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Abstract
Prior knowledge can be used to improve pre-
dictive performance of learning algorithms
or reduce the amount of data required for
training. The same goal is pursued within
the learning using privileged information
paradigm which was recently introduced by
Vapnik et al. and is aimed at utilizing addi-
tional information available only at training
time – a framework implemented by SVM+.
We relate the privileged information to im-
portance weighting and show that the prior
knowledge expressible with privileged fea-
tures can also be encoded by weights associ-
ated with every training example. We show
that a weighted SVM can always replicate
an SVM+ solution, while the converse is not
true and we construct a counterexample high-
lighting the limitations of SVM+. Finally, we
touch on the problem of choosing weights for
weighted SVMs when privileged features are
not available.

1. Introduction: prior knowledge,
privileged information, and instance
weights

Classification is a well-studied problem in machine
learning, however, learning still remains a challeng-
ing task when the amount of training data is limited.
Hence, information available in addition to the train-
ing sample – the prior knowledge – is the crucial factor
in achieving further performance improvement.

Prior knowledge comes in different forms and its in-
corporation into the learning problem depends on a
particular setting as well as the algorithm. This paper
focuses on introducing prior knowledge into a support
vector machine (SVM) for binary classification. Lauer
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& Bloch (2008) provide a review of different ways to
incorporate prior knowledge into SVMs and give a cat-
egorization of the reviewed methods based on the type
of prior knowledge they assume; see also (Schölkopf &
Smola, 2002). We will mainly consider the scenario
where the additional information is about the train-
ing data rather than about the target function. A
loosely related setting is the semi-supervised learning
approach (Chapelle et al., 2006), where unlabeled data
carries certain information about the marginal distri-
bution in the input space.

Recently, Vapnik & Vashist (2009) introduced
the learning using privileged information (LUPI)
paradigm which aims at improving predictive perfor-
mance of learning algorithms and reducing the amount
of required training data. The additional information
in this framework comes in the form of privileged fea-
tures, which are available at training time, but not
at test time. These features are used to parametrize
the upper bound on the loss function and, essentially,
are used to estimate the loss of an optimal classifier
on the given training sample. Higher loss may be
seen as an indication that a given point is likely to
be an outlier, and, hence, should be treated differ-
ently than a non-outlier. This simple idea has been
extensively explored in the literature and we give a
few pointers in Section 1.2. The additional informa-
tion about which training examples are likely to be
outliers can be encoded via instance weights, there-
fore, one can already anticipate a close relation be-
tween the LUPI framework and importance weighting
which is discussed next.

In the weighted learning scenario, each training exam-
ple comes with a non-negative weight which is used
in the loss function to balance the cost of errors. A
typical example where instance weights appear natu-
rally is the cost-sensitive learning (Elkan, 2001). If
classes are unbalanced or different misclassification er-
rors incur different penalties, one can encode that prior
knowledge in the form of instance weights. Assigning
high weight to a data point suggests that the learning
algorithm should try to classify that point correctly,
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possibly at the cost of misclassifying “less important”
points. In this paper, however, we do not make the
cost-sensitive assumption, i.e., we do not assume that
different errors incur different costs on the test set. In-
stead, we decouple importance weighting on the train-
ing and on the test sets, and we only focus on the
former. This allows us, in particular, to also assign a
high weight to an outlier if that ultimately leads to a
better model.

As mentioned above, there are different forms of prior
knowledge that can be encoded differently. In this pa-
per, we show that instance weights can express the
same type of prior knowledge that is encoded via priv-
ileged features. In particular, this allows one to inter-
pret the effect of privileged features in terms of the
incurred importance weights. Remarkably, the result-
ing weights do emphasize outliers, which also happen
to be support vectors in SVMs.

Our focus in this work is on the study of the SVM+
algorithm, which is an extension of the support vector
machine to the LUPI framework (Vapnik & Vashist,
2009). Using basic tools of convex analysis, we investi-
gate uniqueness of the SVM+ solution and its relation
to solutions of the weighted SVM (WSVM). It turns
out there is a simple connection between an SVM+
solution and WSVM instance weights, moreover, that
relation can be used to better understand the SVM+
algorithm and to study its limitations. Having realized
that instance weights in WSVMs can serve the same
purpose as privileged features in SVM+, we also turn
to the problem of choosing weights when privileged
features are not available.

1.1. Our contributions

Below is a summary of contributions of this work.

• We show that any non-trivial SVM+ solution is
unique (in the primal), which is a stronger result
than the one available for (W)SVMs, where the
offset b may not be unique.

• By reformulating the SVM+ dual optimization
problem, we reveal its close connection to the
WSVM algorithm. In particular, we show that
any SVM+ dual solution can be used to con-
struct weights for the WSVM that will yield the
same primal solution up to the non-uniqueness of
b. This implies that WSVM with appropriately
chosen weights can mimic SVM+ and that it is
always possible to go from an SVM+ solution to
a WSVM solution.

• We also study whether it is always possible to

go in the opposite direction (which would imply
that the two algorithms are equivalent). We give
the necessary and sufficient condition for such an
equivalence to hold and reveal that the SVM+ so-
lutions are a strict subset of the WSVM solutions.
We construct a simple counterexample where a
WSVM solution cannot be found by SVM+, no
matter which privileged features are used or which
values the hyper-parameters take.

• Finally, we turn to the problem of choosing
weights in the absence of privileged features. We
show that the weights can be learned directly from
data by minimizing an estimate of risk similar
to standard procedures of hyper-parameter tun-
ing. In the idealized setting, where the estimate
is computed on a large validation set, we show
that the WSVM with learned weights outperforms
both the SVM and the SVM+. This highlights
the potential of weighted learning and should mo-
tivate further work on the choice of weights.

1.2. Related work

We now briefly discuss related work on learning using
privileged information and weighted learning.

Since the introduction of the new learning paradigm
and the corresponding SVM+ algorithm in (Vapnik,
2006) and later in (Vapnik et al., 2009; Vapnik &
Vashist, 2009), there is a growing body of work on
theoretical analysis (Pechyony & Vapnik, 2010), im-
plementation (Pechyony & Vapnik, 2011) and appli-
cation of the proposed framework to various machine
learning settings. Liang & Cherkassky (2008); Liang
et al. (2009) study the relation between the SVM+
approach and the multi-task learning scenario, Fouad
et al. (2012) apply the SVM+ idea to metric learn-
ing, and Chen et al. (2012) extend it to boosting
algorithms. Feyereisl & Aickelin (2012) use privi-
leged information for data clustering and Wolf & Levy
(2013) propose an SVM	 method to compute simi-
larity scores in video face recognition. Note, however,
that the latter method is not related to the SVM−
algorithm we have in mind in Section 4.5. In particu-
lar, SVM	 reduces to SVM with a pre-processing step,
similar to (Schölkopf et al., 1998), while in our case the
optimization problem as well as the motivation are en-
tirely different.

