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Abstract

Properties of data are frequently seen to vary depending on the sampled
situations, which usually changes along a time evolution or owing to envi-
ronmental effects. One way to analyze such data is to find invariances, or
representative features kept constant over changes. The aim of this paper
is to identify one such feature, namely interactions or dependencies among
variables that are common across multiple datasets collected under different
conditions. To that end, we propose a common substructure learning (CSSL)
framework based on a graphical Gaussian model. We further present a sim-
ple learning algorithm based on the Dual Augmented Lagrangian and the
Alternating Direction Method of Multipliers. We confirm the performance
of CSSL over other existing techniques in finding unchanging dependency
structures in multiple datasets through numerical simulations on synthetic
data and through a real world application to anomaly detection in automobile
sensors.

Keywords: Graphical Gaussian Model, Common Substructure, Dual
Augmented Lagrangian, Alternating Direction Method of Multipliers

1. Introduction

In several real world data, such as that from the stock market (Baillie and Bollerslev,
1989), gene regulatory networks (Ahmed and Xing, 2009; Zhang et al., 2009),
biomedical measurements (Varoquaux et al., 2010), or sensors in engineering
systems (Idé et al., 2009), there are dynamical properties over time evolu-
tions or due to changes in the surrounding environments. Such effects cause
data to have different behaviors in each dataset collected under different con-
ditions. One way to analyze such data is to explicitly include the change into
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the model (Hamilton, 1994; Durbin et al., 2001), which usually requires de-
tailed domain knowledge that is rarely available in most cases. Another way
is to impose general and mild assumptions on the data. This kind of approach
is especially common in the multi-task learning literatures (Caruana, 1997;
Turlach et al., 2005), where the relationships among datasets are treated as
a clue for combining multiple tasks into a single problem. The scope of the
present paper is in the latter context where the relationship among datasets
is the objective we want to analyze. For the purpose, we focus on invariance
of the data against the underlying changes which provides partial yet im-
portant aspects of the data behaviors (von Bünau et al., 2009; Hara et al.,
2012). We provide a technique for finding one of such invariance, specifically
constant interactions or dependencies among variables across several different
conditions. An illustrative example is an engineering system where system er-
rors are observed as dependency anomalies in sensor values (Idé et al., 2009),
which are usually caused by a fault in a subsystem. The invariance, which
in this example is the remaining healthy subsystems, is captured by a steady
dependency over the multiple datasets sampled before and after the error
onset. Hence, we can use such information as a clue for finding erroneous
subsystems.

Graphical modeling is a popular approach for analyzing dependencies in
multivariate data (Lauritzen, 1996). We adopt one of the most fundamen-
tal models, a graphical Gaussian model (GGM), as the basis of our frame-
work. A GGM is a basic model representing linear dependencies among
continuous random variables, and has been widely studied owing to the sim-
ple nature, that is, the dependency structure is represented by the zero
patterns in an inverse covariance matrix. Identification of such zero pat-
terns from data was first studied by Dempster (1972) as a Covariance Se-
lection where the task is formulated as the combinatorial problem of opti-
mizing the location of zeros in a matrix. Since classical algorithms for this
do not scale to high dimensional data, the scope of studies has shifted to
a relaxed setting (Meinshausen and Bühlmann, 2006; Yuan and Lin, 2007;
Banerjee et al., 2008), where Covariance Selection is formulated as a con-
vex optimization problem using a ℓ1-regularization that induces zeros in the
resulting matrix. Because of the effectiveness of the relaxed formulation, sev-
eral related optimization techniques have also been studied (Friedman et al.,
2008; Duchi et al., 2008a; Li and Toh, 2010; Scheinberg and Rish, 2010; Yuan,
2009; Scheinberg et al., 2010; Hsieh et al., 2011).

In our context, the objective is not to estimate the structure of a GGM
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from a single dataset, but to decompose the resulting GGMs from several
datasets into common and individual substructures, with the former repre-
senting the invariance we aim to detect. There are some prior studies on
learning a set of GGMs from multiple datasets. Varoquaux et al. (2010) and
Honorio and Samaras (2010) imported the idea of Group-Lasso (Yuan and Lin,
2006; Bach, 2008) and Multitask-Lasso (Turlach et al., 2005; Liu et al., 2009),
and extended the framework of a single GGM setting. In both cases, the prob-
lem is formulated under the assumption that all matrices share the same
zero patterns. Guo et al. (2011) considered a method to avoid this addi-
tional assumption, although the problem then loses convexity. Though these
approaches achieved some success in improving the estimation accuracy of
graphical models, this does not necessarily mean that they are suitable for
finding commonness across datasets as we will see in the simulation. In
the context of common substructure detection, Zhang and Wang (2010) pro-
posed using a Fused-Lasso (Tibshirani et al., 2005) type of technique to find
an invariant pattern between two datasets. As a general framework for N
datasets situations, Chiquet et al. (2011) considered imposing sign coher-
ence on the resulting structures, while Hara and Washio (2011) extended
the framework of Zhang and Wang (2010) to the general situation of N
datasets 1. In the opposite context where the target is dynamics rather than
invariance, Zhou et al. (2010) proposed using weighted statistics to trace the
evolution of a GGM. We note there are also several related studies in the
binary Markov random field literatures (Guo et al., 2007; Ahmed and Xing,
2009). They also use ℓ1-regularization (Wainwright et al., 2007) and Fused-
Lasso type techniques (Ahmed and Xing, 2009) for recovering temporal de-
pendency structures, which are technically quite close to the ones of GGM.

The contribution of this paper is two folds. First, we introduce the novel
Common Substructure Learning (CSSL) framework that is applicable for a
general case of N datasets. Second, a sophisticated algorithm based on the
Dual Augmented Lagrangian (DAL) (Tomioka et al., 2011) and the Alter-
nating Direction Method of Multipliers (ADMM) (Gabay and Mercier, 1976;
Boyd et al., 2011) is proposed. In the proposed algorithm, the inner prob-
lems for each iterative update are simple and can be solved efficiently which

1This paper is an extension of Hara and Washio (2011) with more general settings, an
efficient optimization algorithm, and exhaustive simulations on synthetic and real world
datasets.
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Table 1: Mathematical Notation
Notation Description

‖x‖p ℓp-norm of a vector x ∈ R
d, ‖x‖p =

(

∑d

i=1 |xi|p
)

1

p

for p ∈ [1,∞) and ‖x‖∞ = max1≤i≤d |xi|
‖A‖p vectorized ℓp-norm of a matrix A ∈ R

d×d,

‖A‖p =
∥

∥(A11, A12, . . . , Add)
⊤
∥

∥

p

‖A‖S spectral norm of a matrix A ∈ R
d×d,

‖A‖S = max1≤i≤d σi(A) where σi(A) is
an ith singular value of A

‖B‖1,p ℓ1,p-norm of matrices B = {Bi;Bi ∈ R
d×d}Ni=1,

‖B‖1,p =
∑d

j,j′=1

∥

∥(B1,jj′, B2,jj′, . . . , BN,jj′)
⊤
∥

∥

p

A ≻ 0 a matrix A is symmetric and positive definite
sgn (a) sign function on a scalar a, sgn (a) = 1 for a > 1,

sgn (a) = −1 for a < 0 and sgn (a) = 0 for a = 0
diag (x) d× d matrix with x ∈ R

d on its diagonal

results in fast computation. We confirm the validity of the CSSL approach
through simulations on synthetic datasets and on an anomaly detection task
in real-world data.

The remainder of the paper is organized as follows. In Section 2, we briefly
review properties of GGMs and existing learning techniques. In Section 3,
we present the proposed framework and its theoretical properties. The op-
timization algorithm based on DAL-ADMM is introduced in Section 4. The
validity of the proposed method is presented through synthetic experiments
in Section 5. In Section 6, we apply the proposed method to an anomaly
detection task on sensor error data. Finally, we conclude the paper in Sec-
tion 7.

2. Structure Learning of Graphical Gaussian Model

In this section, we review the GGM estimation problem (Meinshausen and Bühlmann,
2006; Yuan and Lin, 2007; Banerjee et al., 2008) and some prior extensions
to multiple datasets (Varoquaux et al., 2010; Honorio and Samaras, 2010;
Zhang and Wang, 2010).

We also summarize mathematical notations used throughout the paper
in Table 1.
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2.1. Graphical Gaussian Model

In multivariate analysis, covariance and correlation are commonly used
as indicators for a relationship between two random variables. However, in
general, a covariance between two random variables xj and xj′ is affected by
other variables. Therefore, we need to remove such effects to estimate an es-
sential dependency structure, which is available by searching for conditional
dependency among random variables. In a general graphical model, we ex-
press these dependencies using a graph with vertices corresponding to each
random variable and edges spanning random variables that are conditionally
dependent.

Here, we assume that a d-dimensional random variable x = (x1, x2, . . . , xd)
⊤

follows a zero mean Gaussian distribution, that is, x ∼ N (0d,Λ
−1) for some

symmetric and strictly positive definite matrix Λ ∈ R
d×d. We refer to a

graphical model of Gaussian variables as graphical Gaussian model (GGM)
Note that the zero mean assumption can be achieved without loss of general-
ity by subtracting a sample mean from the dataset. Here, a covariance matrix
is parameterized as the inverse of a precision matrix Λ since this is a more
primitive parameter representing essential dependency among variables. A
precision matrix relates to the conditional expectation as

Λjj′ ∝ −E [xjxj′|other variables] ,

that is, the (j, j′)th entry of Λ is proportional to the covariance between xj

and xj′ with the remaining d − 2 variables fixed. With this property, the
conditional independence between Gaussian random variables is expressed
as zero entries of Λ:

Λjj′ = 0 ⇔ xj ⊥⊥ xj′ | other variables

where ⊥⊥ denotes statistical independence. Because of this property, the edge
patterns in a GGM correspond to the non-zero entries in a precision matrix
Λ. In a GGM, two vertices have an edge between them if and only if the
corresponding (j, j′)th entry of Λ is non-zero. In the case that only few pairs
of variables are dependent, most off-diagonal elements in Λ are zeros and the
corresponding graph expression is sparse, which allows us to visually inspect
the underlying relations.
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2.2. Sparse Estimation of GGM

A naive way to estimate a precision matrix Λ is a maximum likelihood
estimation formulated as

Λ̂ = argmax
Λ∈P

ℓ(Λ;S) ,

ℓ(Λ;S) = log det Λ− tr [SΛ] . (1)

Here, ℓ(Λ;S) is a log-likelihood of a Gaussian distribution (up to a constant),
S is a sample covariance matrix and P is a set of symmetric positive definite
matrices P = {A ∈ R

d×d;A ≻ 0}. The positive definiteness constraint is
imposed so that the resulting Λ is a valid precision matrix. For a strictly
positive definite matrix S, the solution to this problem is Λ̂ = S−1. However,
in a finite sample case, even when the true parameter is zero, that is, Λjj′ = 0,

its maximum likelihood estimator Λ̂jj′ is non-zero with probability one. In
this situation, the resulting graphical model is a complete graph, which states
that every pairs of variables is conditionally dependent and the underlying
intrinsic relationships are masked.

The major scope of GGM studies is how to avoid this unfavorable result
from a maximum likelihood estimation and infer a sparse graph structure,
which is referred to as Covariance Selection (Dempster, 1972). In classical
studies, some entries of a precision matrix Λ are fixed as zeros and the remain-
ing non-zero entries are estimated, where the zero pattern is optimized in a
combinatorial manner. However, this combinatorial problem is not feasible
for high-dimensional data.

