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Abstract

The interest in brain-like computation has led to the design of a
plethora of innovative neuromorphic systems. Individually, spiking neural
networks (SNNs), event-driven simulation and digital hardware neuromor-
phic systems get a lot of attention. Despite the popularity of event-driven
SNNs in software, very few digital hardware architectures are found. This
is because existing hardware solutions for event management scale badly
with the number of events. This paper introduces the structured heap
queue, a pipelined digital hardware data structure, and demonstrates
its suitability for event management. The structured heap queue scales
gracefully with the number of events, allowing the efficient implementa-
tion of large scale digital hardware event-driven SNNs. The scaling is
linear for memory, logarithmic for logic resources and constant for pro-
cessing time. The use of the structured heap queue is demonstrated on
field-programmable gate array (FPGA) with an image segmentation ex-
periment and a SNN of 65 536 neurons and 513 184 synapses. Events can
be processed at the rate of 1 every 7 clock cycles and a 406×158 pixel
image is segmented in 200 ms.

1 Introduction

Neuromorphic systems attempt to mimic the way the brain processes informa-
tion and are the test benches of new theories of the neural paradigm, exploration
tools for connectionists and very intriguing computation platforms. Neuromor-
phic systems can take many forms. They have been implemented on graphical
processing units (GPU) [25], digital signal processors (DSP) [28], analog very-
large-scale integration (aVLSI) circuits [3], digital VLSI (dVLSI) circuits [33],
field-programmable gate arrays (FPGA) [32, 34, 5], mixed-signal VLSI circuits
[7, 21] and as software-hardware coprocessors [30]. Ultimately, the choice of the
implementation platform depends on the application and the designer’s specific
needs. This paper focuses on digital hardware (dVLSI circuits and FPGAs) and
aims at laying the ground for the design of large-scale embedded event-driven
spiking neural networks.
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Spiking neurons, the third generation of artificial neurons, are more compu-
tationally powerful than the previous generations [17]. A spiking neural network
(SNN) is a collection of dynamical systems, the neurons, that affect each other
through point-to-point links called synaptic connections. Spiking neurons are
characterized by one or several state variables. The state of a spiking neuron
changes over time and when it meets a certain condition, it emits a spike. Spikes
are delivered to other neurons through the synaptic connections and are scaled
by a factor, the synaptic weight. The neuron model specifies the equations that
govern the evolution of the neuron’s state variables in time, the condition for
emitting a spike and the effect of receiving and emitting a spike. The network
topology defines the interconnection pattern of the neurons and the value of the
synaptic weights.

Algorithm 1 Time-driven implementation

1: repeat
2: move one step forward in time
3: for each neuron in the network do
4: update state
5: end for
6: until desired time is reached

Algorithm 2 Event-driven implementation

1: repeat
2: move one event forward in time
3: for each neuron involved in the event do
4: update state
5: end for
6: find next event to happen
7: until desired time is reached

A SNN implementation is the specific way in which time, the neuron model
and spikes, or events, are handled in order to calculate the network’s state at
a desired point in time. Two different implementations are widely used and
opposed: time-driven and event-driven. Both strategies are described in algo-
rithm 1 and algorithm 2. A fundamental difference between both strategies lies
in the time increment, at line 2. In a time-driven SNN, time is increased by
a constant amount. The update of the neurons’ state at line 4 is straightfor-
ward, but the events occurring during a given time step are processed as if they
occurred at the same point in time, which might not be exact. The choice of
the time step is a compromise between processing speed and temporal accuracy.
In some cases, it is possible to use temporal interpolation and restore a more
accurate time of occurrence of the events [23]. In the event-driven implementa-
tion, the time steps fit the occurrence of events and optimal precision in time
can be achieved. The state update of line 4 is more mathematically involved
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as the step size is variable. Also, progression in time can be slow if the average
number of events occurring in the network per unit of time is high. A second
difference is the number of neurons processed at each iteration of the for loop
of line 3. In the time-driven algorithm, each neuron in the network is updated
to the current time step. The event-driven strategy avoids this costly update of
the whole population of neurons. It exploits the fact that if a neuron does not
receive or emit a spike, then its state is defined by the dynamical equations of
the neuron model. In an event-driven SNN, the state of a neuron is represented
by the time at which it should spike next, as determined by the neuron model
and without consideration for possible interactions with other neurons. This
value, the predicted firing time, doesnt change as time passes, but only when a
neuron is involved in an event. During an iteration of the processing loop, only
the neurons affected by the current event are processed. Simple neuron models
can be inverted in order to calculate the predicted firing times [22]. With more
complex neuron models, it might be necessary to use iterative procedures [11]
or to approximate the time of occurrence of events. Lastly, the event-driven
algorithm involves one extra operation: identifying the next event to happen
(line 6). At every iteration of the main loop, an event is processed: it is removed
from the list of predicted events and the state of the involved neurons is mod-
ified. As a result, some predicted events get delayed, anticipated or cancelled,
and new events are created. The event queue is the functional block whose role
is to keep the list of events up to date and identify which one is the next to
happen. It is a hybrid memory and sorting algorithm. In an event-driven SNN,
the event queue has to carry the following operations: output the next event to
happen, allow the insertion of new events, allow the deletion of existing events
and allow the modification of existing events. The last operation, called an up-
date, is optional since it can be replaced by the deletion of the event to modify
followed by the insertion of the same event with the updated information. The
main focus of this paper is to describe an efficient way to implement the event
queue in a digital hardware event-driven SNN.