Instance weighting has been widely used in various ma-
chine learning settings and the topic is to too vast
to cover all of the related work here. We only give
a few pointers to papers on cost-sensitive learning
(Margineantu, 2002; Zadrozny et al., 2003), sample
bias correction (Heckman, 1979; Cortes et al., 2010),
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domain adaptation (Shimodaira, 2000; Sugiyama &
Müller, 2005), online learning (Dredze et al., 2008),
and active learning (Beygelzimer et al., 2009). Perhaps
the most related in terms of the learning algorithm
(SVM) and the interpretation of instance weights are
the works on fuzzy SVM (Lin & Wang, 2002), where
each data point has a fuzzy class membership repre-
sented by a weight between 0 and 1, weighted margin
SVM (Wu & Srihari, 2004), where again each label has
a confidence score between 0 and 1, and weighted SVM
with an outlier detection pre-processing step (Yang
et al., 2005), where a kernel-based clustering algorithm
is used to generate instance weights.

1.3. Organization

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce the SVM+ and the weighted SVM
(WSVM) algorithms. In Section 3 we study basic
properties of these algorithms, namely, uniqueness of
their solutions. In Section 4 we present our main re-
sult which consists of four parts. Theorem 3 shows
that any SVM+ solution is also a WSVM solution
with appropriately chosen weights, Theorem 4 gives
the necessary and sufficient condition for equivalence
between the SVM+ and WSVM problems, and Sec-
tion 4.4 presents an example where a WSVM solution
cannot be found by SVM+, no matter which privi-
leged features are used. Finally, Section 4.5 discusses
whether it is possible to complement SVM+ with an
SVM−.

Section 5 is concerned with the problem of choosing
weights, where we propose a weight learning method
in Section 5.3. Lastly, Section 6 presents experimental
results on a number of publicly available data sets and
Section 7 gives some concluding remarks.

All proofs are moved to Appendix to enhance read-
ability.

2. Preliminaries

In this section we describe the necessary background.
Our results are based on basic notions from convex
analysis (Boyd & Vandenberghe, 2004) and, in partic-
ular, on the Karush-Kuhn-Tucker (KKT) conditions.
For convenience, the latter are provided in Appendix A
for both of the optimization problems studied below.

2.1. The setting and notation

We consider a binary classification problem with an
instance space X and the label set Y = {−1, 1}. Let
S = {(xi, yi)}ni=1 be a training sample drawn i.i.d.
from an unknown distribution P on X × Y, and ` be

a convex loss function ` : R → R+, e.g., the hinge
loss `(yf(x)) = [1 − yf(x)]+. The task is to learn
f : X → R from a set of hypotheses H, that yields
label prediction by sign f(x) and achieves the lowest
expected loss L(f) := E `(Y f(X)).

We use X̃ to denote the space of privileged information
used in the SVM+, while the ? is reserved to indicate
a solution to an optimization problem.

In the non-linear setting, the input data is first mapped
into a feature space endowed with an inner product.
The decision space X is mapped into Z via a feature
map Φ (xi 7→ Φ(xi) = zi) and the correcting space
X̃ is mapped into Z̃ via Φ̃ (x̃i 7→ Φ̃(x̃i) = z̃i). It
is known (Schölkopf et al., 2001) that inner products
correspond to positive definite kernel functions1 as fol-
lows:

〈
zi, zj

〉
Z =

〈
Φ(xi),Φ(xj)

〉
Z = k(xi,xj) (and

similar for X̃ ), which allows to formulate algorithms
with general kernels in mind. Since the corresponding
space should be clear from the context, we omit the
subscripts when dealing with inner products and the
induced norms.

Unless transposed with >, all vectors are column vec-
tors denoted by lower case bold letters, matrices are
denoted by capital bold letters, and random vari-
ables are denoted by capital letters. We let y =
(y1, . . . , yn)> and Y = diag(y). The kernel matrices
K and K̃ are defined entrywise via Kij = k(xi,xj)

and K̃ij = k̃(x̃i, x̃j), where i, j = 1, . . . , n. We
also introduce the index sets I± := {i : yi ≷ 0},
I0 := {i : yif(xi) < 1}, I1 := {i : yif(xi) ≤ 1},
and a shorthand P(1|x) := P(Y = 1|X = x).

Finally, N (A) andR(A) stand correspondingly for the
null space and the column space of a matrix A, a⊥ is
the orthogonal complement of a, and 0 (respectively
1) is the vector of all zeros (ones).

2.2. The SVM+ optimization problem

In the framework of learning using privileged informa-
tion (LUPI), the decision space X is augmented with
a correcting space X̃ of privileged features x̃ that are
available at training time only and are essentially used
to estimate the loss `(yif?(xi)) of an optimal classifier
f? := arg minf∈H L(f) on the given training sample.
The SVM+ algorithm (Pechyony & Vapnik, 2011) is a
generalization of the support vector machine that im-
plements the LUPI paradigm. The slack variables ξi

1 A function k : X × X → R which for all n ∈ N,
x1, . . . ,xn ∈ X gives rise to a positive definite kernel ma-
trix K is called a positive definite kernel.
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are parametrized as a function of privileged features:

ξi(w̃, b̃) := 〈w̃, z̃i〉+ b̃,

where (w̃, b̃) are the additional parameters to be
learned. The following optimization problem defines
the SVM+ algorithm.

min
w,b,w̃,b̃

1

2
(‖w‖2 + γ‖w̃‖2) + C

n∑
i=1

ξi(w̃, b̃)

s.t. yi(〈w, zi〉+ b) ≥ 1− ξi(w̃, b̃)
ξi(w̃, b̃) ≥ 0

(2.1)

Note that there are two hyper-parameters, γ and C,
that control the trade-off between the three terms of
the objective, where the second term limits the capac-
ity of the set of correcting functions ξi(w̃, b̃).

2.3. The WSVM optimization problem

The weighted support vector machine (WSVM) is a
well-known generalization of the standard SVM. Each
instance (xi, yi) is assigned an importance weight ci ∈
R+ and in place of the standard empirical risk estima-
tor L̂(f) := n−1

∑n
i=1 `(yif(xi)) its weighted version

is employed:

L̂w(f) :=

n∑
i=1

ci`(yif(xi)).

The WSVM optimization problem is given below.

min
w,b,ξ

1

2
‖w‖2 +

n∑
i=1

ciξi

s.t. yi(〈w, zi〉+ b) ≥ 1− ξi, ξi ≥ 0

(2.2)

At first glance, it may appear that the two generaliza-
tions of the SVM are unrelated. As will become clear
in the following, however, there is a relation between
the two and the solution space of WSVMs includes
SVM+ solutions. This is not very surprising as soon
as one realizes that re-weighting allows to alter the
loss function to a large extent and, in particular, one
can mimic the effect of privileged features. The close
relationship can already be seen when comparing the
corresponding dual problems.