In recent studies, the use of an ℓ1-regularization has been shown to
be practical for Covariance Selection. The first such study was conducted
by Meinshausen and Bühlmann (2006). In their approach, the solution is
obtained by solving the Lasso (Tibshirani, 1996). Here, let us denote d-

dimensional data with n data points using an n×dmatrixX =
[

x1 x2 . . . xn

]⊤
,

with Xj as its jth column and X\j as its remaining d− 1 columns. For each
column, we solve the following Lasso:

min
θ

1

2

∥

∥Xj −X\jθ
∥

∥

2

2
+ ρ ‖θ‖1 , (2)

where ρ ≥ 0 is a regularization parameter. We then set zero patterns of θ to
the jth column of Λ. Meinshausen and Bühlmann (2006) have also showed
the asymptotic convergence of their estimator to the true graph structure
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under a proper condition. This approach was later reformulated as an ℓ1-
regularized maximum likelihood problem (Yuan and Lin, 2007; Banerjee et al.,
2008):

max
Λ∈P

ℓ(Λ;S)− ρ ‖Λ‖1 . (3)

We refer to this problem as Sparse Inverse Covariance Selection (SICS) fol-
lowing Scheinberg et al. (2010). The resulting precision matrix of (3) has
some zero entries owing to the effect of an additional ℓ1-regularization term.
Several efficient optimization techniques are available for solving this prob-
lem. Examples include GLasso (Friedman et al., 2008), PSM (Duchi et al.,
2008a), IPM (Li and Toh, 2010), SINCO (Scheinberg and Rish, 2010), ADMM
(Yuan, 2009; Scheinberg et al., 2010) and QUIC (Hsieh et al., 2011).

2.3. Learning a Set of GGMs with Same Topological Patterns

The ordinary SICS problem (3) aims to learn one GGM from a single
dataset. The extension of this framework to multiple datasets has been
studied by Varoquaux et al. (2010) and Honorio and Samaras (2010). The
task is to estimate N precision matrices Λ1,Λ2, . . . ,ΛN from N datasets
where the sample covariance matrices for each dataset are S1, S2, . . . , SN . The
objective of this multi-task extension is to improve the estimation accuracy of
each GGM by incorporating the similarity among datasets. In the framework
of the above studies, GGMs from each dataset are assumed to have the same
topological patterns, that is, the same edge connection structures while the
edge weights might be different for each GGM. They both introduced a ℓ1,p-
norm of a set of N precision matrices {Λi}Ni=1

‖Λ‖1,p =
d
∑

j,j′=1

(

N
∑

i=1

|Λi,jj′|p
)

1

p

,

as a regularization term analogous to the Group-Lasso (Yuan and Lin, 2006;
Bach, 2008) and Multitask-Lasso (Turlach et al., 2005; Liu et al., 2009) with
p ∈ [1,∞]. Varoquaux et al. (2010) has considered the case p = 2 while
Honorio and Samaras (2010) used p =∞. These two choices are commonly
adopted in many scenarios owing to the computational efficiency. The entire
estimation problem is defined as

max
{Λi;Λi∈P}Ni=1

N
∑

i=1

tiℓ(Λi;Si)− ρ ‖Λ‖1,p , (4)
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with non-negative weights t1, t2, . . . , tN . Without loss of generality, we can
limit ourselves to the normalized case

∑N

i=1 ti = 1 since the unnormalized
version is just a scaled objective function for some constant. The typical
choice of parameters is ti =

ni∑N
i=1

ni
where ni is the number of data points

in the ith dataset. We refer to problem (4) as Multitask Sparse Inverse
Covariance Selection (MSICS) in the remainder of the paper.

Note that the MSICS problem (4) involves the ordinary SICS (3) as a
special case when p = 1 where the ℓ1,1-regularization term completely de-
couples into N individual ℓ1-regularizations. In the extended case for p > 1,

the regularization term enforces the joint structure Λ̃jj′ =
(

∑N

i=1 |Λi,jj′|p
)

1

p

to be sparse, with Λ̃jj′ = 0 indicating that the corresponding (j, j′)th entries
are zeros across all N precision matrices.

2.4. Learning Structural Changes between Two GGMs

Although taking advantage of situations with multiple datasets using the
preceding techniques is useful for improving the estimation performances of
the resulting GGMs, it only imposes joint zero patterns and does not indi-
cate anything about the commonness of the non-zero entries. It is there-
fore not that helpful when comparing GGMs representing similar models
where we expect that there may exist some common edges whose weights are
close to each other. Zhang and Wang (2010) considered the two datasets
case and constructed an algorithm using a Fused-Lasso type regulariza-
tion (Tibshirani et al., 2005) to round these similar values to be exactly the
same allowing only significantly different edges between two GGMs to be
extracted. Their approach follows the ideas of Meinshausen and Bühlmann
(2006) by connecting the update procedure (2) for two datasets X1 and X2

through a new regularization term for the variation between two parameters
‖θ1 − θ2‖1,

min
θ1,θ2

2
∑

i=1

{

1

2

∥

∥Xi,j −Xi,\jθi

∥

∥

2

2
+ ρ ‖θi‖1

}

+ γ ‖θ1 − θ2‖1 , (5)

where γ ≥ 0 is a regularization parameter for the variation. The new term
enforces the variation of some elements in two parameters to shrink to zeros.
They also provided a coordinate descent-based optimization procedure for
the above problem.
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3. Learning Common Patterns in Multiple GGMs

The preceding work by Zhang and Wang (2010) adopted the idea of the
Fused-Lasso type technique using the specific formulation of the two datasets
situation. In our study, we introduce a new framework, a Common Substruc-
ture Learning (CSSL), for finding invariant patterns in multiple dependency
structures that is applicable to the general case of N datasets.

3.1. Common Substructure Learning Problem

We first formalize what invariance we are aiming to detect in multiple de-
pendency structures. To begin with, we assume that the number of variables
in each dataset is the same, so they are all d-dimensional. Also, the identities
of each variable are the same. For instance, x1 is always a value from the
same sensor while its behavior may change across datasets. We then define
a common substructure for multiple GGMs as follows.

Definition 1 (Common Substructure of Multiple GGMs). Let Λ1, Λ2,
. . . , ΛN be precision matrices corresponding to each GGM. Then, the com-
mon substructure of the GGMs is expressed by an adjacency matrix Θ ∈ R

d×d

defined as

Θjj′ =

{

Λ1,jj′ , if Λ1,jj′ = Λ2,jj′ = . . . = ΛN,jj′

0 , otherwise
. (6)

Note this is a natural extension of the invariance notion adopted in the
prior work by Zhang and Wang (2010) for the case of two datasets. With
an ordinal sparsity assumption for GGMs, this definition leads the precision
matrices to simultaneously have sparseness and commonness. That is:

• Sparseness: Λi,jj′ = 0 for some 1 ≤ i ≤ N and 1 ≤ j, j′ ≤ d,

• Commonness: Λ1,jj′ = Λ2,jj′ = . . . = ΛN,jj′ for some 1 ≤ j, j′ ≤ d.

Under the above commonness, the basic idea of our framework is to
parametrize each precision matrix Λi using two components, a common sub-
structure Θ and an individual substructure Ωi ∈ R

d×d:

Λi = Θ+ Ωi . (7)

Here, each individual substructure matrix Ωi is composed of non-zero entries
that are not common across the N precision matrices.
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In the preceding formulation (5), some entries in the two precision matri-
ces are shrunk to the same value owing to the effect of the term ‖θ1 − θ2‖1.
In the proposed parameterization, such commonness corresponds to the case
when some entries of the individual substructures are simultaneously zero,
that is, Ω1,jj′ = Ω2,jj′ = . . . = ΩN,jj′ = 0. Hence, the non-zero common value
is expressed by a common substructure matrix Θ. These facts motivate us
to regularize the individual substructures through the grouped regulariza-
tion ‖Ω‖1,p. On the other hand, we expect a common substructure Θ to be
sparse so that we can interpret it easily. To that end, we adopt an ordinary
ℓ1-regularization ‖Θ‖1 and the overall problem is summarized as follows:

max
Θ,{Ωi}Ni=1

N
∑

i=1

tiℓ(Θ + Ωi;Si)− ρ ‖Θ‖1 − γ ‖Ω‖1,p

s.t. Θ+ Ωi ∈ P (1 ≤ i ≤ N) , (8)

with regularization parameters ρ, γ ≥ 0. Since −ℓ(Θ + Ωi;Si), ‖Θ‖1 and
‖Ω‖1,p are all convex, the entire formulation is again a convex optimiza-
tion problem. We refer to this problem as Common Substructure Learning
(CSSL). Note that in the above formulation, we have slightly relaxed the
condition of commonness to allow Θjj′ and Ωi,jj′ to become simultaneously
non-zeros which is contrary to Definition (6). We correct this point by ap-
plying the criterion (6) to the resulting precision matrices Λ̂1, Λ̂2, . . . , Λ̂N in
the post processing stage to extract only truly common entries.

Here, we list two important properties of the CSSL problem (8), a dual
problem and the bound on eigenvalues. We first present the dual problem,
which plays an important role in constructing an efficient optimization algo-
rithm in the next section.

Propostion 1 (Dual of CSSL). The dual problem of CSSL (8) is

min
{Wi;Wi∈P}Ni=1

−
N
∑

i=1

ti log detWi − d ,

s.t.

∣

∣

∣

∣

∣

N
∑

i=1

ti (Wi,jj′ − Si,jj′)

∣

∣

∣

∣

∣

≤ ρ ,

(

N
∑

i=1

tqi |Wi,jj′ − Si,jj′|q
)

1

q

≤ γ (1 ≤ j, j′ ≤ d) , (9)
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where q is a parameter satisfying p−1 + q−1 = 1. The resulting matrices of
the dual problem W ∗

i are related to the optimal precision matrices Λ∗
i through

the inverse, Λ∗
i = W ∗

i
−1.

In both the primal and dual formulations (8), (9), we enforced the positive
definiteness constraints, Λi = Θ + Ωi ∈ P and Wi ∈ P so that the matrices
are valid precision or covariance matrices. Here, we show that they can be
tightened according to the next theorem.

Theorem 1 (Bounds on Eigenvalues). The optimal precision matrices for

the CSSL (8) Λ∗
1,Λ

∗
2, . . . ,Λ

∗
N with 0 < ρ < N

1

pγ < ∞ have bounded eigen-
values λmin

i Id � Λ∗
i � λmax

i Id, where the bounding parameters λmin
i and λmax

i

are

λmin
i =

ti
ti ‖Si‖S + dγ

, λmax
i =

N
1

pd2

ρ
.

Using this result, we can replace the constraint Λi ∈ P with the tighter
Λi ∈ P̃i = {A ∈ R

d×d;A � λmin
i Id}, and similarly Wi ∈ {A ∈ R

d×d;A �
λmax
i

−1Id}. Note that this update is practically important when constructing
an optimization algorithm. Since the new constraint set P̃i is closed, we
can project points out of the constraint set onto the boundary, which is
unavailable for the original open set P.

3.2. Interpretations of CSSL

The proposed CSSL problem (8) can be interpreted as a generalization of
an ordinary SICS problem (3) and its multi-task extension MSICS (4). In the
case that γ → ∞, the solution to the CSSL is Ω1 = Ω2 = . . . = ΩN = 0d×d,
which means that all precision matrices are equal and are represented by a
single matrix Θ. Such Θ is available by solving the SICS problem (3) with

S =
∑N

i=1 tiSi. On the other hand, if ρ ≥ N
1

pγ, the common substructure Θ
becomes zero. This fact follows from the relationship between the ℓp-norms:

γ ‖Θ+ Ωi‖1,p ≤ N
1

pγ ‖Θ‖1 + γ ‖Ω‖1,p ≤ ρ ‖Θ‖1 + γ ‖Ω‖1,p .