The literature on software SNNs abounds in event-driven systems [29, 36, 14,
18, 16, 9, 24]. In addition to implementing different neuron models and network
topologies, each software SNN has its own way of managing the event queue.
Pratt [29] and Watts [36] use a sorted list to implement it. Grassmann & Anlauf
[14] do not specify how the event queue is managed. Mattia & Del Giudice [18]
use an array of FIFOs, Lee & Farhat [16] use two heap queues, Delorme &
Thorpe [9] use a pseudo-sorting algorithm by regular sampling and Mouraud
& Puzenat [24] use a variation of the calendar queue. On the hardware side,
most architectures rely on a fixed time step approach to compute the neural
dynamics and do not predict future events [2, 7, 6, 33, 8]. Mehrtash et al. [19]
and Schoenauer et al. [31] use a variable step size for neuron state update, but
only predict spikes occurring during the next time step. To our knowledge, only
Aǵıs et al. [1] follow a pattern similar to algorithm 2 and truly benefits from
the advantages of the event-driven strategy in a digital hardware SNN.

The fact that existing software event-driven SNNs use such a wide variety of
algorithms to implement the event queue suggests that it plays a very important
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role and must be carefully designed. We postulate that the reason why so few
hardware event-driven SNNs exist is because no digital hardware algorithm can
efficiently fill the role of the event queue. The solution chosen by Aǵıs et al. [1],
is to use an unsorted list, i.e. to store each event in memory to a designated
place. By accessing the right address in this memory, any event can be read,
inserted, deleted and modified. The identification of the next event to happen
is done on demand by scanning the whole event queue and using a pipelined
comparator tree to find the one with smallest time of occurrence. This strategy
results in a O(N) complexity in memory and O(N) complexity in logic, where
N is the capacity of the queue (maximum number of events). Read, insert,
delete and update operations have a O(1) complexity in time, and the search
for the next event to happen has O(log(N)) complexity in time. That is, as the
capacity of the event queue is increased, it takes more and more clock cycles to
find the smallest time of occurrence in the list of events.

This performance degradation as the network size increases can be avoided.
In this paper, we introduce the Structured Heap Queue (SHQ) data structure
as a candidate to implement the event queue in a large scale digital hardware
event-driven SNN. The SHQ has a O(N) complexity in memory, O(log(N))
complexity in logic and O(1) complexity in time. The O(1) complexity in time
holds for all important operations on the queue and means that the number
of clock cycles required for managing the event queue is independent of its
size. We demonstrate the use of the SHQ in a FPGA SNN implementation
and an image segmentation task. We show the result of a pixel-based image
segmentation realized with the described system to illustrate the full design
process of a digital event-driven SNN using the SHQ, from the neuron model to
the application. The SHQ is an event management algorithm and can be coupled
to any digital event-driven SNN. It is not restricted to the SNN implementation
described in this paper.

In section 2, the SHQ data structure is introduced. The design of the queue,
the operations it supports, and the way to pipeline them in a digital hardware
implementation are described. A memory-optimized version of the SHQ is also
detailed in section 2.3. The SNN we use to demonstrate the SHQ is presented
in section 3. The hardware implementation of the SNN is described in section
3.3. The performance and resource usage of the system are presented in section
4. Section 5 discusses the performance of the SHQ and its use as an event queue
and section 6 concludes the paper.

2 The Structured Heap Queue

The structured heap queue (SHQ) is an implicit data structure derived from the
binary heap queue [13]. Because we focus on hardware SNNs, we describe and
evaluate the SHQ in this section by comparing it to the pipelined heap queue
(PHQ) [15], a hardware implementation of the heap queue (see also [4]). In a
PHQ, a set of elements is partially sorted in order to find the one with lowest
(or highest) value. To facilitate the link with the event queue of an event-driven
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SNN, assume an element consists of two fields: a unique identification number
(ID) and a value. In the explanations of section 3.3.3, an element’s ID is a
neuron number and its value is the neuron’s predicted firing time. A PHQ takes
the form of a binary memory tree with one 2-input comparator per level of
the tree and some extra logic and registers for control. The PHQ supports two
operations: insert a new element and delete the element in the root node. These
operations are designed such that their execution maintains the heap property,
that is, the guarantee that any node in the tree contains an element of smaller
value than that of its 2 children nodes. The operations also keep the binary
tree balanced, meaning that the elements spread in the tree over as few levels as
possible. These two properties ensure that reading the root node will yield the
element with lowest value, and that the tree is as compact as possible. The PHQ
has O(N) complexity in memory and O(log(N)) complexity in logic, with N the
number of elements. It supports three operations, insert, delete element with
lowest value and read element with lowest value, which all have O(1) complexity
in time. To use the PHQ as an event queue, it must be possible to delete an
element with a given ID from the tree, even if it is not the element with lowest
value. In the PHQ, one option is to scan the entire memory tree to find the
element with corresponding ID in order to delete it, an operation with O(N)
complexity in time.

The capability of finding arbitrary elements in the tree is required in all
important operations of an event queue. The linear complexity in time of this
operation in a PHQ would lead to catastrophic performance in a large scale
SNN. However, the compactness of the tree, i.e. minimal memory usage, is not
of the utmost importance for an event queue. The balanced property of the PHQ
can be dropped to gain a degree of freedom in the placement of the elements in
the tree. In a SHQ, this extra degree of freedom is used such that the search
for an arbitrary element becomes a O(1) complexity in time operation.