2.4. The dual optimization problems

Let α and β be the Lagrange dual variables of the
SVM+ or the WSVM problem corresponding respec-
tively to the first and the second inequality constraints
(Schölkopf & Smola, 2002; Vapnik et al., 2009). Define

α̃ := α+ β − c, where for the SVM+ we set c = C1,
and note that β can be eliminated leading to the con-
straint αi ≤ ci + α̃i. Let

F (α) :=
1

2
α>YKYα− 1>α, F̃ (α̃) :=

1

2
α̃>K̃α̃.

It is not hard to see that the following optimization
problem is equivalent to the dual of the SVM+ prob-
lem (2.1).

min
α,α̃

F (α) +
1

γ
F̃ (α̃)

s.t. y>α = 0, 1>α̃ = 0, 0 ≤ αi ≤ C + α̃i

(2.3)

Likewise, the problem below is equivalent to the dual
of the WSVM problem (2.2).

min
α

F (α)

s.t. y>α = 0, 0 ≤ αi ≤ ci
(2.4)

Note that the constraint αi ≤ ci+α̃i is the crucial part
of the SVM+ problem as it introduces the coupling
between the decision space X and the correcting space
X̃ . Recall from the representer theorem (Schölkopf
et al., 2001) that an SVM solution has the form f =∑n
i=1 αiyik(xi, ·). Correcting features thus control the

maximum influence a data point (xi, yi) can have on
the resulting classifier, just like the weights in WSVMs.

3. Uniqueness results

The connection between SVM+ and WSVM explored
in Section 4 relies on the analysis of uniqueness of
their solutions. Effectively, the statements can only
be made with respect to the classes of equivalent solu-
tions and equivalent weights, hence, it is imperative to
first obtain a better understanding of different sources
of non-uniqueness in the aforementioned problems.

In this section, we show that every non-trivial SVM+
solution is unique, unlike WSVM solutions that may
have a non-unique offset b. Furthermore, we describe
a set of equivalent weights that yield the same WSVM
solutions. The latter will be used to prove equivalence
between the SVM+ and the WSVM algorithms under
additional constraints.

3.1. Uniqueness of WSVM and SVM+
solutions

We begin with a known result due to Burges & Crisp
(1999) that characterizes uniqueness of the weighted
SVM solution. Essentially, it states that if there is
an equilibrium between instance weights of support
vectors, then the separating hyperplane can be shifted
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within a certain range without altering the total cost in
the WSVM problem. In that case, a WSVM solver has
to choose a value for the offset using some heuristic,
e.g., it can choose the middle point in the allowed range
of b.

Theorem 1. The solution to the problem (2.2) is
unique in w. It is not unique in b and ξ iff one of
the following two conditions holds:∑

i∈I−∩I0

ci =
∑

i∈I+∩I1

ci,
∑

i∈I+∩I0

ci =
∑

i∈I−∩I1

ci.

Note that in practice it may happen that one of the
two conditions holds and the WSVM problem (2.2)
does not have a unique solution. This is not the case
for the SVM+ as shown next.

Theorem 2. The solution to the problem (2.1) is
unique in (w, w̃, b̃) for any C > 0, γ > 0. If there is a
support vector, then b is unique as well, otherwise:

max
i∈I+

(1− 〈w̃, z̃i〉 − b̃) ≤ b ≤ min
i∈I−

(〈w̃, z̃i〉+ b̃− 1).

This result is interesting on its own, since it shows
that the SVM+ is formulated in a way that privileged
features always give enough information to choose the
unique solution (if there are no support vectors, then
the constant classifier can be given by b = ±1 depend-
ing on the class balance).

Results concerning uniqueness of dual solutions are
more technical and are moved to the Appendix.

3.2. Equivalent weights

Apart from the conditions discussed in the previous
section, another source of non-uniqueness is that any
given WSVM solution corresponds, in general, to mul-
tiple weight vectors c. In this section, we give a char-
acterization of all such vectors.

Definition 1. A family of equivalent weights W is
defined for a given WSVM solution as follows:

W := {µ+ ν | µ ∈ U , ν ∈ V},
U := {µ ∈ Rn+ |

∑
i µiyizi = w?,

∑
i µiyi = 0,∑

i µi =
∑
i α

?
i , µi(ξ

?
i − hi) = 0 ∀i},

V := {ν ∈ Rn+ | νiξ?i = 0 ∀i},

where hi := [1− yi(〈w?, zi〉+ b?)]+ is the hinge loss at
a point i = 1, . . . , n.

The following simple statement shows that the set W
defined above contains all weights that correspond to
a given WSVM solution.

Proposition 1. Let (w?, b?, ξ?,α?,β?) be a primal-
dual optimal point for the WSVM problem (2.2). The
point (w?, b?, ξ?) is primal optimal for any weight vec-
tor c ∈ W, and all such weights are contained in W.
Corollary 1. There always exists a weight vector c′ ∈
W such that c′ = α′ = α? and β′ = 0.

It is not surprising that a posteriori all weight could
be concentrated on support vectors as suggested by
Corollary 1. As will become clear in the following, this
is close to what the SVM+ algorithm is constrained to
do.

4. Relation between SVM+ and
WSVM

In this section, we present our main theoretical re-
sult on the conditions under which the SVM+ and the
WSVM are equivalent. Section 4.1 shows that it is
always possible to construct weights from an SVM+
solution such that the WSVM will have the same solu-
tion. Section 4.2 discusses when it is possible to go in
the opposite direction and reveals a fundamental con-
straint of the SVM+ algorithm. Finally, Section 4.3
states the necessary and sufficient condition for their
equivalence. Furthermore, we present a counterexam-
ple violating that condition in Section 4.4 and discuss
SVM− in Section 4.5.

4.1. SVM+ solutions are also WSVM solutions

The following theorem shows that any SVM+ solution
is also a solution to the WSVM problem with appro-
priately chosen weights and such a choice of weights
can always be given by the SVM+ dual variables.
Theorem 3. Let (w?, b?, w̃?, b̃?,α?,β?) be a primal-
dual optimal point for the SVM+ problem. There ex-
ists a choice of weights c, namely c = α?+β?, and ξ?
such that (w?, b?, ξ?,α?,β?) is a primal-dual optimal
point for the WSVM problem.

Note that a direct corollary of this result is that, just
like a good choice of privileged features leads to im-
proved predictive performance of the SVM+ (Pechy-
ony & Vapnik, 2010), a good choice of weights leads
to improved performance of the WSVM. This claim is
verified empirically in the experimental Section 6 when
weights are learned in an idealized setting, which is
close to the Oracle SVM setting of Vapnik & Vashist
(2009).

Figure 1 shows a toy example where an SVM+ solution
is used to compute weights c = α? +β? that force the
WSVM to find exactly the same solution. Note that
the outliers (points 3 and 4) receive relatively high
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Figure 1. An example of equivalence between SVM+ (top)
and WSVM (bottom). The privileged features coincide
with the optimal slack variables ξ?i , as motivated by the
LUPI paradigm, and instance weights ci are given by the
sum of SVM+ dual variables (Theorem 3). Note that
whenever a WSVM solution is constructed from an SVM+
solution, as in this case, the weighted average loss is greater
than the non-weighted one, i.e., ρ(c, ξ?) ≥ 0 (Theorem 4).

weight, so that the weighted average loss is greater
than the non-weighted one. See Section 4.3 for further
details.