Suppose that the common substructure is non-zero, that is, Θ 6= 0d×d, then
the above inequality means that the update Ωi ← Θ + Ωi and Θ ← 0d×d

improves the objective function value (8) without changing the resulting
precision matrix Λi = Θ+Ωi, and thus the solution must be Θ = 0d×d. Under
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this situation, the CSSL problem (8) coincides with MSICS (4). For the

proper parameters ρ < N
1

pγ <∞, the CSSL problem (8) is the intermediate
of those two problems.

The CSSL problem can also be interpreted from a distributional per-
spective. From the relationship between the Lagrangian expression and the
constrained optimization problem, the CSSL problem (8) is equivalent to
solving a set of N maximum likelihood estimation problems (1) under the
additional constraints

‖Θ‖1 ≤ η , ‖Ω‖1,p ≤ η′ , (10)

for some properly chosen positive constants η, η′. Moreover, we have

max
1≤i<i′≤N

‖Ωi − Ωi′‖1 ≤ max
1≤i<i′≤N

d
∑

j,j′=1

(|Ωi,jj′|+ |Ωi′,jj′|)

≤ 2 ‖Ω‖1,∞ ≤ 2 ‖Ω‖1,p ,

where the second inequality comes from the fact that exchanging the order
of max1≤i<i′≤N and

∑d

j,j′=1 produces the upper bound. The last inequality
is an ordinary relationship between ℓp-norms. These relations and the fact
that Λi − Λi′ = Ωi − Ωi′ lead to the bound

max
1≤i<i′≤N

‖Λi − Λi′‖1 ≤ 2η′ .

Hence, from the result of Honorio (2011, Lemma 23) and general matrix norm
rules, the left-hand side of this inequality can be interpreted as the upper
bound of the KL divergence between two distributions pi(x) = N (0d,Λ

−1
i )

and pi′(x) = N (0d,Λ
−1
i′ ). With these properties, we can interpret the second

constraint in (10) as a constraint on the similarity among distributions:

max
1≤i,i′≤N

DKL(pi(x)||pi′(x)) ≤ 2η′ max
1≤i≤N

‖Λ−1
i ‖S ,

where DKL(pi(x)||pi′(x)) denotes a KL divergence between two distributions
pi(x) and pi′(x). From Theorem 1, the optimal parameters Λ∗

1,Λ
∗
2, . . . ,Λ

∗
N

have bounded spectral norms for a finite γ, and thus this upper bound on the
KL divergence is always valid. Moreover, we can further extend this bound
into the extreme case γ → ∞ and η′ → 0. As we have discussed before,
this is the case Ω1 = Ω2 = . . . = ΩN = 0d×d and the problem is equivalent
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to solving a single SICS problem for Θ with S =
∑N

i=1 Si. Hence, from
Banerjee et al. (2008, Theorem 1), we can see that the resulting precision
matrices still have finite eigenvalues for ρ > 0, and the right hand side of the
above inequality goes to zero. This means that the resulting distributions
represented by precision matrices derived from CSSL (8) have to be similar
to one another at some level and they can be even identical in the extreme
case. Note that MSICS (4) is a special case of CSSL when Θ = 0d×d and
thus the same upper bound holds, although there is the significant distinction
that the parameter η′ in MSICS (4) also affects the sparsity of the resulting
precision matrices while CSSL (8) can control the sparsity through the other
hyper-parameter ρ.

3.3. Connection to Additive Sparsity Models

In this section, we discuss some connections of the CSSL problem (8)
to Additive Sparsity Models (Jalali et al., 2010; Chandrasekaran et al., 2010;
Agarwal et al., 2011; Candès et al., 2011; Obozinski et al., 2011). In general
additive sparsity models, the objective parameter we want to estimate is
modeled as the sum of two components, as in (7). Hence, these two param-
eters are estimated using sparsity inducing norms such as an ℓ1-norm and a
trace-norm. In this sense, CSSL can be seen as a specific example of additive
sparsity models where we use the combination of an ℓ1-regularization and a
group-wise regularization.

Here, we point out two close works from Jalali et al. (2010) and Chandrasekaran et al.
(2010). The former considers the multi-task least squares regression problem
under the combination of ℓ1, group-wise regularizations. Their basic idea is
quite close to ours in that some regression parameters can be close to each
other across datasets. They also prove the advantage of combining two reg-
ularizations over using only one theoretically and numerically. The latter
study is on GGMs but with different sparsity assumptions from ours. They
show that the additive sparsity model naturally appears in GGM when there
are latent variables. In such a situation, the first component in the additive
sparsity model corresponds to the precision matrix between observed vari-
ables while the latter component is an interaction between latent variables.
This insight is also available for interpreting our model (7), that is, a com-
mon interaction among observed variables is contaminated by the effect of
latent variables which are different for each dataset.
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4. Optimization via DAL-ADMM

In this section, we present the optimization algorithm for solving the
CSSL problem (9). Our basic approach here is to adopt the Augmented
Lagrangian techniques (Hestenes, 1969; Powell, 1967). In a prior study,
Tomioka et al. (2011) have shown that solving a dual problem using the
Augmented Lagrangian, which is referred to as Dual Augmented Lagrangian
(DAL), is preferable for the case when the primal loss is badly conditioned.
See Tomioka et al. (2011, Table 3) and the discussion therein. This is actu-
ally the case we are faced with, as summarized in the next theorem.

Theorem 2. The Hessian matrix of the CSSL primal loss function
∑N

i=1 tiℓ(Θ+
Ωi;Si) is rank-deficient while the Hessian matrix of the CSSL dual loss func-

tion −∑N

i=1 ti log detWi is always full rank for 0 < ρ < N
1

pγ <∞.

This fact motivates us to solve the dual problem rather than the primal prob-
lem. To that end, we construct an algorithm based on the DAL approach.

4.1. DAL-ADMM Algorithm

The basic structure of the proposed algorithm is based on the idea of
DAL. However, while the original DAL requires solving the inner problem
almost exactly (Tomioka et al., 2011), we take an alternative approach using
ADMM (Gabay and Mercier, 1976; Boyd et al., 2011) that makes the entire
procedure dramatically simple.

To begin with, we rewrite the CSSL dual problem (9) in the following
equivalent form:

min
{Wi,Yi;Wi∈P}Ni=1

−
N
∑

i=1

ti log detWi

s.t. tiWi − Yi − tiSi = 0 (1 ≤ i ≤ N) ,
∣

∣

∣

∣

∣

N
∑

i=1

Yi,jj′

∣

∣

∣

∣

∣

≤ ρ ,

(

N
∑

i=1

|Yi,jj′|q
)

1

q

≤ γ (1 ≤ j, j′ ≤ d) . (11)

Based on this expression, we define the following Augmented Lagrangian
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function:

Lβ(W,Y, Z) =−
N
∑

i=1

ti log detWi + δρ(Y ) + δ̃qγ(Y )

+ tr
[

Z⊤ (TW − Y − TΣ)
]

+
β

2
‖TW − Y − TΣ‖22 , (12)

where β is a nonnegative parameter and Σ, W , Y and Z are the concatenated

matrices Σ =
[

S1 S2 . . . SN

]⊤
, W =

[

W1 W2 . . . WN

]⊤
, Y =

[

Y1 Y2 . . . YN

]⊤
and Z =

[

Z1 Z2 . . . ZN

]⊤
, and T is as the matrix

T = diag
(

[t1, t2, . . . , tN ]
⊤
)

⊗ Id, where ⊗ denotes the Kronecker product and
Id is the d-dimensional identity matrix. We also defined the functions δρ(Y )
and δ̃qγ(Y ) as

δρ(Y ) =

{

0 , if
∣

∣

∣

∑N

i=1 Yi,jj′

∣

∣

∣
≤ ρ for 1 ≤ j, j′ ≤ d

∞ , otherwise
,

δ̃qγ(Y ) =







0 , if
(

∑N

i=1 |Yi,jj′|q
)

1

q ≤ γ for 1 ≤ j, j′ ≤ d

∞ , otherwise
.

In the Augmented Lagrangian function (12), the optimal precision matrix Λ∗
i

is represented by the optimal dual variable Z∗
i . This can be verified through

a simple calculation. We set the derivative of the unaugmented Lagrangian
L0(W,Y, Z) over Wi to zeros and find that

W ∗
i
−1 = Z∗

i ,

which implies that Λ∗
i = Z∗

i from Proposition 1. This follows since the
solution to (11) must be the saddle point of the unaugmented Lagrangian
function L0(W,Y, Z).

We solve problem (11) using ADMM by iteratively applying the following
three steps until convergence:















W (k+1) ∈ argmin
{Wi;Wi∈P}Ni=1

Lβ(W,Y (k), Z(k))

Y (k+1) ∈ argmin
Y

Lβ(W
(k+1), Y, Z(k))

Z(k+1) = Z(k) + β
(

TW (k+1) − Y (k+1) − TΣ
)

.
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Hence, using ADMM, convergence of the dual variable Z to the optimal pa-
rameter Z∗ is guaranteed as the number of iterations tends to infinity (Boyd et al.,
2011, Section 3.2). This means we can find the optimal precision matrices
Λ∗

1,Λ
∗
2, . . . ,Λ

∗
N using DAL-ADMM. In the following two subsections, we give

the update procedures for W and Y .

4.2. Inner Optimization Problem: Update of W

The update of W can be factorized into N independent problems where
each problem defines an update of Wi:

min
Wi∈P

−ti log detWi + titr
[

Z
(k)
i

⊤
Wi

]

+
β

2

∥

∥

∥
tiWi − Y

(k)
i − tiSi

∥

∥

∥

2

2
.

By setting the derivative over Wi to zero, we obtain

Wi −
(

1

ti
Y

(k)
i − 1

βti
Z

(k)
i + Si

)

− 1

βti
W−1

i = 0d×d .

Now, write the eigen-decomposition as 1
ti
Y

(k)
i − 1

βti
Z

(k)
i + Si = PDP⊤ with

D = diag (σ1, σ2, . . . , σd) and P⊤P = PP⊤ = Id. Then, the above matrix
equation has a solution of the formWi = PD̃P⊤ with D̃ = diag (σ̃1, σ̃2, . . . , σ̃d).
The equation for each eigenvalue is σ̃m−σm− 1

βti
σ̃−1
m = 0 (1 ≤ m ≤ d), which

has the analytic solution

σ̃m =
σm +

√

σ2
m + 4

βti

2
.

Note the positive definiteness of Wi is automatically fulfilled since σ̃m > 0
for β > 0.

