*AB =
A* after simplification, and therefore B = (A*A)–1A* Thus according to Theorem 1 B is
critical and W = PA. Note that under the sole assumption that W is a projection, there is no
reason for A to be critical, since there is no reason for A to depend on the data and on ΣXX.
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9. Deep Architectures
Autoencoders can be composed vertically (Figure 4), as in the deep architecture approach
described in [12, 13], where a stack of RBMs is trained in an unsupervised way, in bottom
up fashion, by using the activity in the hidden layer of a RBM in the stack as the input for
the next RBM in the stack. Similar architectures and algorithms can be applied to linear
networks. Consider for instance training a 10/5/10 autoencoder and then using the activities
in the hidden layer to train a 5/3/5 autoencoder. This architecture can be contrasted with a
10/5/3/5/10 architecture, or a 10/3/10 architecture. In all cases, the overall transformation W
is linear and constrained in rank by the size of the smallest layer in the architecture. Thus all
three architectures have the same optimal solution associated with Principal Component
Analysis using the top 3 eigenvalues. However the landscapes of the error functions and the
learning trajectories may be different and other considerations may play a role in the choice
of an architecture.

In any case, the theory developed here can be adapted to multi-layer real-valued or complex-
valued linear networks. Overall, such networks implement a linear transformation with a
rank restriction associated with the smallest hidden layer. As in the single hidden layer case,
the overall distortion is convex in any single matrix while all the other matrices are held
fixed. Any algorithm that successively, or randomly, optimizes each matrix with respect to
all the others will converge to a critical point, which will be full rank with probability one if
the matrices are initialized randomly. For instance, to be more precise, consider a network
with five stages associated with the five matrices A, B, C, D and F of the proper sizes and
the error function E(A, B, C, D, F) = Σt ||yt – ABCDF xt)||2.

Theorem 10. For any fix set of matrices A, B, D and F, the function E(A, B, C, D, F) is
convex in the coefficients of C and attains its minimum for any C satisfying the equation

(52)

If ΣXX is invertible and AB and DF are of full rank, then E is strictly convex and has a
unique minimum reached when

(53)

Proof: We write

(54)

Then for fixed A, B, D, F, E is a convex function because the associated quadratic form is
equal to

(55)

for any matrix L of the proper size. Let C be a critical point. Then by definition for any
matrix L of the proper size, we must have lim∊→0 [E(A, B, C + ∊L, D, F) E(A, B, C, D,
F)]=∊ = 0. Expanding and simplifying this expression gives

(56)
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for all matrices C of the proper size. Using the linearity of the trace operator and its
invariance under circular permutation of its arguments, this is equivalent to

(57)

for any L. Thus we have DFΣXX F* D*C*B*A*AB – DFΣXY AB = 0 and therefore

(58)

Finally, if ΣXX is invertible and AB and DF are of full rank, then ABLDFCxt = 0 for any t is
equivalent to L = 0, and thus the function E(A, B, C, D, F) is strictly convex in C. Thus in
this case we can solve Equation 58 for C to get Equation 53.

10. Conclusion
We have provided a fairly complete and general analysis of complex-valued linear
autoencoders. The analysis can readily be applied to special cases, for instance when the
vectors are real-valued and the matrices are complex-valued, or the vectors are complex-
valued and the matrices are real-valued. More importantly, the analysis provides a unified
view of real-valued and complex-valued linear autoencoders. In the Appendix, we further
extend the treatment of linear autoencoders over infinite fields by looking at their properties
from a differential geometry perspective.

More broadly, the framework used here identifies key questions and strategies that ought to
be studied for any class of autoencoders, whether linear or non-linear. For instance:

1. What are the relevant group actions and invariances for the problem?

2. Can one of the transformations (A or B) be solved while the other is held fixed?
Are there useful convex relaxations or restrictions?

3. Are there any critical points, and how can they be characterized?

4. Is there a notion of symmetry or transposition between the transformations A and B
around critical points?

5. Is there an overall analytical solution? Is the problem NP-hard? What is the
landscape of E?

6. What are the learning algorithms and their properties?

7. What are the generalization properties?

8. What happens if the outputs are recycled?

9. What happens if autoencoders are stacked vertically?

All these questions can be raised anew for other linear autoencoders, for instance over  or
 with the Lp norm (p ≠ 2), or over other fields, in particular over finite fields with the

Hamming distance. While results for finite fields will be published elsewhere, it is clear that
these questions have different answers in the finite field case. For instance, the notion of
using convexity to analytically solve for A or B, while holding the other one fixed, breaks
down in the finite field case.

These questions can also be applied to non-linear autoencoders. While in general non-linear
autoencoders are difficult to treat analytically, the case of Boolean autoencoders was
recently solved using this framework [3]. Boolean autoencoders implement a form of
clustering when p < n and, in retrospect, all linear autoencoders implement also a form of
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clustering when p < n. In the linear case, for any vector x and any W = AB, we have W (x
+KerW ) = W(x). KerW is the kernel of W which contains the kernel of B, and is equal to it
when A is of full-rank. Thus, in general, linear autoencoders implement clustering “by
hyperplane” associated with the kernel of B. Taken together, these facts point to the more
general unity connecting unsupervised learning, clustering, Hebbian learning, and
autoencoders.