4.2. Which WSVM solutions are SVM+
solutions?

We now consider the opposite direction and charac-
terize the SVM+ solutions in terms of the induced
instance weights. The following Lemma 1 highlights
the bias of the SVM+ algorithm as it establishes that
every solution must satisfy a certain relation between
the dual variables (respectively the weights) and the
loss on the training sample. This is the key to show-
ing that the SVM+ and the WSVM algorithms are not
equivalent, and that the latter is strictly more generic
as it does not impose that additional constraint.
Lemma 1. Assume any given C > 0, γ ≥ 0 and let
(w?, b?, w̃?, b̃?,α?,β?) be a primal-dual optimal point
for the SVM+ problem (2.1), then the following holds:∑n

i=1(α?i + β?i )hi∑n
i=1(α?i + β?i )

≥ 1

n

n∑
i=1

hi, (4.1)

where hi := [1− yi(〈w?, zi〉+ b?)]+ is the hinge loss at
a point i = 1, . . . , n. If γ = 0, then (4.1) is satisfied
with equality.

Taking into account that the corresponding weights in
the WSVM are given by the sum of the SVM+ dual

variables, the above inequality can be re-written in a
more compact form.
Corollary 2 (The Necessary Condition). Assume the
setting of Theorem 3, then ξ?i = hi and

〈c− c̄1, ξ?〉 ≥ 0, where c̄ := n−1
∑n
i=1 ci.

Proof. Follows from Theorem 3 and Lemma 1.

Note that this result suggests a simple way to interpret
the effect of privileged features – they impose a re-
weighting of the input training data. Moreover, at the
end of training more emphasis will be on points with
positive loss and less on easy points, in particular, the
non-support vectors may end up with zero weight.

4.3. SVM+ and WSVM equivalence

We now state the main result of this paper which gives
the necessary and sufficient condition for the equiva-
lence between the SVM+ and the WSVM.
Theorem 4. Let (w?, b?, ξ?,α?0,β

?
0) be a primal-dual

optimal point for the WSVM problem with instance
weights c0 ∈ Rn+, not all zero. There exists a choice
of C, γ, and correcting features {x̃i}ni=1 such that
(w?, b?) is optimal for the SVM+ problem iff:

∃ c ∈ W : ρ(c, ξ?) := 〈c− c̄1, ξ?〉 ≥ 0, (4.2)

where c̄ := n−1
∑n
i=1 ci. If ρ(c, ξ?) ≥ 0, one such

possible choice is as follows:

C = c̄, γ = ρ(c, ξ?), x̃i = ξ?i − b̃?, ∀i (4.3)

moreover, the optimal w̃? and b̃? in that case are:

w̃? = 1, b̃? = 〈c, ξ?〉 / 〈c,1〉 . (4.4)

Let us make a few remarks. First, condition (4.2) can
be rewritten in terms of averages as

n∑
i=1

ωiξ
?
i ≥

1

n

n∑
i=1

ξ?i , (4.5)

where ωi := ci/
∑n
i=1 ci is the normalized weight.

Hence, any SVM+ solution has an equivalent WSVM
setting that puts more weight on hard examples, i.e.,
the points with higher loss.

Further, it is clear from Definition 1 that the weight
of points with yif(xi) > 1 can be changed arbitrar-
ily without altering the f since in that case ξ?i = 0,
α?i = 0 and β?i = ci, i.e., these points are not support
vectors and they have no influence on the final clas-
sifier. Hence, their weight – the upper bound on the
influence – does not matter.
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This reasoning leads us to a condition that is much
easier to check in practice than the one in Theorem 4.
Note that condition (4.2) involves the set of equivalent
weights and it is possible to check it directly using the
definition of W as will be discussed below. However,
if the kernel matrix is non-singular, as is often the
case with the Gaussian kernel, then one can simply
take c = α? and check (4.2) for that particular weight
vector only.

Proposition 2. Let (w?, b?, ξ?,α?,β?) be a primal-
dual optimal point for the WSVM problem with in-
stance weights c ∈ Rn+, not all zero. If

N (YKY) ∩ 1⊥ ∩ y⊥ = {0},

then there exists a choice of C, γ, and {x̃i}ni=1 such
that (w?, b?) is optimal for the SVM+ problem iff:

ρ(α?, ξ?) = ξ?>
(
I− 1

n11
>)α? ≥ 0. (4.6)

Intuitively, the SVM+ algorithm maximizes the mar-
gin 2‖w‖−1 by minimizing F (α), as in the standard
SVM, and also gradually shifts focus to hard examples
by minimizing F̃ (α̃). As long as there are sufficiently
many points on the “right” side of the margin, (4.5)
can be achieved by reducing the weight of such non-
support vectors, and so the SVM+ solution space is
as rich as that of the WSVM. In general, however,
(4.5) may not be attainable without altering the f as
demonstrated by the counter example below.

4.4. WSVM solution not found by SVM+

We now consider the case when misclassified training
points have low weight, i.e., ρ(c, ξ?) < 0, and give an
example where SVM+ fails to find the corresponding
WSVM solution.

Consider the training sample below (Figure 2):

S = {(1,+1), (2,−1), (3,+1)}, c = (4, 6, 2)>.

The corresponding primal-dual optimal point is

w? = −2, ξ? = (0, 0, 4)>, α? = (4, 6, 2)>,

b? = 3, β? = (0, 0, 0)>.

Since ρ(c, ξ?) = − 2
3 < 0, this solution does not corre-

spond to any of the SVM+ solutions (Lemma 1). Note
that one can easily verify thatN (YKY)∩1⊥∩y⊥ con-
tains only 0, hence, Proposition 2 already completes
the claim. Similarly, one can show using Definition 1
that U = {α?} and that other equivalent weights can
only increase the weight of points 1 and 2, which would
only decrease ρ(c, ξ?). Therefore, there is no c′ ∈ W

0 1 2 3

−1

0

1

2

3

4

ξ⋆1

ξ⋆2P
ri
v
il
eg
ed

sp
ac
e
X̃

wSV M+

0 1 2 3

2

3

4

5

6

ξ⋆3

Input space X

In
st
an

ce
w
ei
gh

t
c 1

2wWSVM
ρ(c, ξ⋆) = −8.00 < 0

Figure 2. An example of a WSVM solution (bottom) that
cannot be found by SVM+ (top). The instance weights ci
are chosen in a way to avoid a zero norm constant classifier
(f = +1). The resulting weighted average loss is less than
the non-weighted one, hence the SVM+ cannot find this
solution. Computing the privileged features as in (4.3)
leads to an SVM+ solution with the opposite prediction
and a higher value of the weighted average loss.

for which ρ(c′, ξ?) ≥ 0 and, by Theorem 4, there is no
correcting space that would make (w?, b?) = (−2, 3)
an SVM+ solution.