4.3. Inner Optimization Problem: Update of Y

The update of Y is formulated as

min
Y

δρ(Y ) + δ̃qγ(Y )− tr
[

Z(k)⊤Y
]

+
β

2

∥

∥TW (k+1) − Y − TΣ
∥

∥

2

2
,

or equivalently, the projection Y = proj (Y0,A) of Y0 = TW (k+1)+ 1
β
Z(k)−TΣ

onto the setA =
{

Y =
[

Y1 Y2 . . . YN

]⊤
;
∣

∣

∣

∑N

i=1 Yi,jj′

∣

∣

∣
≤ ρ ,

(

∑N

i=1 |Yi,jj′|q
)

1

q ≤ γ , ∀j, j′
}

,

where proj(∗, ∗) is a projection function defined as

proj (V,B) = argmin
U∈B

1

2
‖U − V ‖22 .
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Table 2: Solutions to problem (13) for q = 1, 2 and ∞: see the corresponding appendix
for further details. An operator Tγ(∗) in y ∈ ∂C2 for q =∞ is a thresholding for each y0,i,
that is, yi = sgn (y0,i)min(|y0,i|, γ).

q = 1 q = 2 q =∞

y0 ∈ C y = y0

y ∈ ∂C1 y = y0 −
1⊤Ny0 − ρ sgn

(

1⊤Ny0

)

N
1N (Appendix A.1)

y ∈ ∂C2
Continuous Quadratic
Knapsack Problem
(Appendix A.2)

y =
γ

‖y0‖2
y0

(Appendix A.3)

y = Tγ(y0)

(Appendix A.4)

y ∈ ∂C3
Continuous Quadratic
Knapsack Problem
(Appendix A.5)

Analytic Solution
(Appendix A.6)

Continuous Quadratic
Knapsack Problem
(Appendix A.7)

We can further decompose this problem into O(d2) problems over y =
(Y1,jj′, Y2,jj′, . . . , YN,jj′)

⊤ for each (j, j′)th entry. Hence, each problem is

y = proj (y0, C) , (13)

where y0 is an N -dimensional vector with the ith component equal to y0,i =

tiW
(k+1)
i,jj′ + 1

β
Z

(k)
i,jj′ − tiSi,jj′, and where the constraint set is C = {u ∈

R
N ; |1⊤

Nu| ≤ ρ, ‖u‖q ≤ γ} with 1N being an N -dimensional vector of ones.
For any q ∈ [1,∞], problem (13) has a trivial solution y = y0 if y0 ∈ C.

In the remaining cases, that is, |1⊤
Ny0| > ρ or ‖y0‖q > γ, the solution is

on the boundary of the constraint set ∂C = {u; |1⊤
Nu| = ρ, ‖u‖q ≤ γ} ∩

{u; |1⊤
Nu| ≤ ρ, ‖u‖q = γ} owing to the convexity of the objective function.

Thus, the problem can be reduced to a search of the boundary. However,
even though the constraint set C is convex, it is an intersection of two sets
and the shape of the boundary ∂C is rather complicated. Therefore, we do
not search the boundary ∂C directly, but solve a set of simpler problems
instead. The basic approach is to classify the boundary into three parts,
∂C1 = {u; |1⊤

Nu| = ρ, ‖u‖q 6= γ}, ∂C2 = {u; |1⊤
Nu| 6= ρ, ‖u‖q = γ} and

∂C3 = {u; |1⊤
Nu| = ρ, ‖u‖q = γ}. The problems we solve here are modified

versions of (13), replacing the constraint with y ∈ ∂Cm for each m ∈ {1, 2, 3}:

y = proj (y0, ∂Cm) . (14)
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Note that ∂C1 and ∂C2 involve infeasible solutions to the problem (13). For
example, a point y with ‖y‖q > γ is infeasible even if y ∈ ∂C1, while these

three regions covers the entire boundary of the constraint set ∂C ⊂ ∪3m=1∂Cm.
This guarantees that we can search the entire boundary ∂C indirectly by
searching the sets ∂Cm (m = 1, 2, 3) instead. Hence, if neither of the solutions
to (14) for y ∈ ∂C1 and y ∈ ∂C2 are involved in C, the solution to (13) is
in ∂C3. We can take advantage of this property to construct an efficient
solution procedure. We first solve problems (14) for y ∈ ∂C1 and y ∈ ∂C2,
respectively, and if neither of solutions is in C, then we solve (14) for y ∈ ∂C3.
In this paper, we focus on the specific cases q = 1, 2 and ∞, since efficient
solution procedures are available. In Table 2, we summarized the solutions
to problem (13). For further details, see Appendix A.

4.4. Convergence Criteria

Although the asymptotic convergence of Z(k) as k → ∞ is theoretically
guaranteed, in practice we need to stop the iteration at some point. A major
stopping criterion is the duality-gap, the difference between the primal and
dual objective function values. Let f(W ) be the objective function in (9)
and let g(Θ,Ω) be the one in (8). Then the duality-gap at the kth iteration
is defined as

duality-gap = f(W̃ (k))− max
1≤k′≤k

g(Θ̃(k′), Ω̃(k′)) ,

where W̃ (k), Θ̃(k) and Ω̃(k) denote parameters estimated in the kth step af-
ter proper projections and transformations. We need these modifications of
variables since the estimators in intermediate steps are not necessarily feasi-
ble. For example, W (k) does not need to satisfy the constraints in (9) since
they are imposed only on a variable Y in the DAL-ADMM setting (11). The

projected variable W̃ (k) is W̃ (k) = T−1Ỹ (k) + Σ where Ỹ (k) = proj
(

Y
(k)
0 ,A

)

and Y
(k)
0 = T (W (k) − Σ). The same goes for Λ(k) = Z(k). An estima-

tor Λ
(k)
i is not necessarily positive definite, and thus we project them as

Λ̃
(k)
i = proj

(

Λ
(k)
i , P̃i

)

. This projection is available in the following man-

ner. Let Λ
(k)
i = PDP⊤ be an eigen-decomposition with a diagonal matrix

D = diag(σ1, σ2, . . . , σd). Then the projected matrix is Λ̃
(k)
i = PD̃P⊤, where

each element of D̃ = diag(σ̃1, σ̃2, . . . , σ̃d) is σ̃m = max(σm, λ
min
i ). For com-

puting the value of g(Θ̃(k), Ω̃(k)), we need to further factorize Λ̃(k) into Θ̃(k)
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and Ω̃(k). This can be computed in an element-wise manner. Let θ = Θ̃
(k)
jj′ ,

Ω
(k)
i,jj′ = Λ̃

(k)
i,jj′ − θ and λ = (Λ̃

(k)
1,jj′, Λ̃

(k)
2,jj′, Λ̃

(k)
N,jj′)

⊤. Then the problem we need
to solve is

min
θ

ρ|θ|+ γ ‖λ− θ1N‖p .

For p = 1 and∞, this function is piecewise linear with breakpoints {0, λ1, λ2, . . . , λN}
and {0, mini λi+maxi′ λi′

2
}, respectively. Hence, the optimal θ is one of these

breakpoints and can be found by searching the candidates. For the case
p = 2, the analytic solution is

θ =
1

N















1⊤
N λ̃− sgn

(

1⊤
N λ̃
)

√

√

√

√

(1⊤
N λ̃)

2 −N
γ2(1⊤

N λ̃)
2 − ρ2

∥

∥

∥
λ̃

∥

∥

∥

2

2

γ2N − ρ2















.

Some other useful gaps are provided by Boyd et al. (2011). The primal-
gap measures how much the equality constraints in (11) is fulfilled,

primal-gap =
∥

∥TW (k) − Y (k) − TΣ
∥

∥

2
,

while the dual-gap is a degree of the feasibility condition of the solution,
defined as

dual-gap = β
∥

∥T (Y (k+1) − Y (k))
∥

∥

2
.

In our simulations in Sections 5 and 6, we have evaluated both criteria.
We set two threshold parameters ǫgap and ǫpdgap, and evaluated the conditions
duality-gap ≤ ǫgap and max(primal-gap, dual-gap) ≤ ǫpdgap in each iteration.
If one of two conditions is fulfilled, we regard the iteration as converged and
output the result. In the simulations in Sections 5 and 6, we set ǫgap = 10−5d
and ǫpdgap = 10−5.

4.5. Computational Complexity

In this section, we summarize the computational complexity of the pro-
posed algorithm. In the W update step, the computational cost is dominated
by the eigen-decomposition of a d × d matrix, which requires O(d3) opera-
tions, so the overall complexity is O(Nd3) for the update of N matrices. In
the Y update step, we need a projection proj (Y0,A) which is divided into
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O(d2) subproblems. For both q = 1 and q = ∞, the most computationally
expensive procedure is solving the continuous quadratic knapsack problem
which requires sorting O(N) elements and has complexity O(N lnN) 2. In
the case q = 2, the update is analytically available with O(N) complexity.
The overall complexity for the Y update is thus O((N lnN)d2) for q = 1,∞
and O(Nd2) for q = 2. The complexity for the Z update is O(Nd2). In the

convergence check, we need to calculate the projection proj(Λ
(k)
i , P̃i) which

has O(d3) complexity or O(Nd3) for N matrices. We also need the projec-

tion proj
(

Y
(k)
0 ,A

)

which is again O((N lnN)d2) for q = 1,∞ and O(Nd2)

for q = 2. Summarizing the above results, we conclude that the computa-
tional complexity of one update in DAL-ADMM is O(Nd3 + (N lnN)d2) for
q = 1,∞ and O(Nd3) for q = 2. In many practical situations, the number
of datasets N is in the tens, while the dimensionality of the data d can be
a few hundred. In such cases, lnN ≪ d holds, and the entire complexity is
approximately O(Nd3). We note this is the least necessary complexity. For
an unregularized setting, the solution Λ∗

i is a maximum likelihood estimate
S−1
i , which requires O(d3) complexity for a matrix inverse and O(Nd3) for

N matrices.
Despite the theoretical complexity, the choice of β is of practical impor-

tance since it affects the number of iterations needed until convergence. We
propose using the heuristic from Boyd et al. (2011). In this heuristic, we
update the value of β = β(k) in every steps following the next rule:

β(k+1) =







2β(k) , if primal-gap ≥ 10 ∗ dual-gap
0.5β(k) , if dual-gap ≥ 10 ∗ primal-gap
β(k) , otherwise

.

While this does not give any theoretical guarantees on its performance, it
does give us a pragmatic choice of β and results in convergence with a smaller
number of steps.

4.6. Heuristic Choice of Hyper–parameters

In the CSSL problem (8), the choice of hyper-parameters ρ and γ affects
the resulting precision matrices. There are several approaches for choosing
these, such as cross-validation (Yuan and Lin, 2007; Guo et al., 2011) or the

2See Appendix A.2, Appendix A.5, and Appendix A.7.

20



Bayesian information criterion (Guo et al., 2011). Apart from selection tech-
niques, the following result gives us some insight into ρ and γ, and is helpful
for analyzing the data more intensively.

Propostion 2. Let the bivariate common substructure Θ and individual sub-

structures Ωi be in the forms Θ =

[

0 θ
θ 0

]

and Ωi =

[

ui ωi

ωi vi

]

, and con-

sider the following CSSL problem with regularizations only on off-diagonal
entries:

max
Θ,{Ωi}Ni=1

N
∑

i=1

tiℓ(Θ + Ωi;Si)− 2ρ|θ| − 2γ ‖ω‖p

s.t. Θ+ Ωi ∈ P (1 ≤ i ≤ N) , (15)

where ω = (ω1, ω2, . . . , ωN)
⊤. Then the off-diagonal entries of the resulting

precision matrices θ,ω have the following property:

max
1≤i≤N

|ri| ≤ γ and

∣

∣

∣

∣

∣

N
∑

i=1

tiri

∣

∣

∣

∣

∣

≤ ρ ⇒ θ = 0, ω = 0N ,

where ri is the off-diagonal entry of Si.

Although the result is specific to the bivariate case, we can use this as
a guideline for choosing the hyper-parameters ρ and γ. It also shows that
ρ and γ are not independent of each other, but rather they should change

simultaneously proportional to max1≤i≤N |ri| and
∣

∣

∣

∑N

i=1 tiri

∣

∣

∣
. In particular, if

each matrix Si is multiplied by some positive constant c, the above condition
indicates that ρ and γ also need to be multiplied by c. Such scale invariance is
maintained only by a linear model between ρ and γ. Therefore, we construct
the following heuristic based on this linear model.