Finally, there is the case of autoencoders,linear or non-linear, with p ≥ n which has not been
addressed here. Clearly, additional restrictions or conditions must be imposed in this case,
such as sparse encoding in the hidden layer or sparse matrices using L1 regularization, to
avoid trivial solutions associated with the identity function. Although beyond the scope of
this paper, these autoencoders are also of interest. For instance, the linear case over finite
fields with noise added to the hidden layer, subsumes the theory of linear codes in coding
theory [16]. Thus, in short, one can expect autoencoders to continue to play an important
role in machine learning and provide fertile connections to other areas, from clustering to
information and coding theory.
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Appendix A: Differential Geometry of Autoencoders
Methods from differential geometry has been applied effectively to statistical machine
learning in previous studies by Amari [1, 2] and others. Here however we introduce a novel
approach for looking at the manifolds of relevant parameters for linear autoencoders over
the real or complex fields. While the basic results in this section are not difficult, they do
assume some understanding of the most basic concepts of differential geometry [23].

Let Rp be the set of n × n complex matrices of rank at most equal to p. Obviously, AB ∊ Rp.
In general, Rp is a singular variety (a Brill-Noether variety). We let also Rp\Rp–1 be the set
of n × n matrices of rank exactly p As we shall see, Rp\Rp–1 is a complex manifold.

Definition 1. We let

(59)

where W ∊ Rp.

Let Mp × q be the set of all p × q complex matrices. Define the mapping

(60)

by taking the product of the corresponding matrices. Then we have F○ι. We are going to
show that ι is surjective and the differential of ι is of full rank at any point.

Lemma 1. Rp\Rp–1 is a complex manifold of dimension 2np – p2.

Proof. Let W ∊ Rp\Rp–1. To construct a set of local coordinates of Rp\Rp–1 near W , we
write W
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(61)

where w1, ··· , wn are column vectors. Without any loss of generality, we assume that w1,··· ,
wp are linearly independent. Thus we must have

(62)

for j > p, with complex coefficients ξij. The local coordinates of Rp\Rp–1 are (ξij)1≤i≤p,p<j≤n
and (wik)1≤i≤p,1≤k≤n. Thus

(63)

Next, we consider the tangent space TW of Rp\Rp–1 at W . By definition, a basis of
TC(Rp\Rp–1) is given by

(64)

(65)

Let (e1, ··· , en) be the standard basis of . Then the corresponding matrices of the tangent
vectors are

Lemma 2. Let W = AB, where A, B are full-rank n × p and p × n matrices, respectively. Let
A1, B1 be n × p and p × n matrices such that

(66)

Then there is an invertible p × p matrix V such that

(67)

Proof. By multiplying on the left by A*, we have

(68)

Since A is full rank, A* A is an invertible p × p matrix. Thus

(69)

Substituting the above into Equation 66 yields
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(70)

Since B is of full rank, we get

(71)

which implies that the columns of A1 span the same linear space as the image of PA, i.e. the
same space spanned by the columns of A. Hence A1 = AV for some p × p matrix V .

Lemma 3. The tangent space TW (Rp\Rp–1) is spanned by the matrices of the form

(72)

where A and B are fixed, AB = W, and A1, B1 are n × p and p × n matrices, respectively.

Proof. Define a linear map

(73)

We have

(74)

By the above lemma, dim Ker(σ) = p2. Thus the image of σ has the same dimension as the
manifold Rp\Rp–1. Hence all the tangent vectors must be of the form AB1 + A1B.

Corollary. The map ι is of full rank at any point (A, B) where A and B are of rank p.

Proof. The space spanned by all pairs (A1, B1) has dimension 2np. By Lemma 2, the space
of all matrices of the form AB1 + A1B has dimension 2np – p2, which is the dimension of Rp
by Lemma 1. Since the dimension of the image of the Jacobian of ι at (A, B) is equal to the
dimension of the manifold Rp, ι is of full rank.

We need to prove that ι is of full rank because we want to measure how far away the
function is from being convex. The Hessian of the function E is the sum of two terms, the
first of which is positive definite (see Remark 8 below). If ι were of lesser rank, this first
term would contribute less to the total Hessian. In particular, if ι had rank zero, then the first
term of the Hessian would be equal to zero and, as a result, a point where the Hessian is
positive would not necessarily exist preventing the existence of a global minimum.

Lemma 4. For any W ∊ Rp, there exist an n × p matrix A and a p × n matrix B such that W =
AB. In other words, ι is a surjective map.

Proof. We use the following singular decomposition of matrices

(75)

where U1, U2 are unitary matrices and Λ is a diagonal matrix. Since W is of rank no more
than p, we can write Λ as
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(76)

Let (U1)p represent the first p columns of U1 and let (U2)p be the first p rows of U2. Let Λ1
be the first p × p minor of Λ. Then

(77)

Thus the theorem is proved by letting A = (U1)pΛ1 and B = (U2)p.