Figure 2 shows the learned WSVM and SVM+ models,
where we used x̃i = ξ?i − 〈c, ξ?〉 / 〈c,1〉, C = c̄, γ =
1. A different choice of C and γ can make SVM+
return a constant classifier, which is the solution of
the standard SVM, but there is no setting that would
make it return (w?, b?) = (−2, 3).

Note that in this example an even stronger result can
be shown: SVM+ cannot reproduce the same type of
dichotomy, i.e., even if we allowed it to return a line
with any negative slope going through the same point,
the SVM+ would still fail. This shows that there are
settings where WSVM performs significantly better
than SVM+ due to a fundamental constraint of the
latter.

4.5. Is there an SVM−?

We have seen that the SVM+ has a more constrained
solution space than the weighted SVM. Lemma 1 gives
the exact characterization of that constraint in terms
of the relation between the SVM+ dual variables and
the incurred loss on the training sample. The WSVM
solution space can thus be partitioned into solutions
that can be found by SVM+ and the rest. We are
now interested if there is a modification to the SVM+
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algorithm that would yield solutions from that second
part.

Theorem 4 suggests that γ = ρ(c, ξ?) ≥ 0, so, intu-
itively, if we now require ρ(c, ξ?) < 0, the correspond-
ing γ has to be with a minus:

min
w,b,w̃,b̃

1

2
(‖w‖2 − γ‖w̃‖2) + C

n∑
i=1

ξi(w̃, b̃)

s.t. yi(〈w, zi〉+ b) ≥ 1− ξi(w̃, b̃)
ξi(w̃, b̃) ≥ 0

(4.7)

This problem is clearly non-convex as the objective is
now a difference of convex functions. If there was a
finite (local) minimizer (w?, b?, w̃?, b̃?), the KKT con-
ditions would still hold (Borwein & Lewis, 2000, The-
orem 2.3.8) for a Lagrange multiplier vector (α?,β?),
and one could show a result similar to Lemma 1, but
with the reverse inequality.

Unfortunately, however, the problem (4.7) is un-
bounded below, which is easy to see: the quadratic
term ‖w̃‖2 grows faster than the linear term ξi(w̃, b̃)
and the feasible set is unbounded. This shows that it
is not trivial to modify the SVM+ algorithm to ob-
tain solutions from its complement, and it is an open
question if such a modification (with non-degenerate
solutions) exists at all.

The phenomenon we observe here is that some of
the WSVM solutions (ρ(c, ξ?) ≥ 0) can be com-
puted easily within the LUPI framework, while others
(ρ(c, ξ?) < 0) may be completely out of reach. What
are the implications of this observation in terms of
learning a classifier?

Consider any training sample S of size n for a prob-
lem P. Let fc,S be a classifier constructed by the
WSVM with weights c, and let ξ?c,S be the corre-
sponding loss vector. The set of all admissible weights
Rn+ is partitioned into two subsets, W+ and W−, de-
pending on the sign of ρ(c, ξ?c,S). Define the “best”
weight vectors in each of the two classes as c± =
arg minc∈W±

L(fc,S). If L(fc−,S) < L(fc+,S), then
the best classifier corresponds to the weights that are
out of reach for the SVM+, hence, there are no priv-
ileged features that will yield an SVM+ classifier as
good as fc−,S .

This reasoning motivated us to consider weight gener-
ation schemes that are unrelated to SVM+ and which
are discussed next.

5. How to choose the weights

Recall that we are interested in ways of incorporating
prior knowledge about the training data. In the SVM+
approach, the role of additional information is played
by the privileged features which are used to estimate
the loss on the training sample. The same effect, as
we have established, can be achieved by importance
weighting. Taking into account the vast amount of
work on weighted learning, it seems that re-weighting
of misclassification costs is a very powerful method
of incorporating prior knowledge. We would like to
stress, however, that a critical difference to, e.g., the
cost-sensitive learning is that we are ultimately inter-
ested in minimizing the non-weighted expected loss
and the weights are only used to impose a bias on the
learning algorithm.

We also note that even though the SVM+ solutions
are contained within the WSVM solutions, there is
no implication that any of the two algorithms is “bet-
ter”. If privileged features are available, then SVM+
is a reasonable choice. On the other hand, if there
are no privileged features or if one has concerns out-
lined at the end of Section 4.5, then one may want to
consider a more general WSVM with some problem
specific scheme for computing weights.

In the following, we investigate two approaches that
make different assumptions about what is additionally
available to the learning algorithm at training time.
The methods operate in a somewhat idealized setting
and are mainly aimed at motivating further research
on how to choose the weights. They may be thought
of as the empirical counterparts of a more theoreti-
cal discussion involving the Oracle SVM in (Vapnik
& Vashist, 2009). In particular, the weight learning
method of Section 5.3 can be thought of as a way of ex-
tracting additional information about the given train-
ing sample from a validation sample which is used as
a reference.

5.1. Why instance weighting is important?

Let us first motivate why instance weighting can be
very important in certain problems.

Consider the toy problem shown in Figure 3. The data
comes from two linearly separable blobs, so it is pos-
sible to achieve zero test error on them. However, the
training sample has been contaminated with two out-
liers that lie extremely far from the optimal decision
boundary. Since the SVM uses a surrogate loss and not
the 0-1 loss, the cost of a point is higher the further
the point is from the separating hyperplane. Hence,
the SVM “prefers” to keep the two outliers close to the
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Figure 3. Illustration of the effect of instance weighting on
a toy problem in 2D. Even though the problem is (almost)
linearly separable, the two outliers in the training set cause
the SVM to have a near chance level performance (horizon-
tal line). Assigning zero weight to the outliers allows the
WSVM to recover a near optimal solution (vertical line).

decision boundary, which leads to a near chance level
performance on this data set. Instance weighting, on
the other hand, allows one to alter the cost of each
point. In particular, if the two outliers are assigned
zero weight, then the WSVM is able to find a near
optimal classifier.

Figure 4. Importance weighting leads to a more stable es-
timate of the decision boundary in a non-linear 2D prob-
lem. The size of a data point corresponds to its weight,
which is computed from an estimate of P(Y = 1|X) shown
in background. The WSVM (solid line) is less influenced
by outliers than SVM (dashed line) since the outliers are
downweighted, which ultimately results in better predictive
performance.

The second toy problem shown in Figure 4 suggests
that an estimate of P(Y = 1|X) could be used to com-
pute instance weights and improve predictive perfor-
mance even in the non-linear case, where the afore-
mentioned problem of extreme outliers is less likely to
happen. As before, the issue evolves around the points

that lie either too close to or even on the wrong side
of the true decision boundary. We used the standard
Nadaraya-Watson estimator (6.1) to obtain an esti-
mate of the conditional probability (shown in back-
ground), which was then used to compute instance
weights (reflected by the size of points) using the for-
mula (5.2) introduced below. Note that the outliers are
downweighted and have less influence on the WSVM
decision boundary (solid line) than on the SVM one
(dashed line). That leads to better accuracy, as re-
ported in Section 6.2.