The SHQ is an unbalanced PHQ in which any given element is constrained
to be placed in a specific part of the tree, determined by the element’s ID. The
region of the tree assigned to an element is called a path, as it starts at the
root node and ends at one of the leaf nodes. An element’s path is found by
scanning its ID from left to right, and progressing down the tree by branching
either left or right depending on the value of the individual bits. This defines a
unique path for each element and, when searching for an element with a given
ID, one single node per level has to be checked. Figure 1 shows a schematic
representation of the binary memory tree and highlights the path of element #3.
This modification comes with two disadvantages. Operations take more clock
cycles to execute in the SHQ, but the complexity in time remains O(1). The
SHQ has higher memory requirements than the PHQ, but maintains a O(N)
complexity in memory.

2.1 Operations in the Structured Heap Queue

The SHQ supports 3 operations: insert new element, delete element with given
ID and read element with given ID. An update operation, used to change the
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Figure 1: Schematic representation of the binary memory tree in a structured
heap queue. Each element moves down the tree following a unique path from
the root node to one of the leaf nodes. The path an element can follow is
determined by its identification number (ID). The numbers in a node indicate
which elements can possibly occupy this node. Any element can be stored in
the root node, but each leaf node is specific to only one element ID. The path
associated with an element is found by branching either left or right depending
on the binary representation of the element’s ID, starting with the left-most
bit when branching from the root node. The path associated to element #3 is
shown in bold.

value of an existing element in the queue, can be executed by issuing a delete
followed by an insert operation. All operations in a structured heap queue start
at the root node and progress down the tree, one level at a time. An operation
follows the path of the element it is executed on and, on each level of the tree,
either promotes (move up) or demotes (move down) one element in order to
maintain the heap property. Promoting and demoting elements require three
steps: reading the content of one or two nodes, comparing two elements, and
writing back the appropriate values to memory. A description of the delete,
read and insert operations follows.

2.1.1 Delete and read operations

The delete operation is divided into two phases: locate and promote. During
the locate phase, only a read step needs to be executed on each level as the
operation progresses down the tree. Once the node containing the element to
delete is found, the promote phase starts. The two elements in the children
nodes of the deleted node are read (read step) and their value is compared
(compare step). The element with smallest value is promoted and replaces the
deleted element (write step). The same procedure repeats on each remaining
level down the tree, selecting one children node to fill the empty node created
by the last promotion. An example of a delete operation can be seen in figure
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2. Read operations only consist of a locate phase.
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Figure 2: Delete operation in the structured heap queue. The pair of numbers
in a node indicates the identification number (ID) and, inside parentheses, the
value of the element. The operation consists in the deletion of the element
#3. The operation’s steps are indicated on the arrows along with their order
in parentheses. Top left Initial state of the queue and first steps of the delete
operation. Element #3 is in the root node and thus the locate phase does not
take place. The nodes containing elements #2 and #5 are read and their value
is compared. Element #5 is promoted to replace element #3. Top right Last
steps of the delete operation. The nodes containing elements #4 and #6 are
read and their value is compared. Element #6 is promoted. Bottom Final
state of the queue after the delete operation.

2.1.2 Insert operation

When an element is inserted, a certain number of elements have to be demoted
to make room for it. On each level, a node is read (read step) and its value is
compared with the inserted element’s value (compare step). Whichever has the
lowest value is written back in the node (write step) and the other one is de-
moted. This demoted element defines the path followed by the insert operation
is it progresses down the tree. An example of an insert operation is shown in
figure 3.

2.2 Design of the structured heap queue

As in the PHQ [15], operations in the SHQ are pipelined. Each level of the tree
is a pipeline stage. As soon as an operation is passed to a lower stage of the
pipeline, another one can be serviced at the current level. The heap property is
always satisfied and the lowest value element occupies the root node at all times,
even if operations are still going on in lower levels of the tree. The stages of
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Figure 3: Insert operation in the structured heap queue. The pair of numbers
in a node indicates the identification number (ID) and, inside parentheses, the
value of the element. The operation consists in the insertion of the element
#7 with value 4. The operation’s steps are indicated on the arrows along with
their order in parentheses. Top left Initial state of the queue and first steps
of the insert operation. The node containing element #3 is read and its value
is compared with that of element #7. Element #7 is demoted. Top right
Intermediate steps of the insert operation. The node containing element #5
is read and its value is compared with that of element #7. Element #7 is
demoted. Bottom left Last steps of the delete-insert operation. The node
containing element #6 is read and its value is compared with that of element
#7. Element #7 is written back in the node to replace element #6 this one is
demoted. Bottom right Final state of the queue after the insert operation.

the pipeline are identical and consist of some hardware resources. As depicted
in section 2.1, all operations in the SHQ execute the same three steps: read,
compare and write-back. Each stage of the pipeline thus has a read and a write
port to its corresponding level of the memory tree and a 2-input comparator.
Insert operations need to pass the element to insert down the tree, and a register
is required for this purpose. Delete operations deal with data on two levels of
the tree, 1 node and its 2 children nodes, and so require access to the read port
from one level below. Figure 4 show a simple block diagram of the SHQ.

2.2.1 Consecutive operations

The operations in the structured heap queue can be cascaded, just like in the
PHQ. Figure 5 shows how several delete and insert operations can be issued
back to back if reads, comparisons and write-backs each take one clock cycle to
execute. Refer to figures 2 and 3 for detailed description of the steps involved
in the delete and insert operations. Delete operations take longer to execute
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Figure 4: Simple block diagram of the structured heap queue. The same building
block is attached to each level “Li” of the binary memory tree. It consists of
a read and a write port to level “Li” of the memory tree, one read port to
level “Li+1”, a comparator (“Comp”) and two registers (“Param” and “Op”).
These registers hold the current operation type and parameters, for example the
element to insert. This information is passed to the next level as the operation
progresses down the tree. A separate port exists to read the information of the
top node from outside the queue.

than insert operations because they deal with data on two levels of the tree.
Interleaved delete and insert operations are also shown in figure 5. Figure 6
shows an example of a delete-insert operation in a 4-level memory-optimized
structured heap queue introduced in the next section.