1. Assume that the linear relation
∣

∣

∣

∑N

i=1 tiSi,jj′

∣

∣

∣
= s1max1≤i≤N |Si,jj′|+s0

holds for all entries 1 ≤ j ≤ j′ ≤ d for some s0, s1 ∈ R.

2. Estimate s0, s1 with least squares regression using the tuples
{

max1≤i≤N |Si,jj′|,
∣

∣

∣

∑N

i=1 tiSi,jj′

∣

∣

∣

}

3. Parameterize ρ, γ as ρ = max(s1α+s0, 0) and γ = α using a parameter
α.

This procedure provides an efficient way of tuning ρ and γ simultaneously
through a single parameter α.
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5. Simulation

In this section, we investigate the performance of the proposed CSSL ap-
proach in finding common substructures among datasets through numerical
simulations.

5.1. Generation of Synthetic Data

We fist briefly summarize the data generation procedure for our simula-
tions. For the synthetic data, we need N precision matrices with sparseness
and commonness. We tackle this problem in a two-stage approach. We
first generate a single sparse precision matrix, and then add some non-zero
entries to make N matrices where the additional patterns are individual
to each other 3. After N precision matrices Λ1,Λ2, . . . ,ΛN have been con-
structed, we generate N datasets from the corresponding Gaussian distribu-
tions N (0d,Λ

−1
i ) for 1 ≤ i ≤ N .

5.2. Baseline Methods and Evaluation Measurements

In the simulation, we adopt SICS (3) and MSICS (4) as baseline methods
to compare with CSSL. Since neither method is designed for finding a com-
mon substructure, we apply a heuristic to extract the substructure Θ̂ from
the estimated precision matrices Λ̂1, Λ̂2, . . . , Λ̂N . Note that, in SICS, each Λ̂i

is estimated by solving (3) individually while the set of matrices is estimated
simultaneously in MSICS (4). Following is the heuristic criterion used:

Θ̂jj′ =

{

θ̂jj′ , if max1≤i<i′≤d |Λ̂i,jj′ − Λ̂i′,jj′| ≤ ǫ
0 , otherwise

where ǫ is some given threshold. Here, to avoid selecting zero edges as parts of
a common substructure, we set θ̂jj′ to zero if Λ̂1,jj′ = Λ̂2,jj′ = . . . = Λ̂N,jj′ = 0
and one otherwise. In our simulation, we select the threshold ǫ from the
resulting precision matrices. Specifically, we compute variations of estimators

for each entry
{

max1≤i<i′≤N |Λ̂i,jj′ − Λ̂i′,jj′|
}

1≤j≤j′≤d
, and then set ǫ as the

100ǫ0% quantile. This corresponds to considering the lower 100ǫ0% varied
entries as common.

In our simulation, we evaluate the common substructure detection perfor-
mance through precision, recall and the F-measure. While these values are

3See Appendix B for further details.
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defined based on the number of true positive, false positive and false negative
detections, we slightly modify these measurements. This is because finding
common dependencies with higher amplitudes is much more important than
finding very small dependencies which can be approximated as zero in prac-
tice. To that end, we adopt following weighted measurements, namely WTP
(weighted true positive), WFP (weighted false positive), and WFN (weighted
false negative),

WTP =
d
∑

j<j′

J̃c,jj′J̃p,jj′Jc,jj′ max
1≤i≤N

|Λi,jj′| ,

WFP =

d
∑

j<j′

J̃c,jj′J̃p,jj′(1− Jc,jj′) max
1≤i≤N

|Λi,jj′| ,

WFN =

d
∑

j<j′

{

J̃c,jj′(1− J̃p,jj′) + (1− J̃c,jj′)
}

Jc,jj′ max
1≤i≤N

|Λi,jj′| ,

where J̃c,jj′, J̃p,jj′ and Jc,jj′ are defined as

J̃c,jj′ = I

(

max
1≤i<i′≤N

|Λ̂i,jj′ − Λ̂i′,jj′| < ǫ

)

,

J̃p,jj′ = I

(

max
1≤i≤N

|Λ̂i,jj′| > 0

)

,

Jc,jj′ = I

(

max
1≤i<i′≤N

|Λi,jj′ − Λi′,jj′| = 0

)

.

Here, I(P ) is an indicator function that returns 1 for a true statement P and
0 otherwise. The modified measurements in the simulation are defined using
these values as

Precision =
WTP

WTP +WFP
,

Recall =
WTP

WTP +WFN
,

F-measure = 2
Precision ∗ Recall
Precision + Recall

.

In the simulation, we also observe whether the zero pattern in the preci-
sion matrices is properly recovered using each method. We use the following
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F-measure for this evaluation, which we refer to the ”F0-measure” to distin-
guish it from the one above:

F0-measure =
2TP

2TP + FP + FN
,

TP =

N
∑

i=1

d
∑

j<j′

I(Λi,jj′ = 0)I(Λ̂i,jj′ = 0) ,

FP =
N
∑

i=1

d
∑

j<j′

I(Λi,jj′ 6= 0)I(Λ̂i,jj′ = 0) ,

FN =
N
∑

i=1

d
∑

j<j′

I(Λi,jj′ = 0)I(Λ̂i,jj′ 6= 0) .

5.3. Result

We conducted simulations for three cases with data dimensionality d =
25, 50 and 100 where the number of datasets is fixed at N = 5. For each case,
we generate precision matrices Λ1,Λ2, . . . ,ΛN to have 15% non-zero entries
on average. In the simulation, we randomly generate datasets 100 times and
applied each method using several different hyper-parameters, where in each
run we set the number of data points in each dataset to be 5d. For CSSL,
we use the heuristic with a parameter α varying from 10−2 to 10−0 over 41
values. We also evaluate results for ρ = α and γ = ∞ to see the effect
of γ in an extreme case. As discussed in Section 3.2, this corresponds to
solving a single SICS problem with S =

∑N

i=1 tiSi and setting the result to

Λ̂1 = Λ̂2 = . . . = Λ̂N = Λ̂. For SICS and MSICS, we set the value of ρ as
ρ = α. For each method, we adopt the resulting precision matrices with 15%
non-zero entries among these 41 values of α. In SICS and MSICS, we also
vary the thresholding parameter ǫ0 between 0.5, 0.7 and 0.9.

We summarize the results in Table 3. From the table, we can see the
clear advantage of CSSL for p = 2 and∞ over the other methods. These two
methods show higher F-measures, which are from their higher precision and
recall. This contrasts with other methods, SICS and MSICS, which achieve
high recall, but have relatively poor precision. This means that structure
detected by those methods involve not only true common substructure but
also many false detections. This shows the drawback of estimated precision
matrices derived through SICS and MSICS, that is, their estimators tend to
be highly varied even for true common entries while this is not the case for
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CSSL. This phenomenon is especially significant in SICS, which can hardly
find common substructures owing to its highly varied estimators. The results
for MSICS under p = ∞ and ǫ0 = 0.9 are still better than the others, al-
though ǫ0 = 0.9 means that 90% of estimated non-zero entries are considered
common, which is too optimistic. Moreover, we can see that the improve-
ment of the F-measure is achieved by the growth of recall by contrasting the
results with ǫ0 = 0.5 and 0.9. This means that variations on the true common
substructure mostly happens in between 50% and 90% of the entire varia-
tions of the estimated precision matrices, which are highly varied and can
hardly be considered common. Note that despite the significant difference in
the common entry detection performance, all methods achieve comparable
zero pattern identification performance as shown by the F0-measure. This
shows that finding common entries is a different problem from the ordinal
graphical model selection, and that only CSSL does well at both tasks.

We note that CSSL with p = 1 and γ = ∞ give two extreme results.
In the former setting, the resulting precision matrices achieve higher preci-
sion with lower recall, which is very conservative, while it is the opposite in
the latter setting. The first result is caused by the difference of a grouped
regularization ‖Ω‖1,p for p = 1 and p > 1. For p = 1, ‖Ω‖1,p completely
decouples into ordinary ℓ1-regularizations and the resulting precision ma-
trices do not necessarily have common zero entries in individual substruc-
tures. Intuitively speaking, the results for p = 1 have common zero entries
Ω1,jj′ = Ω2,jj′ = . . . = ΩN,jj′ = 0 only when it is strongly confident, which
results in a very conservative performance compared with p > 1. On the
other hand, if γ = ∞, the entire structures are considered to be common,
which results in fewer false negatives and more false positives.

6. Application to Anomaly Detection

In this section, we apply CSSL to an anomaly detection problem. The
task is to identify contributions of each variable to the difference between
two datasets. Correlation anomalies (Idé et al., 2009), or errors on depen-
dencies between variables, are known to be difficult to detect using exist-
ing approaches, especially with noisy data. To overcome this problem, the
use of sparse precision matrices was proposed by Idé et al. (2009), since the
sparse approach reasonably suppresses the pseudo-correlation among vari-
ables caused by noise and improves the detection rate. Here, we propose
using CSSL. There is a clear indication that the proposed method can fur-
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ther suppress the variation in the estimated matrices. In particular, we
expect that dependency structures among healthy variables are estimated to
be common, which reduces the risk that such variables are mis-detected and
only anomalies are enhanced.

6.1. Anomaly Score

We adopt the measurement for correlation anomalies proposed by Idé et al.
(2009). This score is based on the KL-divergence between two conditional
distributions. Formally, let xA,xB ∈ R

d be Gaussian random variables fol-
lowing N (0d,Λ

A−1
) and N (0d,Λ

B−1
), respectively. We measure the degree

of anomaly between their jth variables xA
j and xB

j using a KL-divergence be-
tween their conditional distributions pA(x

A
j |xA

\j) and pB(x
B
j |xB

\j), where xA
\j

and xB
\j are the remaining d − 1 variables. To compute the score, we first

divide the precision matrix ΛA and its inverse WA into a (d − 1) × (d − 1)
dimensional matrix, a d− 1 dimensional vector, and a scalar,

ΛA =

[

LA
\j lA\j

lA\j λA
j

]

, WA = ΛA−1
=

[

V A
\j vA

\j

vA
\j σA

j

]

,

where we have rotated the rows and columns of ΛA and WA simultaneously
so that their original jth rows and columns are located at the last rows and
columns of the matrix. The matrices ΛB and its inverse WB are also divided
in a same manner. The score is then given as

dAB
j =

∫

dxA
\j pA(x

A
\j)DKL(pA(x

A
j |xA

\j)||pB(xB
j |xB

\j))

= vA
\j

⊤
(lA\j − lB\j) +

1

2







lB\j
⊤
V B
\j l

B
\j

λB
j

−
lA\j

⊤
V A
\j l

A
\j

λA
j







+
1

2

{

ln
λA
j

λB
j

+ σA
j (λ

A
j − λB

j )

}

.

Here, the KL-divergence is averaged over the remaining d − 1 variables xA
\j .

Since the KL-divergence is not symmetric and dAB
j 6= dBA

j holds in general,
the resulting anomaly score aj is decided as their maximum:

aj = max(dAB
j , dBA

j ) .
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6.2. Simulation Setting

We evaluate the anomaly detection performance using sensor error data (Idé et al.,
2009). The dataset comprised 42 sensor values collected from a real car in
79 normal states and 20 faulty states. The fault is caused by mis-wiring of
the 24th and 25th sensors, resulting in correlation anomalies. Since sam-
ple covariances are rank-deficient in some datasets, we added 10−3 on their
diagonal to avoid singularities.