5.2. Access to an estimate of P(Y = 1|X)

Clearly, having full access to the conditional probabil-
ity P(1|X) is a hypothetical scenario since in this case
the classification problem is solved. However, it is in-
teresting to see how this type of information could be
used in construction of good weights. As the first step,
we note that if P(1|X) were available at least for the
training points one could directly compute the condi-
tional expectation and employ the following estimator

L′(f) :=
1

n

n∑
i=1

[
`(f(Xi)) P(1|Xi)

+ `(−f(Xi)) P(−1|Xi)
]
,

which is an unbiased estimator of L(f):

EL′(f) = E
[
`(f(X)) P(1|X) + `(−f(X)) P(−1|X)

]
= EE

[
`(Y f(X))|X

]
= E `(Y f(X)) = L(f).

The property of being biased or not is of asymptotic
nature and is arguably of lesser interest in the small
sample regime. Following this line of argument, we
consider a conservative weighted estimator given by:

L̂w(f) :=
1

n

n∑
i=1

w(Xi, Yi)`(Yif(Xi)), (5.1)

w(Xi, Yi) := P(Y = Yi|X = Xi). (5.2)

It is not hard to check that L̂w(f) is biased:

E L̂w(f)

= EE
[
w(X,Y )`(Y f(X))|X

]
= E

[
`(f(X)) P(1|X)2 + `(−f(X)) P(−1|X)2

]
≤ E

[
`(f(X)) P(1|X) + `(−f(X)) P(−1|X)

]
= EE

[
`(Y f(X))|X

]
= L(f).

More precisely, L̂w(f) is conservative in the sense that
the points far from the decision boundary are up-
weighted, while the points with P(1|X) ≈ 0.5 receive
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relatively low weight. This behavior is due to the
p 7→ p2 transform which is monotonically increasing
and is strictly convex on [0, 1]. The monotonicity also
ensures the following important property of the ob-
tained estimator when ` is the 0-1 loss:

arg min
f

E L̂w(f) = f∗ = arg min
f

EL(f),

that is, the L̂w is minimized by the Bayes classifier and
the learning problem is not changed.

If the bias of L̂w is a concern, one can let the weights
decay to one as the size of the training sample in-
creases. To this end, we consider the following gen-
eralization of the weight function in (5.2):

cτ (Xi, Yi) := wτ (Xi, Yi), (5.3)

where τ ∈ [0,∞) is tuned along with the standard
regularization parameter. Note that SVM is recovered
when the weights are given by c0(Xi, Yi) ≡ 1.

When P(Y = 1|X) is estimated from a training sam-
ple, the WSVM with weights given by (5.3) will mainly
serve as a baseline for the method introduced in the
following section. However, it is conceivable that an
estimate of P(Y = 1|X) could be available from a dif-
ferent source, e.g., from annotations provided by hu-
mans. The latter setting is evaluated in Section 6.4.

5.3. Learning the weights

Given a fixed training sample S, the weights in a
weighted SVM parametrize the set of hypotheses that
the WSVM can choose from. Hence, they could be
learned within the standard framework of risk mini-
mization with the additional twist that the classifier f
depends on the weights c implicitly :

c? = arg min
c∈Rn

+

E `(Y fc(X)), (5.4)

fc = arg min
f∈H

1

2
‖f‖2 +

n∑
i=1

ci`(yif(xi)). (5.5)

Clearly, the optimization problem (5.4) cannot be
solved in practice since the underlying probability dis-
tribution is unknown, hence, we replace L(f) in (5.4)
with an estimator. The latter, however, has to be dif-
ferent from the estimator L̂w in (5.5) to avoid overfit-
ting. We follow a simple approach and assume that
a second sample S′ is available at training time. The
problem (5.4) is thus replaced with

c? = arg min
c∈Rn

+

N∑
i=1

`(y′ifc(x
′
i)).

This idea follows the method of (Chapelle et al., 2002)
who suggested to tune L2-SVM parameters by min-
imizing certain estimates of the generalization error
using a gradient descent algorithm. The use of the L2

penalization of the training errors allows one to ad-
ditionally assume the hard margin case which leads
to a very specific derivation of the gradient w.r.t. the
parameters. Instead, we proceed with a different ap-
proach and use a smooth version of the hinge loss given
below in (5.10). Furthermore, we optimize (5.5) in the
primal as suggested by (Chapelle, 2007). The weight
learning problem can thus be stated as follows.

c? = arg min
c∈Rn

+

N∑
i=1

`(y′i[K̄
>
i α

?(c) + b?(c)]), (5.6)

[
α?

b?

]
= arg min

α,b

1

2
α>Kα+

n∑
i=1

ci`(yi[K
>
i α+ b]),

(5.7)

where K̄ is the matrix with K̄ij = k(xi,x
′
j), and Ki,

K̄i are the ith columns of K and K̄.

Note that f depends on the weights implicitly via the
second optimization problem and the main challenge
in applying the gradient descent is the computation
of ∂α?/∂c and ∂b?/∂c. These can be computed via
implicit differentiation from the optimality conditions
as shown below.
Theorem 5. Let the loss function ` be convex and
twice continuously differentiable and let the kernel ma-
trix K be (strictly) positive definite. Define vectors u
and v componentwise for i = 1, . . . , n as

ui := yi`
′(yi[K

>
i α

? + b?]),

vi := ci`
′′(yi[K

>
i α

? + b?]),

where (α?, b?) is a solution of (5.7) for a given c. If
v 6= 0, then the solution is unique, α? and b? are con-
tinuously differentiable w.r.t. c and the corresponding
gradient can be computed as follows.[

∂α?

∂c
∂b?

∂c

]
= −

[
I + diag(v)K v

1> 0

]−1 [
diag(u)

0>

]
(5.8)

Note that this result can be directly applied to such
popular loss functions as the squared hinge loss and
the logistic loss, and for the latter it will always hold
that v 6= 0 unless all weights are zero. If v = 0, it
can be seen that α? is still uniquely defined and is
continuously differentiable w.r.t. c if b is considered
fixed. The “gradient” in this case is given by

∂α?/∂c = diag(u), ∂b?/∂c = 0>. (5.9)
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Figure 5. A 0-1 loss, a hinge loss, an approximate hinge
loss `δ, and its first two derivatives.

Ideally, to be consistent with the discussion about the
relation between the SVM+ and the WSVM, we would
have to consider the hinge loss in the weight learning
problem. However, the hinge loss is not differentiable
and Theorem 5 does not apply. Instead, we consider
a differentiable approximation of the hinge loss that
preserves certain desirable properties of the latter. We
have chosen the loss function defined as follows (Fig-
ure 5).