2.3 Memory-optimized structured heap queue

Each element in a SHQ is assigned a unique path from the root node to one
of the leaf nodes. Thus, there can be as many elements in the queue as there
are nodes in the last layer of the tree. An L-level SHQ can store up to 2L−1

elements for 2L nodes, as shown in figure 1. In the PHQ, the tree is balanced,
resulting in a more compact binary tree and lower memory requirement than
in the SHQ. In comparison, an L-level PHQ can sort twice as many elements
using the same amount of memory.

Assuming elements inserted in the queue are given unique IDs, the amount
of memory required by the SHQ can be reduced. This is possible because the
elements will distribute over the branches of the tree as they are inserted and
will never fill the last level of the tree. A 3-level SHQ can store up to 4 elements
and comprises 7 nodes. When an element is first inserted in this tree, it settles
in the root node on level L0, as the rest of the tree is empty. A second inserted
element will either push the first element down or will itself end up in level L1.
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Clock cycle
1 2 3 4 5 6 7 8

1st Delete r(L2)×2 c(L1) w(L1) r(L3)×2 c(L2) w(L2) r(L4)×2 c(L3)

2nd Delete - - - - - - r(L2)×2 c(L1)

1st Insert r(L1) c(L1) w(L1) r(L2) c(L2) w(L2) r(L3) c(L3)

2nd Insert - - - r(L1) c(L1) w(L1) r(L2) c(L2)

1st Delete r(L2)×2 c(L1) w(L1) r(L3)×2 c(L2) w(L2) r(L4)×2 c(L3)

1st Insert - r(L1) c(L1) w(L1) r(L2) c(L2) w(L2) r(L3)

2nd Delete - - - - - - - r(L2)×2

Figure 5: Cascading delete operations (top), insert operations (center) and in-
terleaved delete and insert operations (bottom) in the structured heap queue.
Operations consist of a read (r), a compare (c) and a write (w) step. The “Li”
inside parentheses indicates the level of the tree where the read, compare or
write takes place. The “×2” subscript indicates that 2 simultaneous reads are
performed (this happens in delete operations, as the information of two children
nodes is read). A “-” sign means the operation is not started yet. A certain
delay must be met before a second operation can start to ensure it will not
read data which might be overwritten by a previous operation (e.g. the first
delete operation writes information of L2 during clock cycle 6, the second delete
cannot be issued before clock cycle 7 because it needs to read of L2).

Whatever the case, the root node and one node on level L1 will be occupied.
Upon insertion of a 3rd element, two scenarios are possible. In scenario 1, the
insertion causes an element to end up in the still free node of level L1. Before
the insertion of the 4th element, the first 2 levels of the tree would be filled and
the 3rd level would be empty. Upon insertion of the last element, one element
will be pushed down in a leaf node, on level L2, and the other 3 leaf nodes will
remain empty. In scenario 2, the 3rd insertion causes all three elements in the
tree to lie on a single branch, with one element on each level of the tree. These
3 elements will be located in the same half of the tree, leaving the other half
empty. Because element IDs are unique, the 4th insertion will necessarily result
in one element being placed in the still empty node of level L1, again leaving 3
leaf nodes empty.

In a 3-level SHQ, only one leaf node can be occupied. Augmenting the 3-
level queue to 4 levels is done by adding another 3-level queue next to the first
one and a new root node on top of them. The 4-level queue can now sort up to
8 elements. Still, only one element can go all the way down each of the 3-level
queues. That is, only two of the 8 available leaf nodes are actually useful. This
reasoning holds true whatever the size of the queue. The memory-optimized
SHQ reduces the size of the last level of the memory tree by 75%. It can store
2L−1 elements using 1.25× 2L−1 nodes, which only represents a 25% increase in
memory over the PHQ. An example of a 4-level memory-optimized SHQ is shown
in figure 7. The last level of a memory-optimized SHQ has to be implemented
differently than the other ones, since each of its nodes has 2 parent nodes. Also,
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Figure 6: Delete-insert operation in a memory-optimized structured heap queue.
The pair of numbers in a node indicates the identification number (ID) and,
inside parentheses, the value of the element. The operation consists in the
deletion of the element #3 directly followed with the insertion of the same
element, changing its value. The operation’s steps are indicated on the arrows
along with their order in parentheses. Top left Initial state of the queue and
first steps of the delete-insert operation. The nodes containing elements #1
and #5 are read and their value is compared. Element #5 is promoted to
replace element #3. At the same time, the inserted element #3 is compared
with newly promoted element #5 resulting in the demotion of element #3. Top
right Intermediate steps of the delete-insert operation. The nodes containing
elements #4 and #6 are read and their value is compared. Element #6 is
promoted. At the same time, the node containing element #1 is read and its
value is compared with that of element #3. Element #3 is demoted. Bottom
left Last steps of the delete-insert operation. The delete part of the operation
is completed. The node containing element #2 is read and its value is compared
with that of element #3. Element #3 is written back in the node to replace
element #2 as this one is demoted. Bottom right Final state of the structured
queue after the delete-insert operation.

each path down the tree in a memory-optimized SHQ is shared by 2 elements.