For simulation, we randomly sample nn datasets from the normal states
and nf datasets from the faulty states, and then estimate sparse precision
matrices using six methods, CSSL with p = 1, 2 and ∞, SICS (3), and
MSICS (4) with p = 2 and ∞. For CSSL, we adopt the heuristic and set
ρ = max(s1α+ s0, 0) and γ = α for a given α, and for SICS and MSICS, we
set ρ = α. We test each method for 11 different values of α ranging from
10−1.5 to 10−0.5. The weight parameters ti in CSSL and MSICS are set as
ti =

1
2nn

for normal datasets and ti =
1

2nf
for faulty datasets to balance the

effects from the two states. Since the anomaly score is designed only for a
pair of datasets, we calculate anomaly scores for each of nn × nf pairs of
datasets.

6.3. Result

We repeated the above procedure 100 times for 4 different settings, [nn, nf ]
= [4, 1], [12, 3], [20, 5] and [40, 10]. For each run, we evaluated the detection
performance of each method by drawing an ROC curve and measuring the
area under the curve (AUC). In Table 4, we summarize the best median re-
sults for each method and setting. The table shows that CSSL with p = 2,∞
and MSICS with p =∞ achieve better detection performances than the oth-
ers. In particular, CSSL with p = 2 and∞ achieve AUC = 1 as their median
performance in some cases. This means that they detect faulty sensors per-
fectly for more than half of the simulation. To see further differences, we plot
the median anomaly scores derived from each method for [nn, nf ] = [20, 5] in
Figure 1. From these graphs, we observe a clear distinction between success-
ful methods and other methods on the significance of healthy sensors. The
22nd and 28th sensors are relatively highly enhanced in SICS and MSICS
with p = 2, but are not in CSSL and MSICS with p = ∞. We conjecture
that this is the major cause of performance differences. Interestingly, not
only the 22nd and 28th sensors but most of the other healthy sensors also
have the same tendencies. That is, CSSL and MSICS with p =∞ reasonably
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Figure 1: Median anomaly scores for each method for [nn, nf ] = [20, 5] with best AUCs.
Each plot is normalized so that the maximum is the same. Dotted lines denote true faulty
sensors.

suppress their significance while keeping erroneous sensors enhanced. More-
over, although the differences are subtle, we can see that CSSL with p = 2
and ∞ more successfully suppress the significance of sensors 1 to 21 and 33
to 42 than does MSICS with p =∞. Thus, as we expected in the beginning,
CSSL reduces the nuisance effects and highlights only those variables with
correlation anomalies. The remaining peaks at some healthy variables are
caused by the effect of the two faulty sensors since their effects may propagate
to other healthy yet highly related sensors.

7. Conclusion

In this paper, we formulated the CSSL problem for multiple GGMs. We
further provided a simple DAL-ADMM algorithm where each update step
can be solved in a very efficient manner. Numerical results on synthetic
datasets indicate the clear advantage of the CSSL approach, in that it can
achieve high precision and recall at the same time, which existing GGM
structure learning methods can not achieve. We also applied the proposed
CSSL technique to the anomaly detection task in sensor error data. Through
the simulation, we observed that CSSL could efficiently suppress nuisance
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effects among variables in noisy sensors and successfully enhanced target
faulty sensors.

Several future research topics have been indicated, including analyzing
the asymptotic property of the CSSL problem (8), and extending the current
formulation to the adaptive Lasso (Zou, 2006; Fan et al., 2009) type one
to guarantee the oracle property (Zou, 2006) of the estimator. Applying the
notion of commonness to more general dependency models, such as those with
non-linear relations or commonness based on higher-order moment statistics,
is also important.
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Appendix A. Solutions to (13) for q = 1, 2 and ∞

Here, we give detailed derivations of Table 2.

Appendix A.1. The solution is in ∂C1.
Problem (14) for y ∈ ∂C1 is formulated as follows:

min
y

1

2
‖y − y0‖22 s.t. |1⊤

Ny| = ρ . (A.1)

Note that we have ignored the constraint ‖y‖q 6= γ because it holds for
general y0 and γ with probability one. Hence, our interest is whether the
solution to (A.1) satisfies ‖y‖q ≤ γ or not. The additional constraint is not
important in this respect.

The problem (A.1) has two possible cases as its solution, 1⊤
Ny = ρ and

1⊤
Ny = −ρ. For each case, we can solve the problem using Lagrange multi-

pliers:

min
y

max
µ

1

2
‖y − y0‖22 + µ(1⊤

Ny − ζ) ,
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where ζ ∈ {ρ,−ρ}. By setting the derivative over y to zero, we get y =
y0 − µ1N . Moreover, by substituting this result above, we derive the op-
timal µ as µ = 1

N
(1⊤

Ny0 − ζ) and the resulting objective function value is
1
2N

(

1⊤
Ny0 − ζ

)2
. The constraint ζ = ρ or ζ = −ρ is chosen so that this

objective function value is minimized. Obviously, ζ = ρ is optimal for the
case when 1⊤

Ny0 ≥ 0, while ζ = −ρ for 1⊤
Ny0 < 0. Thus, the overall solution

to problem (A.1) is

y = y0 −
1⊤
Ny0 − ρ sgn

(

1⊤
Ny0

)

N
1N .

Appendix A.2. The solution is in ∂C2 for q = 1.

When the solution is in ∂C2, the problem is formulated as

min
y

1

2
‖y − y0‖22 s.t. ‖y‖q = γ . (A.2)

Here, the shape of the constraint boundary changes according to the value
of q. For general q ∈ [1,∞], there exist several algorithms to solve this
problem (Boyd and Vandenberghe, 2004; Sra, 2011). Especially, for q = 1, 2
and ∞, solutions are available in a very efficient manner.

For q = 1, it has been shown by Honorio and Samaras (2010) that the
problem is equivalent to the following Continuous Quadratic Knapsack Prob-
lem:

min
z

N
∑

i=1

1

2
(zi − |y0,i|)2 s.t. z ≥ 0, 1⊤

Nz = γ , (A.3)

which relates to y by yi = sgn (y0,i) zi. Honorio and Samaras (2010) have also
provided a solution technique for this problem. From the KKT condition, the
solution to (A.3) is zi(ν) = max(|y0,i| − ν, 0) for some constant ν. Moreover,
the optimal ν satisfies 1⊤

Nz(ν) = γ. Since 1⊤
Nz(ν) is a decreasing piecewise

linear function with breakpoints |y0,i|, we can find a minimum breakpoint ν0
that satisfies 1⊤

Nz(ν0) ≤ γ by sorting the N breakpoints. The optimal ν is
then given as

ν =

∑

i∈I0
|y0,i| − γ

|I0|
,
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where I0 = {i; |y0,i| − ν0 ≥ 0}. Note that the complexity of this algorithm is
O(N logN) since we conduct a sorting of N values 4.

Appendix A.3. The solution is in ∂C2 for q = 2.

The solution to problem (A.2) for q = 2 is analytically available. We
solve the problem using Lagrange multipliers:

min
y

max
λ

1

2
‖y − y0‖22 +

λ

2
(‖y‖22 − γ2) .

By setting the derivative over y to zero, we get y = 1
1+λ

y0. Moreover, from
the constraint ‖y‖2 = γ, the solution is

y =
γ

‖y0‖2
y0 .

Appendix A.4. The solution is in ∂C2 for q =∞.

The solution of (A.2) for the case q = ∞ is much simpler. The problem
is just a box-constrained least squares, with solution

yi =







γ (if y0,i > γ)
y0,i (if |y0,i| ≤ γ)
−γ (if y0,i < −γ)

which is equivalent to yi = sgn (y0,i)min(|y0,i|, γ).

Appendix A.5. The solution is in ∂C3 for q = 1.

We provide the solution procedure for (14) for y ∈ ∂C3 and q = 1 based
on the next theorem.

Theorem 3. Let ỹ be the solution to problem (14) for y ∈ ∂C1, and suppose
it is infeasible in the original problem (13). Then, the solution to (14) for
y ∈ ∂C3 has same signs as ỹ, that is, ỹiyi ≥ 0 for 1 ≤ i ≤ N .

4We can further reduce this to expected linear time complexity by introducing a ran-
domized algorithm (Duchi et al., 2008b).
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From this result, we can factorize the variable indices into two parts,
I+ = {i; ỹi ≥ 0} and I− = {i; ỹi < 0}. Using this factorization, the objective
function is expressed as 1

2

∑

i∈I+
(yi−y0,i)2+ 1

2

∑

i∈I−
(yi−y0,i)2. The equality

constraints can also be expressed as
∑

i∈I+
yi +

∑

i∈I−
yi = ζ , with ζ ∈

{ρ,−ρ} and∑i∈I+
yi−

∑

i∈I−
yi = γ. From these expressions, we derive two

independent problems:

min
y+

1

2

∑

i∈I+

(

y+i − y0,i
)2

s.t. y+ ≥ 0 ,
∑

i∈I+

y+i =
γ + ζ

2
,

min
y−

1

2

∑

i∈I−

(

y−i + y0,i
)2

s.t. y− ≥ 0 ,
∑

i∈I−

y−i =
γ − ζ

2
.

The solutions to these problems relate to y in that yi = y+i for i ∈ I+ and
yi = −y−i for i ∈ I−. These problems are continuous quadratic knapsack
problems and the solution can be found by using the same algorithm as in
problem (A.3). We derive the final solution by solving these problems for the
two cases ζ = ρ and ζ = −ρ, and choosing the one with the smaller objective
function value in (14).

Appendix A.6. The solution is in ∂C3 for q = 2.

The solution in the case y ∈ ∂C3 and q = 2 is analytically available. We
use Lagrange multipliers:

min
y

max
µ,λ

1

2
‖y − y0‖22 + µ(1⊤

Ny − ζ) +
λ

2
(‖y‖22 − γ2) ,

where ζ ∈ {ρ,−ρ}. By setting the derivative over y to zero, we get y =

1
1+λ

(y0 − µ1N). If ρ = 0, we have µ =
1⊤

Ny0

N
from the constraint 1⊤

Ny = 0.
Hence, from ‖y‖2 = γ, we get the optimal y as

y =
γ

‖y0 − µ1N‖2
(y − µ1N) .

For the case ρ > 0, we have 1
1+λ

= ζ

1⊤

Ny0
−Nµ

from the constraint 1⊤
Ny = ζ .

Hence, we have a quadratic equation in µ from the constraint ‖y‖22 = γ2:

ρ2 ‖v − µ1N‖22 = γ2(1⊤
Nv −Nµ)2 .
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Solving this equation gives the optimal y as

y =
ζ

1⊤
Ny0 −Nµ

(y0 − µ1N) , µ =
1

N

{

1⊤
Ny0 ±

√
τ
}

,

where τ = (1⊤
Ny0)

2 − N
γ2(1⊤

Ny0
)2−ρ2‖y0‖22

γ2N−ρ2
. By substituting this result into

‖y − y0‖22, we have

‖y − y0‖22 =
1

N

(

ζ − 1⊤
Ny0

)2
+

N ‖y0‖22 − (1⊤
Ny0)

2

Nτ

(

ζ ±√τ
)2

.

Since N ‖y0‖22 − (1⊤
Ny0)

2 ≥ 0, the minimum of this value is achieved by
choosing ζ and a sign in µ as ζ = sgn

(

1⊤
Ny0

)

ρ and −sgn
(

1⊤
Ny0

)

. Thus, the
overall result is

y = sgn
(

1⊤
Ny0

) ρ

1⊤
Ny0 −Nµ

(y0 − µ1N) ,

µ =
1

N

{

1⊤
Ny0 − sgn

(

1⊤
Ny0

)√
τ
}

.

Appendix A.7. The solution is in ∂C3 for q =∞.