`δ(t) :=


1− t− δ if t ≤ 1− 2δ
(1−t)3(t−1+4δ)

16δ3 if 1− 2δ < t < 1

0 if t ≥ 1

(5.10)

Note that, unlike certain other approximations, this
function is twice continuously differentiable. Like the
hinge loss, it does not penalize points with the margin
t := yif(xi) ≥ 1 and it grows linearly for t ≤ 1− 2δ.

With the approximate hinge loss `δ defined above, the
v 6= 0 means that at least one of the data points has to
fall into the strictly convex region of the loss. Clearly,
this presents us with a tradeoff between having a good
approximation of the hinge loss (small δ) and a higher
chance of being able to compute “correct” gradients
and thus make substantial progress in the optimization
problem (large δ). We resolve the tradeoff by tuning
δ ∈ [0.01, 1] on a validation set.

6. Experiments

In this section we present empirical evaluation of the
algorithms considered in this paper. In our experi-
ments, we used the implementation of the WSVM by
Chang & Lin (2011) and the code for the SVM+ pro-

vided by Pechyony & Vapnik (2011). The weight learn-
ing problem was solved using our implementation of
the BFGS algorithm (Nocedal & Wright, 2006). The
general experimental setup is similar to that of (Vap-
nik & Vashist, 2009): parameters are tuned on a val-
idation set, which is not used for training, and per-
formance is evaluated on a test set. Training subsets
are randomly sampled from a fixed training set, and
results over multiple runs are aggregated showing the
mean error rate as well as the standard deviation. De-
pending on the experiment, the validation set is either
fixed or subsampled randomly as well. The Gaussian
RBF kernel is used in all of the experiments and fea-
tures are rescaled to be in [0, 1]. The weights in (5.2)
are computed from η(x) = 2 P(1|x)−1, which is either
given directly by human experts or estimated via:

η(x) =

∑n
i=1Kh(x− xi)yi∑n
i=1Kh(x− xi)

, (6.1)

where Kh is the Gaussian kernel with bandwidth h.

Note that in all experiments each algorithm has ac-
cess to exactly the same data, and the only difference
between different splits is which data is used to con-
struct a classifier (training) and which is used to tune
the hyper-parameters (validation).

6.1. WSVM replicates SVM+

We begin with the experimental verification of our the-
oretical findings of Section 4. We reproduced the hand-
written digit recognition experiment of Vapnik et al.
(2009), where the task is to discriminate between 5’s
and 8’s taken from the MNIST database and down-
sized to 10× 10 pixels. We used the features provided
by the authors and obtained similar error rates for
both the SVM and the SVM+, see Figure 6, left. Our
results are averaged over 100 runs and include more
subsets.

The weights for the WSVM algorithm were computed
as c = α? + β?, where α? and β? come from the
SVM+ solution. We observed that α?WSVM ≈ α?SVM+.
However, we also observed that, in general, b?WSVM 6=
b?SVM+, which is explained by the non-uniqueness of
b (Theorem 1). If b?SVM+ from the SVM+ model is
used (WSVM-b in the plot), then the two classifiers
are identical, but if b is tuned within the constraints
imposed by the KKT conditions (WSVM in the plot),
then minor differences appear.

6.2. Toy data

We now turn to the problem of choosing weights and
evaluate the two weight generation schemes introduced
in Section 5. In this experiment, data comes from a
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Figure 6. SVM, SVM+, and WSVM error rates. Left: Reproduction of the experiment of (Vapnik et al., 2009). The
SVM+ and the WSVM classifiers coincide up to the non-uniqueness of b. Middle: Instance weighting leads to significant
performance improvement when a large validation set is available (toy data). Right: Similar setting, but the training-to-
validation splits are 1-to-2 and 2-to-1.
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Figure 7. SVM and WSVM error rates on the UCI repository data sets with training-to-validation splits of 1-to-2 and
2-to-1. Left: Breast Cancer Wisconsin. Middle: Mammographic Mass. Right: Spambase.

mixture of 2D Gaussians that form a non-linear shape
resembling “W”, see Figure 4. Similar to the previ-
ous setting, we sample from a fixed training set of size
400, tune parameters, estimate the P(1|x), and per-
form weight learning on a validation set of size 4000,
and test on a separate set of size 2000. The results are
averaged over 50 runs, see Figure 6, middle. Note that,
just like in the experiment of (Vapnik et al., 2009),
this is an idealistic setting where the validation set is
so large that model selection is close to optimal. In
practice, one would never split the available sample as
1-to-40, therefore we also evaluate more “reasonable”
splits 1-to-2 and 2-to-1 next.

Figure 6, right, shows results of a similar experiment
where the validation sample is not fixed, but rather
obtained by splitting the available training data. Since
validation samples are now small, the estimation of
P(1|x) fails and the corresponding WSVM performs
on par with the standard SVM. The weight learning,
however, still yields performance improvement on 1-to-
2 splits. Moreover, the WSVM with weight learning is
able to achieve a similar error rate as the SVM trained

on twice as much data. We also observe the effect of
overfitting when weight learning is performed on 2-to-
1 splits, and we omit it in further experiments. Note
that one could have anticipated that for the weight
learning to succeed the amount of validation data, in
general, has to be at least comparable to or larger than
the number of weights that are to be learned.

6.3. UCI data sets

In this set of experiments we evaluate weight learning
on three data sets from the UCI repository (Frank &
Asuncion, 2010). For every data set, we first remove
any records with missing values and then split the re-
maining data randomly into training and test sets of
roughly equal size approximately preserving the initial
class distribution. Table 1 summarizes characteristics
of the obtained data sets. Smaller subsets are then
sampled from the training data and split into training
and validation sets as 1-to-2 and 2-to-1. The subsets
sampling process is repeated 20 to 50 times depending
on the amount of data. The rest of the experimental
setup is the same as before.
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Figure 8. Error rate comparison in the handwritten digit recognition experiment of (Vapnik et al., 2009). P(1|x) was
estimated from human rankings. Left: The original setting. Right: The extended setting where each digit is translated
by 1 pixel in each of the 8 directions.

Table 1. Statistics of data sets from the UCI repository.
Data set Features Training Test
BCW 9 351 332
Mammographic 4 420 410
Spambase 57 2430 2171

Breast Cancer Wisconsin (BCW) (Bennett &
Mangasarian, 1992): On this data set, the weight
learning on the 1-to-2 split performs on par or better
than the SVM on both splits, see Figure 7. Notably,
the SVM performed worse on the 2-to-1 split, which
we attribute to overfitting. The latter is not too sur-
prising considering the small amount of data and the
capacity of the RBF kernel, which makes the weight
learning result even more remarkable.

Mammographic Mass (Elter et al., 2007): Again,
the weight learning performs on par or better than the
SVM on all splits for almost all subsets. On the last
subset, however, the weight optimization did not yield
any improvement, and the resulting performance is the
same as that of the corresponding SVM.

Spambase: On this data set, the general outcome is
that the weight learning brings roughly the same level
of improvement as if twice as much data were used for
training the standard SVM. This can be interpreted
as a more efficient use of training data given the addi-
tional knowledge about importance of each data point.