3 The Structured Heap Queue as an event queue

In this section, we demonstrate the use of the SHQ in an event-driven SNN
implemented on FPGA. The SNN is based on the Oscillatory Dynamic Link
Matcher (ODLM) introduced by Pichevar et al. [27]. The hardware architecture
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Figure 7: Memory-optimized structured heap queue. The numbers in a node in-
dicate which elements can possibly occupy this node. In the memory-optimized
SHQ, paths are shared by pairs of 2 elements and leaf nodes are shared by 4 el-
ements. In the figure, the path shown in bold is shared by elements #2 and #3.
This 4-level memory-optimized SHQ can handle 8 and contains 9 nodes. The
last level of the tree uses 75% less memory than in the naive implementation of
the SHQ.

is inspired by preliminary work from D’Haene [10]. A very different approach
has already been used to port the SNN to hardware [5], using a large array of
1-bit wide processing units and a time-driven strategy. This massively parallel
implementation is efficient when several synchronized neurons spike in the same
time step but slows down in periods of low activity. As it is a time-driven
implementation, a comparison with the present work is out of the scope of this
paper.

The ODLM uses the synchronization of spikes in a network of spiking neurons
to accomplish binding [20, 35]. This allows the ODLM to perform different
signal processing tasks such as image segmentation, image matching [27] and
sound source separation [26]. In the following section, we describe the hardware
implementation of the ODLM, present the resource usage and performance of
the design and show the results of an image segmentation experiment.

3.1 The Oscillatory Dynamic Link Matcher

To facilitate the port to hardware, some of the features of the original ODLM
were not implemented on the FPGA. These features, namely global inhibition
and a dynamic normalization of synaptic weights, are not essential to the basic
operation of the system. The implemented model and the method used to
accomplish image segmentation on hardware are described here.
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3.1.1 The neuron model

A Leaky Integrate and Fire (LIF) neuron model [12] is used to approximate
the behavior of relaxation oscillators. The membrane potential of an isolated
neuron with initial potential zero follows

pi(t) =
I0

τ

(

1− e−t/τ
)

, (1)

where pi(t) is the membrane potential of neuron i at time t, and I0 (input
current) and τ (membrane time constant) are parameters. When the membrane
potential of a neuron reaches the threshold value pθ, it is reset and a spike is
emitted. A neuron is reset by subtracting the value pθ from its membrane
potential. A neuron defined by equation (1) fires periodically, if pθ is smaller
than I0

τ , and acts like a relaxation oscillator.
When the membrane potential of neuron i reaches the threshold, the neuron

emits a spike. This spike will affect all post-synaptic neurons j to which it is
connected. The neurons j will have their membrane potential instantly increased
by an amount wij . This is shown in equation (2), where tsi is the time at which
neuron i spikes and wij is the synaptic weight between pre-synaptic neuron i

and post-synaptic neuron j.

pj(tsi)← pj(tsi) + wij (2)

Synapses are defined by a positive scalar weight computed using equation
(3), where wij is the synaptic weight connecting neuron i to neuron j, wMAX

is the maximum value for a weight, fi is a feature of the input associated to
neuron i, and α and δ are parameters which must be adapted to the processing
task.

wij = wMAX
×

(

1−
1

1 + e−α(|fi−fj |+δ)

)

(3)

3.1.2 Image segmentation using the ODLM

The topology of the network and the features used depend on the signal process-
ing task to accomplish. For image segmentation, a flat, 2-dimensional nearest
neighbor network, where each neuron is bidirectionally connected to its 8 neigh-
bors, is used. In this work, each pixel of the image is associated to a neuron in
the network and the gray level of the image’s pixels (an integer number in the
range 0 to 255) is used as the feature to compute synaptic weights. The seg-
mentation of a N -pixel image thus requires a network of N neurons and 8×N

synaptic connections. Once the weight values are calculated, the membrane
potential of the neurons is initialized randomly and the network is run until
convergence is reached. As they interact, neurons connected by strong synaptic
weights will tend to synchronize, firing at the same instant. When the groups
of synchronized neurons remain unchanged for a number of neuron oscillations,
the network is said to have reached convergence. The final membrane potential
value of the neurons is analyzed to determine the image’s segmentation: neurons
with similar final membrane potential values are part of the same segment.
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3.2 Event-driven ODLM

According to equation (1), the potential of an isolated neuron increases contin-
uously. Inverting this equation yields equation (4), where tp0→p is the time it
takes for a neuron with initial potential 0 to reach potential p.

tp0→p(p) = −τ ln

(

1− p
τ

I0

)

(4)

Using equation (4), it is possible to calculate a neuron’s next firing time

ts = t+ tp(t)→pθ

= t+ tp0→pθ

− tp0→p(t).

The state of the neurons is stored in memory as the predicted time of their
next spike. Processing an event involves modifying neuron potentials, and not
directly their predicted firing times. A neuron’s predicted firing time must be
translated into a membrane potential before equation (3) is applied. A new
membrane potential is obtained which is translated back into a new predicted
firing time and written in memory. Equations (1) and (4) define the mapping
between firing time and membrane potential. Each time the SNN processes an
event, the current time t is updated to this event’s time of occurrence tsi .

When a spike is processed, the pre-synaptic neuron is reset and a synaptic
weight is added to the membrane potential of each of the post-synaptic neurons.
These two operations are very similar, as they both consist in the modification
of the membrane potential of a neuron. Algorithm 3 is used to apply the effect
of an incoming spike on a post-synaptic neuron, that is, to add a synaptic weight
to its membrane potential.