In general, Rp is not a manifold. One of the resolution R̃p of Rp is defined as follows

In this case, R̃p is a manifold and we can extend the function F to R̃p in a natural way: for
(A, V) ∊ R̃p, we let F̃p(A, V) = Fp(A).

By the convexity of the quadratic function Σ||yt – Axt||2, we get the following conclusion

Theorem 11. Both Fp, F̃p are convex functions on Rp\Rp–1. In particular, all critical points
of the functions are global minima.

Remark 8. By the relation E = F ○ ι, we have

The first term on the right-hand side is always nonnegative by the convexity of Fp. However
the second term can be positive or negative, which partly explains why E is not convex and
has many critical points that are saddle points.

Theorem 11 and 5 are related but one does not imply the other. Theorem 11 shows that for
complex-valued autoencoders, the error E has a global minimum. However Theorem 11
does not provide further information about the global minimum, not it implies that that all
other critical points are saddle points. We end this section with the following result.

Theorem 12. Let

where Ai are (μi, δi) matrices. Let

Then
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Proof. The only non-trivial point is that any rank σ matrix can be decomposed into a
product of the form A1 ··· Ak, where Aj is a μj × δj matrix. For k = 2, this is just Lemma 4.
For k > 2, the statement can be proved using mathematical induction.

Appendix B: Direct Proof of Convergence for the Alternate Minimization
Algorithm

It is expected that starting from any full rank initial matrices (A1, B1), if we inductively
define

then (Ak, Bk) should converge to a critical point of E. In this section, we prove the following

Theorem 13. In the auto-associative case, assume that

(78)

are different for different set , where  is defined in Theorem 4. Then (Ak, Bk) converges
to a critical point of E(A, B).

Remark 9. The assumption in Theorem 13 is a technical assumption to separate the
distortion values of non equivalent critical point. In fact, using Theorem 4, it is equivalent to
assuming that each equivalence class of critical points is associated with a different
distortion level which characterizes the corresponding critical points.

Proof. In what follows, we use the Hilbert-Schmidt norm of a matrix:

In the auto-associative case, the algorithm becomes

The proof of the theorem is in three steps. First, we prove that the sequences ||Ak|| and ||Bk||
are bounded so they both have limiting points, second, we prove that the limiting points
must be nonsingular matrices if the initial A1 and B1 are nonsingular, finally, we prove that
the sequences Ak and Bk are actually convergent under the assumption of the theorem.

Step 1. Substituting Ak+1 in the definition of Bk+1, we obtain
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Substituting the expression of Bk into the definition of Ak+1, we obtain

Since  is a projection operator, we have

(79)

Similarly, if we write  for a positive symmetric matrix Σ1, we obtain

and hence . Thus we conclude that both Ak and Bk are bounded
sequences.

Step 2. We have BkAk+1 = Ip, where Ip is the p × p identity matrix. Thus by continuity any
limiting point of Bk or Ak must be non-singular.

Step 3. To prove that the set of limiting points of Bk contains only one point, we observe
that the sequence E(Ak, Bk) is decreasing. If B and B′ are two limiting points of the
sequence Bk, we must have

where A = ΣB*(BΣB*)–1 and A′ = B′Σ(B′)*((B′)Σ(B′)*)–1. By the assumption of the
theorem (or Equation 43), if B ≠ B′ we must have E(A, B) ≠ E(A′, B′), which yields a
contradiction. Thus Bk and hence Ak must be convergent.

Since the limit (A, B) satisfies the equations

by Theorem 1 and 2, (A, B) must be a critical point of E.

Finally, note that if Σ is singular or close to singular, or if there are critical points with the
same distortion levels, then the algorithm above could run into numerical issues.

Examples. The convergence can be better seen when p = 1. Let

(80)
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with λ1 > ··· > λn. If p = 1, then there is a sequence ck of real numbers such that

(81)

Let B1 = (b1, ··· , bn) and let i be the smallest index such that bi ≠ 0. Then

Since ||Bk+1|| ≤ ||Bk|| (Equation 79), the sequence  is bounded for k → ∞. It follows that

for any j > i,  as k → ∞. Therefore, using Equation 79 again, we have bk → cei
for some constant c, with e1, ··· , en denoting the standard basis of . Moreover, c = bi by a
straightforward computation.

The case of arbitrary p values can be addressed using the above example: let j < i and i – j +
1 = p. Let

(82)

be a matrix of rank p with the same matrix Σ as above. Then

(83)

In conclusion, for any saddle point, one can construct a sequence that converges to it.
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Figure 1.
An n/p/n Autoencoder Architecture.
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Figure 2.
Landscape of E.
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Figure 3.
Learning Curves for Algorithms 1-6. The results are obtained using linear real-valued
autoencoders of size 784-10-784 trained on images in the standard MNIST dataset for the
digit “7” using 1,000 samples. Each consecutive update of both A and B is considered as
one iteration.
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Figure 4.
Vertical Composition of Autoencoders.
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