The solution for (14) with y ∈ ∂C3 and q = ∞ has two possible cases,
1⊤
Ny = ρ and 1⊤

Ny = −ρ, where for each case the problem is:

min
y

N
∑

i=1

1

2
(yi − y0,i)

2 s.t. 1⊤
Ny = ζ , −γ1N ≤ y ≤ γ1N , (A.4)

with ζ ∈ {ρ,−ρ}. Here, the constraint ‖y‖∞ = γ is relaxed to ‖y‖∞ ≤ γ.
However, if the solution to (A.4) satisfies ‖y‖∞ < ρ, it has already been
found as a solution to (14) for y ∈ ∂C1 and therefore this relaxation does not
affect the overall procedure.

Since problem (A.4) is a variant of the continuous quadratic knapsack
problem, a similar strategy to (A.3) is available. From the KKT condition,
the solution to (A.4) is of the form yi(ν) = sgn (y0,i − ν)min(|y0,i− ν|, γ) for
some constant ν. Moreover, the optimal ν satisfies 1⊤

Ny(ν) = ζ . Since 1⊤
Ny(ν)

is a decreasing piecewise linear function with breakpoints {y0,i−γ, y0,i+γ}Ni=1,
we can find a minimum breakpoint ν0 that satisfies 1⊤

Ny(ν0) ≤ ζ by sorting
the 2N breakpoints. The optimal ν is then

ν =







∑

i∈I2
y0,i + γ(|I1| − |I3|)− ζ

|I2|
(if I2 6= φ)

ν0 (if I2 = φ)
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where I1 = {i; y0,i − ν0 ≥ γ}, I2 = {i;−γ ≤ y0,i − ν0 < γ} and I3 =
{i; y0,i − ν0 < −γ}.

Appendix B. Generation of Synthetic Precision Matrices

Here, we present the detailed procedure used to generate the sparse pre-
cision matrices with a common substructure in Section 5. The procedure is
composed of two sequential steps. We first generate a single precision matrix,
which is the common substructure in the resulting N matrices. Then, we add
some non-zero entries to get a matrix Λi. This additional pattern is chosen
to be unique for each matrix so that the resultant matrices Λ1,Λ2, . . . ,ΛN

satisfy the additive model assumption (7). In the following two subsections,
we explain the above steps.

Appendix B.1. Generation of a Sparse Precision Matrix

In several previous studies, synthetic sparse precision matrices are gener-
ated in a naive manner, that is, just adding a properly scaled identity matrix
to a sparse symmetric matrix so that the resulting matrix is sparse and posi-
tive definite (Banerjee et al., 2008; Wang et al., 2009; Li and Toh, 2010). In
our simulations, we take a different approach to generating a sparse precision
matrix for compatibility with the next step.

Our approach is based on an eigen-decomposition Λ = V DV ⊤, where
D is a matrix with eigenvalues on its diagonal and V is an orthonormal
matrix such that V ⊤V = V V ⊤ = Id. Here, we use the fact that Λ is sparse
if V is sufficiently sparse and the problem can be reduced to generating a
sparse orthonormal matrix V . This can be done easily by applying a Givens
rotation (Golub and Van Loan, 1996) to an identity matrix Id. Formally, we
let V (0) = Id and apply the following procedure repeatedly until the desired
sparsity is achieved.

1. Randomly pick two indices j, j′ from {1, 2, . . . , d}.
2. Randomly generate θ from a uniform distribution U([0, 2π]).

3. Update the (j, j), (j, j′), (j′, j) and (j′, j′)th entries of V (k) as
[

V
(k+1)
jj V

(k+1)
jj′

V
(k+1)
j′j V

(k+1)
j′j′

]

←
[

cos θ − sin θ
sin θ cos θ

]

[

V
(k)
jj V

(k)
jj′

V
(k)
j′j V

(k)
j′j′

]

.

4. Keep the remaining entries V
(k+1)
j0j

′

0

← V
(k)
j0j

′

0

for (j0, j
′
0) /∈ { (j, j), (j, j′),

(j′, j), (j′, j′) }.
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In our simulations, we generated each eigenvalue from a uniform distribution
U([0, 1]).

Appendix B.2. Generation of Sparse Precision Matrices with a Common
Substructure

Here, we turn to imposing commonness on the resulting precision matri-
ces. To begin with, we generate small sparse precision matrices Ψ1,Ψ2, . . . ,Ψa

in the preceding manner and construct a sparse block-diagonal precision ma-
trix Λ0 = block− diag (Ψ1,Ψ2, . . . ,Ψa). We then add some non-zero entries
to Λ0 and generate N precision matrices Λ1,Λ2, . . . ,ΛN . At this stage, we
keep the original non-zero entries Λ0 unchanged so they form a common sub-
structure at the end. Note that the addition of non-zero entries can not be
done randomly since this might destroy the positive definiteness.

We describe the procedure for the case a = 2. Let the eigen-decompositions
of Ψ1 and Ψ2 be Ψ1 = V1D1V

⊤
1 and Ψ2 = V2D2V

⊤
2 . Note that V1 and V2

are sparse since they are generated to be so. Now, let matrix Λi be of

the form Λi =

[

Ψ1 Φi

Φ⊤
i Ψ2

]

. The objective is to generate a sparse non-zero

matrix Φi while keeping the positive definiteness of Λi. This corresponds
to keeping a determinant of Λi positive. Here, we choose Φi of the form
Φi = Ṽ b

1 ΞiṼ
b⊤
2 where Ξi is a b × b diagonal matrix and Ṽ b

1 and Ṽ b
2 are ma-

trices composed of b columns in V1 and V2, respectively. Specifically, we
let V1 =

[

v1,1 v1,2 . . . v1,d1

]

and V2 =
[

v2,1 v2,2 . . . v2,d2

]

, where

d1 and d2 denote the dimensionality of each matrix. Then Ṽ b
1 and Ṽ b

2 are
Ṽ b
1 =

[

v1,π1,1
v1,π1,2

. . . v1,π1,b

]

and Ṽ b
2 =

[

v2,π2,1
v2,π2,2

. . . v2,π2,b

]

,
respectively, for some index sets {π1,1, π1,2, . . . , π1,b} ⊆ {1, 2, . . . , d1}, { π2,1,
π2,2, . . . , π2,b} ⊆ {1, 2, . . . , d2}. Then, from a general matrix property, we can
express the determinant of Λi as

det Λi = det
(

Ψ1 − ΦiΨ
−1
2 Φ⊤

i

)

= det
(

D1 − V ⊤
1 ΦiV2D

−1
2 V ⊤

2 Φ⊤
i V1

)

=
b
∏

m=1

(

σ1,π1,m
− ξ2i,m

σ2,π2,m

)

,

whereD1 = diag(σ1,1, σ1,2, . . . , σ1,d1), D2 = diag(σ2,1, σ2,2, . . . , σ2,d2) and Ξi =
diag(ξi,1, ξi,2, . . . , ξi,b). Hence, the positive definiteness of Λi is guaranteed if
ξ2i,m < σ1,π1,m

σ2,π2,m
is satisfied for 1 ≤ m ≤ b. Moreover, this inequality

35



provides us a guideline on choosing index sets. Since we want non-zero entries
of Φi to be larger, which can be achieved by larger |ξi,m|, we choose index sets
so that σ1,π1,m

σ2,π2,m
large. This corresponds to choosing leading eigenvalues

and eigenvectors of Ψ1 and Ψ2. In our simulations, we pick b = 2 indices
at random from those with eigenvalues in the top 1/3. We also generate
ξi,m as ξi,m = ξ0,i,m

√
σ1,π1,m

σ2,π2,m
, where ξ0,i,m follows a uniform distribution

U([−0.8,−0.5] ∪ [0.5, 0.8]).

For general a > 2 cases, we first construct a matrix Λ
(1)
i from Ψ1 and Ψ2.

We then iteratively apply the above procedure to generate Λ
(2)
i from Λ

(1)
i and

Ψ3, Λ
(3)
i from Λ

(2)
i and Ψ4, until Λi = Λ

(a−1)
i is derived. In the simulations

in Section 5, we set the number of modules to a = 2 for d = 25, a = 3 for
d = 50 and a = 4 for d = 100.

Appendix C. Proof of Theorems

Appendix C.1. Proof of Proposition 1

Let E and Fi be non-negative d×dmatrices satisfying −Ejj′ ≤ Θjj′ ≤ Ejj′

and −Fi,jj′ ≤ Ωi,jj′ ≤ Fi,jj′, respectively, for all 1 ≤ i ≤ N and 1 ≤ j, j′ ≤ d.
Then, using Lagrange multipliers Γ,Γ0, and {∆i,∆0,i}Ni=1, the CSSL problem
(8) is expressed as

max
Θ,E,{Ωi,Fi}Ni=1

min
Γ,Γ0,{∆i,∆0,i}Ni=1

N
∑

i=1

ti {log det(Θ + Ωi)− tr [Si(Θ + Ωi)]}

−
d
∑

j,j′=1







ρEjj′ + γ

(

N
∑

i=1

F p
i,jj′

)

1

p







− tr [ΓΘ] + tr [abs(Γ)E] + tr [Γ0E]

−
N
∑

i=1

{tr [∆iΩi]− tr [abs(∆i)Fi]− tr [∆0,iFi]}

s.t. Γ0,jj′ ≥ 0 , ∆0,.i,jj′ ≥ 0 (1 ≤ i ≤ N , 1 ≤ j, j′ ≤ d) .

By changing the order of maximization and minimization above, we derive
the dual problem. Now, we optimize each variable Θ, E, Ωi and Fi by setting
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each derivative to zero:

N
∑

i=1

ti
{

(Θ + Ωi)
−1 − Si

}

− Γ = 0d×d ,

− ρ1d1
⊤
d + abs(Γ) + Γ0 = 0d×d ,

ti
{

(Θ + Ωi)
−1 − Si

}

−∆i = 0d×d (1 ≤ i ≤ N) ,

− γ

(

N
∑

i=1

F p
i,jj′

)

1−p

p

Fi,jj′ + |∆i,jj′|+∆0,i,jj′ = 0

(1 ≤ i ≤ N , 1 ≤ j, j′ ≤ d) .

As a result of these equations, we get

∆i = ti
{

(Θ + Ωi)
−1 − Si

}

,
∣

∣

∣

∣

∣

N
∑

i=1

∆i,jj′

∣

∣

∣

∣

∣

≤ ρ (1 ≤ j, j′ ≤ d) ,

(

N
∑

i=1

|∆i,jj′|q
)

1

q

≤ γ (1 ≤ j, j′ ≤ d) .

and so the dual problem is given by (9) where we set Wi = (Θ + Ωi)
−1 =

1
ti
∆i + Si. �

Appendix C.2. Proof of Theorem 1

We first prove the lower-bound. Let Wi =
1
ti
∆i + Si in the dual prob-

lem (9). Then we have
∣

∣

∣

∑N

i=1∆i,jj

∣

∣

∣
≤ ρ and

(

∑N

i=1 |∆i,jj′|q
)

1

q ≤ γ, and

hence
∥

∥

∥

∥

1

ti
∆i + Si

∥

∥

∥

∥

S

≤ 1

ti
‖∆i‖S + ‖Si‖S

≤ d

ti
max
j,j′
|∆i,jj′|+ ‖Si‖S

≤ d

ti
max

i
max
j,j′
|∆i,jj′|+ ‖Si‖S

≤ dγ

ti
+ ‖Si‖S ,
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where the last inequality comes from the general relationship between ℓp-

norms maxi |∆i,jj′| ≤
(

∑N

i=1 |∆i,jj′|q
)

1

q

. Since W ∗
i = 1

ti
∆∗

i + Si = Λ∗
i
−1 holds

at the optimum, we have the lower-bound.
We now turn to proving the upper-bound. From strong duality, the

duality-gap is zero at the optimal solution to the primal and the dual prob-
lems (8), (9), and we have

ρ ‖Θ∗‖1 + γ ‖Ω∗‖1,p = d−
N
∑

i=1

titr [Si(Θ
∗ + Ω∗

i )] .