Algorithm 3 Processing of a spike

1: Identify the post-synaptic neuron to process
2: Retrieve the neuron’s firing time and pixel value
3: Calculate the neuron’s current membrane potential
4: Calculate the synaptic weight
5: Calculate the neuron’s new membrane potential
6: Calculate the neuron’s new next firing time
7: Update the neuron’s information in memory

The same algorithm can be used to reset the pre-synaptic neuron, with a
single difference: instead of adding a synaptic weight to the membrane potential
of the neuron, step 5 of algorithm 3 resets the membrane potential (and dis-
cards the synaptic weight calculated in step 4). For the processing of an event,
algorithm 3 is executed N + 1 times, where N is the number of post-synaptic
neurons. During the extra execution, the pre-synaptic neuron is reset.
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3.3 Hardware implementation

The SNN is an implementation of algorithms 2 and 3 on a FPGA. It consists
of a controller, a processing element (PE), an event queue and a merger. The
PE implements algorithm 3 and can be duplicated to reduce processing time.
Figure 8 gives an overview of the resulting system and its various components
are detailed in the following sections.

Processing element

Event queue

Merger

Controller

PostNeuronNbr

PostNewFiringTime

SimulationTime

PreNeuronNbr

PrePixelValue

SynapseNbr

TopNeuronNbr

TopFiringTime

TopPixelValue

NewPreFiringTime
NewPreNeuronNbr

NewPrePixelValue
...

Figure 8: A high level view of the HSNN. The controller receives the
next event’s information from the merger and forwards it to the processing
element (PE) along with some control signals. The PE identifies the post-
synaptic neurons, and computes the required synaptic weights and the new
state of the processed neurons. The new state of the post-synaptic neurons
is sent to the event queue for update and the queue is sorted on-the-fly. The
merger reads the event on top of the event queue and sends it to the controller.
If several PEs and event queues are used, the merger chooses the very next event
to happen and the controller distributes the processing load among the PEs.

3.3.1 Controller

The controller realizes step 4 of algorithm 2. It receives from the merger the
next event to be processed, then updates the simulation time and forwards the
event for processing. If several PEs are implemented, the post-synaptic neurons
to be processed can be evenly distributed among them. In the present work, all
neurons are serially processed by a single PE, but several PEs could very well be
used. The controller also takes care of the communications with the computer
host.
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3.3.2 Processing element

A PE instantiates step 4 of algorithm 2 as detailed in algorithm 3. An overview
of a PE is given in figure 9. PEs receive a synapse number, a pre-synaptic neuron
ID, a weight parameter and the simulation time from the controller. A 5-stage
pipeline processes the neurons involved in the event, computing their new state.
In the first stage of the pipeline, step 1 of algorithm 3 is executed. Stage 2
executes the 2nd step of the algorithm. Steps 3 and 4 are executed in the 3rd

stage of the pipeline. The 4th stage implements steps 5 and 6 and the last stage
executes step 7 . Each stage of the pipeline takes one clock cycle to execute.
Most of the computations are performed by memory look-up. To implement an
equation by a look-up table1, one has to pre-compute the output of the equation
for several (or all) input values and save the result in memory. To evaluate the
equation, the input value for which the equation has to be computed is used
as the address of the memory to retrieve the output value of the equation. In
the processing pipeline, this technique is used for the weight calculation, the
neuron model and the inverse neuron model. A description of all the stages of
the pipeline follows.

Topology solver The topology solver identifies the neurons involved in the
current event and outputs their ID. The block outputs the neuron IDs one at a
time and indicates with a flag if the current ID corresponds to the pre-synaptic
neuron or to one of the post-synaptic neurons (see section 3.2). A functional
view of the topology solver is shown in figure 10.

Neuron state memory In the second stage of the pipeline, the post-synaptic
neuron’s information is retrieved from the neuron state memory. This memory
stores the state variables and parameters of the neurons. For the image segmen-
tation experiment, a firing time and a pixel value are stored for each neuron.
Neuron IDs are used to address the neuron state memory.

Weight calculator The weight calculator takes two pixel values and com-
putes the corresponding synaptic weight. The calculation of the weight depends
on the difference between the pre-synaptic neuron’s pixel value and the post-
synaptic neuron’s pixel value. A functional view of the weight calculator is
shown in figure 11.

Membrane model The membrane model calculates the membrane potential
at the current simulation time given a firing time. A functional view of the
membrane model is shown in figure 12.

1In the paper, the term look-up table can refer to two different things. For clarity, “look-up
table” will designate the implementation of an equation by memory look-up while the acronym
LUT will be used for the FPGA resource (see section 4.1)
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Figure 9: A processing element of the hardware event-driven system. The
inputs to the pipeline are coming from the controller and the outputs are sent
to the event queue. The topology solver identifies the post-synaptic neurons
associated with the event. The neuron state memory stores the state of all
neurons. It has one read and one write interface, the latter being used for write-
back in the last stage of the pipeline. The weight calculator computes a synaptic
weight based on the pixel value of the processed neurons. The membrane model
translates the firing time of a neuron into a membrane potential value. The
synapse model either adds a synaptic weight to the membrane potential of a
neuron or resets this neuron. The inverse membrane model translates the new
membrane model back into a firing time. Signals crossing dashed lines are
delayed appropriately (delay elements not shown).

SynapseNbr

PreNeuronNbr

= 0 ? SamePreAndPost

PostNeuronNbrNeuronOffset
+

+Topology LUT

Figure 10: The topology solver is the 1st stage of the pipeline in a processing
element. The synapse number is used as the address to the topology look-up
table which outputs an offset to add to the pre-synaptic neuron ID. If the offset
is 0, a flag is set, indicating that the pre-synaptic and post-synaptic neuron IDs
are equal.

Synapse model The synapse model has a different role depending on the
value of the flag outputted by the topology solver. If the flag is 0, then the
post-synaptic neuron’s potential is added to the synaptic weight. Otherwise,
the processed neuron is the pre-synaptic neuron, and its potential is reset. A
functional view of the synapse model is shown in figure 13.
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WeightParamDiff
-

+PrePixelValue Weight LUT SynWeight

PostPixelValue

Figure 11: The weight calculator composes, with the membrane model, the
3rd stage of the pipeline of a processing element. The pixel difference is used as
the address to a look-up table which outputs the synaptic weight.

PostPhase
-

+PostFiringTime

SimulationTime

Membrane 

model LUT
PostPotential

Figure 12: The membrane model, along with the weight calculator, is part of
the 3rd pipeline stage in a processing element. The subtraction of the simulation
time to the firing time of a neuron results in a value which represents how far
from the threshold the neuron is. This value is used as the address of a look-up
table to get the membrane potential of the neuron.

Inverse membrane model The inverse membrane model computes the new
firing time of a neuron based on its new membrane potential. A functional view
of the inverse membrane model is shown in figure 14.

State memory write back Once the new firing time is calculated, it is
written back into the neuron state memory. This is done in the last stage of the
processing pipeline.

3.3.3 Event queue

The event queue is implemented by the structured heap queue described in
section 2. The interface between the PE and the event queue is very simple.
At initialization, insert operations are issued to populate the event queue with
the neurons’ initial predicted firing time. During the processing, when the PE
computes the new firing time of a neuron, the information in the event queue
must be updated. This is done by issuing a delete-insert operation with the
neuron ID and the new firing time. For every neuron involved in an event, a
delete-insert operation must be serviced by the event queue. The root node is
then read to start the processing of the next event.

3.3.4 Merger

The merger is required when several PEs are used in parallel. It scans the top
nodes of all the event queues to determine the very next event to be processed.
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Figure 13: The synapse model is combined with the inverse membrane model
to form the 4th stage of the pipeline in a processing element. The post-synaptic
neurons’ membrane potential is added to the synaptic weight if the input flag
is 0. Otherwise, the value pθ is subtracted from the potential to reset the pre-
synaptic neuron.

SimulationTime

PostNewFiringTimePostNewPhase
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+PostNewPotential

Inverse 

membrane 

model LUT

Figure 14: The inverse membrane model and the synapse model form the
4th stage of the pipeline. The post-synaptic neuron’s membrane potential is
the address to a look-up table which outputs the amount of time left until the
neuron fires. This value is added to the simulation time to get the new neuron’s
firing time.

In the present work, the merger simply passes the information of the element in
the root node of the single event queue to the controller.

4 Results

A network of 65 536 neurons is implemented on a Xilinx XC5VSX50T FPGA
clocked at 100 MHz. For the image segmentation experiment, each neuron has
8 synapses for a total of 524 288 implemented synapses. The next sections sum-
marize the resource usage of the design and the result of the image segmentation
experiment.

4.1 Resource usage

The membrane potential and firing time values are 13-bit wide so the membrane
model and inverse membrane model look-up tables can each be implemented an
assembly of 3 BRAMs. The pixel values and synaptic weights are respectively
8-bit and 9-bit wide. The resources usage in terms of flip-flops (FFs), look-
up tables (LUTs) and block RAMs (BRAMs) for the whole system is given
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Table 1: Resource usage for the whole system

RESOURCE USED AVAILABLE % USED
FFs 3 368 32 640 10%
LUTs 4 673 32 640 14%
Slices 2 855 8 160 35%
BRAMs 130 132 98%

Table 2: Resource usage for each functional block

FUNCTION FFs LUTs BRAMs
Controller 503 635 0
Processing element 19 73 50
Topology solver 16 26 0
Neuron memory 1 1 44
Weight calculator 0 8 0
Membrane model 1 14 3
Synapse model 0 10 0
Inverse membrane model 1 14 3

Event queue 2 846 3 965 80
Merger N/A N/A N/A

in table 1, and table 2 details these numbers for each functional block of the
design. Please note that in a Xilinx FPGA, a LUT is a resource mainly used
to implement logical operations. In the other sections of this paper, the term
look-up table designates the implementation of an equation by memory look-up.

4.2 Image segmentation

The results of an image segmentation task using the event-driven SNN are pre-
sented in this section. For this experiment, a host computer transfers the pixel
values of the image and random initial potential of the neurons into the SNN.
The host computer also populates the various look-up tables in the PE as well as
the event queue. The SNN is then run for a given time and the final membrane
potential values are sent back to the computer for visualization. The parameters
of equations (1) and (3), using the pixels’ level of gray as features, are set to:
I0 = 6.918, τ = 0.1447, vθ = 1, wmax = 0.0325, α = 100, δ = 6. The network
was run for 200 ms. The original and segmented images are presented in figure
15. The same task on a general purpose computer (Intel Core i5 @2.4GHz, 3GB
RAM) executes in 1.9 seconds.

20



Figure 15: Image segmentation experiment. Top The original 406×158 pixel
image. Bottom The segmented image, where different colors represent different
segments. The segmentation is solely based on pixel values and the HSNN
merges the lower part of the image with the tires of the car. Also, the foliage
in the background is segmented with preservation of the texture.

5 Discussion

An event-driven SNN using the SHQ presents three major advantages: scala-
bility, versatility and powerful resource sharing. These aspects are covered in
the next sections. The main drawback of the SHQ is the memory overhead of
25% compared to a PHQ and to Aǵıs et al.’s search algorithm. This overhead
only is a constant scaling factor and the SHQ has the same O(N) complexity
in memory as the two other algorithms.