Moreover, from 0 < ρ < N
1

pγ < ∞, tr [Si(Θ
∗ + Ω∗

i )] ≥ 0 and the general

ℓp-norm rule
(

∑N

i=1 |Ω∗
i,jj′|p

)
1

p ≥ maxi |Ω∗
i,jj′|,

‖Θ∗‖1 +N− 1

p ‖Ω∗‖1,∞ ≤
d

ρ

holds. Since N
1

p ≥ 1 for p ≥ 1, we get

‖Θ∗‖1 + ‖Ω∗‖1,∞ ≤
N

1

pd

ρ
.

We use this inequality to derive the upper-bound. From the definition, the
precision matrix factorizes as Λ∗

i = Θ∗ + Ω∗
i , and hence we have

‖Λ∗
i ‖S ≤ ‖Θ∗‖S + ‖Ω∗

i ‖S
≤ ‖Θ∗‖S + dmax

j,j′
|Ω∗

i,jj′|

≤ ‖Θ∗‖S + dmax
i

max
j,j′
|Ω∗

i,jj′|

≤ ‖Θ∗‖S + d ‖Ω∗‖1,∞
≤ d

(

‖Θ∗‖S + ‖Ω∗‖1,∞
)

≤ d
(

‖Θ∗‖1 + ‖Ω∗‖1,∞
)

≤ N
1

pd2

ρ

Here, we have used the relationship ‖Θ∗‖S ≤ ‖Θ∗‖2 ≤ ‖Θ∗‖1. �
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Appendix C.3. Proof of Theorem 2

The Hessian matrix of the CSSL primal loss
∑N

i=1 tiℓ(Θ+Ωi;Si) is given
by

Hprimal = −















∑N

i=1 tiKi t1K1 t2K2 . . . tNKN

t1K1 t1K1 0d2×d2 . . . 0d2×d2

t2K2 0d2×d2 t2K2
...

...
...

. . . 0d2×d2

tNKN 0d2×d2 . . . 0d2×d2 tNKN















,

where Ki = (Θ+Ωi)
−1⊗ (Θ+Ωi)

−1. It is easy to verify that 1N+1⊗Id spans
a null space of Hprimal and thus Hprimal is always rank-deficient.

On the other hand, the matrix of the CSSL dual loss −∑N

i=1 ti log detWi

is the block-diagonal matrix

Hdual = block–diag(t1K̃1, t2K̃2, . . . , tNK̃N) ,

where K̃i = W−1
i ⊗W−1

i . From Theorem 1, we know that the CSSL solution
has bounded eigenvalues and thus the above Hessian matrix is always strictly
positive definite for any feasible Wi. �

Appendix C.4. Proof of the Proposition 2

Let Si be the covariance matrix Si =

[

ai ri
ri bi

]

. Then we have an upper-

bound for (15) of

N
∑

i=1

ti
{

log(uivi − (θ + ωi)
2)− (aiui + bivi + 2riθ + 2riωi)

}

− 2ρ|θ| − 2γ ‖ω‖p

≤
N
∑

i=1

ti
{

log(uivi − (θ + ωi)
2)− (aiui + bivi)− 2(riωi + γ|ωi|)

}

− 2

(

N
∑

i=1

tiriθ + ρ|θ|
)

,

from the relationship
∑N

i=1 ti|ωi| ≤ ‖ω‖∞ ≤ ‖ω‖p. Moreover, this upper-
bound coincides with the original problem when ω = 0N . Therefore, if
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ω = 0N is a maximizer of this upper-bound, it is also a maximizer of (15).
From the derivative of the upper-bound over ωi, we get that ωi = 0 is a
maximizer if the following condition holds:

−(γ + ri) ≤
θ

uivi − θ2
≤ (γ − ri) .

This is a sufficient condition for the original problem (15) to have ωi = 0 as
its solution. Under this condition, problem (15) can be expressed as

max
θ,ũ,ṽ,ui,vi

log(ũṽ − θ2)− (ãũ+ b̃ṽ)− 2(r̃θ + ρ|θ|)

s.t. ũṽ − θ2 > 0 ,

− (γ + ri) ≤
θ

uivi − θ2
≤ (γ − ri) (1 ≤ i ≤ N)

for some properly chosen ã, b̃ and r̃ =
∑N

i=1 tiri. Hence, since the additional
condition involves θ = 0 irrelevant to the value of ui and vi if max1≤i≤N |ri| ≤
γ holds, we have θ = 0 when |r̃| ≤ ρ from Idé et al. (2009, Proposition 1). �

Appendix C.5. Proof of Theorem 3

Let h(y) = 1
2
‖y−y0‖22 and y′ be one of the feasible solutions to the origi-

nal problem (13). Moreover, since ỹ is infeasible for the original problem (13),
‖ỹ‖q > γ holds. Then, for y′′ = y′ + ǫ(ỹ−y′) with 0 < ǫ ≤ 1, h(y′′) ≤ h(y′)
holds from the convexity of h. Therefore, y′′ is a better solution to prob-
lem (13) as long as the constraints |1⊤

Ny
′′| ≤ ρ and ‖y′′‖q ≤ γ are satisfied.

The first condition always holds because |1⊤
Ny

′′| ≤ (1−ǫ)|1⊤
Ny

′|+ǫ|1⊤
N ỹ| ≤ ρ.

On the other hand, the latter condition ‖y′′‖q =
(

∑N

i=1 |y′′i |q
)

1

q ≤ γ is no

longer valid if ‖y′‖q = γ and sgn (y′i) = sgn (ỹi − y′i), which results in ỹiy
′
i ≥ 0.

This is a necessary condition for the solution to (13). Otherwise, we can al-
ways improve the solution by the above procedure, which contradicts its
optimality. �
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Table 3: Simulation results for three cases (d = 25, 50 and 100) with N = 5 datasets eval-
uated by weighted precision, recall and F-measure, denoted by ”Prec.”, ”Rec.” and ”F” in
the table, respectively. The ”F0” denotes the F0-measure for zero pattern identification.
Each simulation is conducted so that each dataset has 5d data points, and the measure-
ments are averaged over 100 random realization of datasets. The numbers in brackets are
standard deviations of each measurement. Each of the three rows in SICS and MSICS
corresponds to results for ǫ0 = 0.5, 0.7 and 0.9 from the top. We highlight the top three
results for each measurement in bold font (except for ”F0”).

CSSL CSSL CSSL CSSL
SICS

MSICS MSICS
(p = 1) (p = 2) (p =∞) (γ =∞) (p = 2) (p =∞)

P
re
c. .14 (.14) .38 (.21) .54 (.23)

.84 (.19) .70 (.16) .56 (.19) .48 (.20) .20 (.16) .43 (.21) .49 (.21)
.33 (.16) .41 (.19) .45 (.19)

d
=

25

R
ec
. .07 (.07) .48 (.24) .60 (.24)

.45 (.32) .82 (.14) .84 (.12) .86 (.11) .23 (.18) .74 (.19) .74 (.19)
.80 (.20) .83 (.13) .86 (.11)

F

.09 (.08) .41 (.21) .55 (.23)
.56 (.22) .75 (.14) .66 (.17) .60 (.19) .21 (.16) .53 (.21) .58 (.20)

.45 (.18) .53 (.19) .58 (.18)

F
0

.92 (.02) .92 (.02) .92 (.02) .92 (.02) .92 (.02) .93 (.02) .92 (.02)

P
re
c. .10 (.13) .24 (.20) .58 (.19)

.87 (.11) .69 (.14) .56 (.17) .47 (.17) .13 (.14) .37 (.20) .52 (.19)
.27 (.19) .42 (.18) .47 (.18)

d
=

50

R
ec
. .04 (.04) .18 (.19) .60 (.19)

.41 (.20) .83 (.11) .85 (.10) .91 (.05) .10 (.11) .51 (.21) .72 (.16)
.50 (.22) .81 (.12) .86 (.08)

F

.05 (.06) .20 (.19) .58 (.19)
.53 (.20) .75 (.12) .66 (.15) .61 (.15) .10 (.11) .42 (.20) .59 (.18)

.34 (.20) .54 (.17) .60 (.16)

F
0

.90 (.03) .90 (.02) .89 (.02) .89 (.03) .89 (.03) .90 (.02) .90 (.03)

P
re
c. .09 (.11) .17 (.14) .68 (.15)

.91 (.07) .78 (.10) .64 (.14) .53 (.15) .10 (.12) .33 (.21) .62 (.16)
.22 (.17) .46 (.18) .55 (.16)

d
=

10
0

R
ec
. .03 (.10) .06 (.10) .59 (.17)

.37 (.18) .81 (.11) .83 (.11) .95 (.02) .06 (.10) .25 (.21) .67 (.15)
.24 (.19) .67 (.16) .82 (.09)

F

.05 (.10) .08 (.11) .63 (.16)
.51 (.19) .79 (.10) .72 (.12) .67 (.12) .07 (.10) .28 (.21) .64 (.15)

.22 (.18) .54 (.17) .65 (.14)

F
0

.87 (.04) .87 (.04) .87 (.03) .87 (.03) .87 (.03) .88 (.04) .87 (.03)
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Table 4: Anomaly detection results: The simulation is conducted for 4 different settings,
[nn, nf ] = [4, 1], [12, 3], [20, 5] and [40, 10]. For each method, we compute precision matrices
for 11 different values of α ranging from 10−1.5 to 10−0.5. The table shows the median
of the best AUCs among these 11 results over 100 random realizations of datasets. The
numbers in brackets are 25% and 75% quantiles. The bold font represents the top three
results, which are CSSL (p = 2), CSSL (p =∞) and MSICS (p =∞) for all settings.

[nn, nf ] = [4, 1] [nn, nf ] = [12, 3]
best AUC α best AUC α

CSSL (p = 1) .975 (.950 / .987) 10−0.9 .975 (.950 / 1.00) 10−0.9

CSSL (p = 2) .987 (.963 / 1.00) 10−0.9 .987 (.963 / 1.00) 10−0.9

CSSL (p =∞) .987 (.963 / 1.00) 10−0.9 1.00 (.987 / 1.00) 10−0.9

SICS .975 (.938 / .987) 10−0.5 .975 (.938 / .987) 10−0.5

MSICS (p = 2) .975 (.950 / .987) 10−0.8 .975 (.950 / .987) 10−0.7

MSICS (p =∞) .987 (.963 / 1.00) 10−1.1 .987 (.975 / 1.00) 10−1.2

[nn, nf ] = [20, 5] [nn, nf ] = [40, 10]
best AUC α best AUC α

CSSL (p = 1) .975 (.950 / 1.00) 10−0.9 .975 (.963 / 1.00) 10−0.9

CSSL (p = 2) 1.00 (.975 / 1.00) 10−0.8 .987 (.963 / 1.00) 10−0.8

CSSL (p =∞) 1.00 (.987 / 1.00) 10−0.9 1.00 (.987 / 1.00) 10−0.9

SICS .975 (.950 / .987) 10−0.5 .975 (.950 / .987) 10−0.5

MSICS (p = 2) .975 (.950 / .987) 10−1.0 .975 (.950 / .987) 10−1.0

MSICS (p =∞) .987 (.975 / 1.00) 10−1.1 .987 (.975 / 1.00) 10−0.9
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