5.1 Scalability

The scalability of a SNN defines the impact of increasing the number of neurons
on performance and hardware resources used. In an event-driven SNN, this is
greatly affected by the complexity of the event queue. Table 3 compares the
complexity in time, logic resources and memory of the SHQ and the pipelined
search of Aǵıs et al. [1]. Operations on “top element” refer to the next event to
happen.

The most important values are the complexity in logic, and the complexity in
time of the delete top element and the read operations. Aǵıs et al.’s pipelined
search uses a 4-level comparator tree. With this structure, it is possible to
trade logic resources for time, by dividing the set of elements into subsets and
processing each one serially. For example, N can be doubled without increasing
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Table 3: Comparison of the complexity in logic, memory and time of the struc-
tured heap queue (SHQ) and Aǵıs et al.’s search algorithm, with N the number
of elements in the queue

SHQ Aǵıs et al. [1]
Complexity in logic O(log(N)) O(N)*
Complexity in memory O(N) O(N)
Complexity in time for
Delete top element O(1) O(log(N))*
Delete any element O(1) O(1)
Insert O(1) O(1)
Read top element O(1) O(log(N))*
Read any element O(log(N)) O(1)

*In [1], logic can be traded for time, and conversely, time for logic.

the amount of logic resources, but the search would take twice the amount
of time to execute. If the processing time is kept constant, the number of
comparators increases linearly with N . The SHQ, on the other hand, uses a
binary memory tree and requires one 2-input comparator per level of the tree.
This results in a much nicer logarithmic scaling of logic resources with the
number of elements.

To delete or read the top element when using the pipelined search, the
smallest value element must first be identified. This requires logarithmic time,
with a radix depending on the exact structure of the comparator tree. With the
SHQ, deleting the top element is done by reading the root node and issuing a
delete operation with the correct ID. This operation requires a certain amount
of time to complete, but it is not necessary to wait for it to be done before the
queue is usable again. When the delete operation executes on the top level of
the tree, it selects one of the children node and promotes it. The promoted
node, readable in the root node as soon as the delete operation is passed down
to the second level of the queue, is the new smallest value element of the queue.
All operations, except for the read any element, effectively execute in constant
time with respect to the number of elements. The read top element operation
executes in 1 clock cycle, as a special read port is provided for this purpose (see
figure 4).

The pipelined search has a better complexity than the SHQ for the read any
element operation. Because they use an unsorted list, elements can be read very
simply. This is not the case with the SHQ, in which a read operation might
have to scan all the levels of the binary memory tree before it finds the element
it is looking for. This logarithmic complexity does not compare very well with
the constant time of the pipelined search. Nevertheless, this is not of much
importance for the implementation of an event queue. As explained in section
1, the read any node operation is not required in a SNN.
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To show the benefits of the digital hardware SNN over an implementation
on CPU, experiments were done with a software version of the SNN described
in this paper. A software SNN of increasing size was run and the time required
to process 250 000 spikes is reported in figure 16. The figure shows the loga-
rithmic scaling of processing time with the number of neurons of the software
implementation. To compare these results, the theoretical constant time scal-
ing of the FPGA implementation is also shown with the real performance of the
65 536 neurons SNN as a baseline. Real experiments could not be run on FPGA
because of the network size involved. With smaller networks, the logarithmic
scaling of the software implementation is much less obvious.
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Figure 16: Comparison of the processing speed for a software and a FPGA
implementation of the SNN. For CPU, results show the amount of time required
to process 250 000 spikes with networks of various sizes. The values reported
for FPGA are based on the theoretical complexity given in section 5.1.

5.2 Resource sharing and performance

The SNN implementation shown in this paper illustrates the power of resource
sharing. A single PE is used, but a 65 536-neuron, 513 184-synapse SNN is
implemented. This is typical of digital hardware circuits: resource sharing, or
time multiplexing, allows great flexibility with regard to the amount of resources
used. The implementation can be tailored to the specific needs of the designer
and to the resources at his disposal. If resource shortage limits the design to
only one PE, a SNN of arbitrary size can still be designed. If performance is an
issue, spare resources can be used to duplicate the PE and cut the processing
time. In the presented SNN, a PE can process one post-synaptic neuron every
7 clock cycles. It would be possible to modify the system we presented and
use 9 PEs (the number of neurons involved in an event) with minimal added
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design effort. Each PE would process one of the involved neurons, resulting in
a processing speed of one event per 7 clock cycles.

5.3 Versatility

As a last point, the SHQ can be used in virtually any digital hardware event-
driven SNN. In this paper, we chose to use LIF neurons, a regular network
topology, look-up tables computations, and so on. The SHQ is oblivious to
all of this. Irregular network topologies or dynamic synaptic weights could be
used. It does not matter if event times are exact or approximated. The SHQ
only brings constraints on timing: insert operations can only be serviced every
3 clock cycles and delete-insert operations every 7 clock cycles.

6 Conclusion

In this paper, the structured heap queue (SHQ), was introduced as a good
candidate to implement the event queue of an event-driven digital hardware
spiking neural network. The use of the SHQ was demonstrated in the FPGA
implementation of a SNN and tested with an image segmentation task. With
the SHQ, it is possible to process one event every 7 clock cycles, no matter the
size of the SNN. The SHQ is very similar to the pipelined heap queue [15, 4], but
it is especially well suited for the application. In the SHQ any existing element
can be deleted in constant time, a crucial feature for the implementation of an
event queue. An alternate solution to the SHQ is the pipelined search algorithm
used in [1]. The SHQ has a better complexity both in logic resources and in
time for the operations required in an event queue. With the SHQ, doubling
the number of events to manage results in double the amount of memory and
one more 2-input comparator. Processing time is not affected. The SHQ can
be put to use in virtually any event-driven digital hardware SNN.
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