6.4. Handwritten digit recognition (5’s vs 8’s)

Finally, we get back to the original handwritten digit
recognition experiment of Vapnik et al. (2009) and
evaluate our weight generation schemes on that data.

In this experiment, we evaluate the first weight gen-
eration scheme (5.3) under the assumption that digit
ranking is available as the additional information, i.e.,

in addition to the class label ±1, we are also given a
confidence score between −1 and 1. This is a reason-
able assumption e.g. for data sets where robust annota-
tion is obtained by aggregation of labeling from several
human experts and is similar to the setting considered
by Wu & Srihari (2004).

We collected additional annotation in the form of rank-
ing from three human experts. The humans were pre-
sented with a random sample of the 10 × 10 pixel
digits and were asked to label them using one of
5 possible labels, which we translated to a score in
{−1,−0.5, 0, 0.5, 1}. Each of the 100 digits from the
training set was ranked 16 times and the average score
was then used as an estimate of 2 P(1|x)− 1.

Figure 8 shows the corresponding experimental results.
We observe that additional information from human
experts helps on small subsets, but its influence de-
grades on larger subsets. This might be in part due to
the difference in image representation used by SVMs
and humans. In particular, humans’ recognition of dig-
its is translation invariant, while the pixel-wise repre-
sentation is not. This leads us to our final experiment
on the extended version of that data set.

We extend the original training sample of 100 digits by
shifting each digit by 1 pixel in all 8 directions, thus
obtaining 9 times the initial sample size. We assume
that both the human rankings and the privileged fea-
tures from the experiment of Vapnik et al. (2009) are
unaffected by such translations and we simply replicate
them. The experimental results are presented in Fig-
ure 8, right. Note that the WSVM with human rank-
ings is now consistently on par or better than SVM
and is somewhat comparable to SVM+.

Remarkably, weight learning now gives significant per-
formance boost on the extended version of the data set,
which shows that it can be successfully combined with
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other sources of additional information, like the hint
about translation invariance in this case. Interestingly
enough, Lauer & Bloch (2008) discussed the possibil-
ity of combining the virtual sample method, which we
used to extend the training set, with weighted learning
where each virtual point would be given a confidence
score ci. Our weight learning algorithm does exactly
that, but without trying to model the measure of con-
fidence. Instead, it attempts to directly optimize an
estimate of the expected loss L(f).

7. Conclusion

We have investigated basic properties of the recently
proposed SVM+ algorithm, such as uniqueness of its
solution, and have shown that it is closely related to
the well-known weighted SVM. We revealed that all
SVM+ solutions are constrained to have a certain de-
pendency between the dual variables and the incurred
loss on the training sample, and that the prior knowl-
edge from the SVM+ framework can be encoded via
instance weights.

That motivated us to consider other sources of addi-
tional information about the training data than the
one given by privileged features. In particular, we
considered the weight learning method in Section 5.3
which allows one to learn weights directly from data
(using a validation set). The latter approach is not
limited to SVMs and can be extended to other classi-
fiers.

Experimental results confirmed our intuition that im-
portance weighting is a powerful method of incor-
porating prior knowledge. In the idealized setting,
we showed that the weight learning works and yields
significant performance improvement. The choice of
weights in a more practical setting is left for future
work.

A. The KKT conditions

In convex optimization, the Karush-Kuhn-Tucker
(KKT) conditions are necessary and sufficient for a
point to be primal and dual optimal with zero duality
gap (Boyd & Vandenberghe, 2004).

The KKT conditions corresponding to the weighted
SVM problem (2.2) are given below:∑n

i=1 α
?
i yizi = w?, (A.1a)∑n

i=1 α
?
i yi = 0, (A.1b)

α?i + β?i = ci, (A.1c)
α?i [ξ

?
i − 1 + yi(〈w?, zi〉+ b?)] = 0, (A.1d)

β?i [ξ?i ] = 0, (A.1e)

ξ?i − 1 + yi(〈w?, zi〉+ b?) ≥ 0, (A.1f)
α?i ≥ 0, β?i ≥ 0, ξ?i ≥ 0. (A.1g)

And the KKT conditions corresponding to the SVM+
problem (2.1) are as follows:∑n

i=1 α
?
i yizi = w?,

(A.2a)∑n
i=1 α

?
i yi = 0,

(A.2b)∑n
i=1(α?i + β?i − C)z̃i = γw̃?,

(A.2c)∑n
i=1(α?i + β?i − C) = 0,

(A.2d)

α?i [
〈
w̃?, z̃i

〉
+ b̃? − 1 + yi(〈w?, zi〉+ b?)] = 0, (A.2e)

β?i [
〈
w̃?, z̃i

〉
+ b̃?] = 0, (A.2f)〈

w̃?, z̃i
〉

+ b̃? − 1 + yi(〈w?, zi〉+ b?) ≥ 0, (A.2g)

α?i ≥ 0, β?i ≥ 0,
〈
w̃?, z̃i

〉
+ b̃? ≥ 0,

(A.2h)

B. Technical proofs

B.1. Proof of Theorem 2

Theorem. The solution to the problem (2.1) is unique
in (w, w̃, b̃) for any C > 0, γ > 0. If there is a support
vector, then b is unique as well, otherwise:

max
i∈I+

(1− 〈w̃, z̃i〉 − b̃) ≤ b ≤ min
i∈I−

(〈w̃, z̃i〉+ b̃− 1).

Proof. Following (Burges & Crisp, 1999), let F be the
objective function:

F =
1

2
‖w‖2 +

γ

2
‖w̃‖2 + C

n∑
i=1

(〈w̃, z̃i〉+ b̃),

and define u := (w, w̃, b̃)>. Suppose u1 and u2 are two
solutions, then, since the problem is convex, a family of
solutions is given by ut = (1−t)u1+tu2, t ∈ [0, 1], and
F (u1) = F (u2) = F (ut). Expanding F (ut)−F (u1) =
0 and differentiating w.r.t. t yields:

(t− 1)‖w1‖2 + (1− 2t) 〈w1,w2〉+ t‖w2‖2 +

γ
[
(t− 1)‖w̃1‖2 + (1− 2t) 〈w̃1, w̃2〉+ t‖w̃2‖2

]
+tC

n∑
i=1

(〈w̃2 − w̃1, z̃i〉+ b̃2 − b̃1) = 0,

‖w1 −w2‖2 + γ‖w̃1 − w̃2‖2 = 0.
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Since γ > 0 it follows that w1 = w2 and w̃1 = w̃2.
Plugging that into the first equation yields b̃2 = b̃1.
Uniqueness of b now follows from condition (A.2e). If
all αi = 0 (i.e., there are no support vectors), then
w = 0 and the result follows from (A.2g).

B.2. Uniqueness of the dual solution

Proposition 3. If (α1, α̃1) and (α2, α̃2) are solutions
to the optimization problem (2.3), then

(α1 −α2) ∈ N (YKY) ∩ 1⊥ ∩ y⊥,
(α̃1 − α̃2) ∈ N (K̃) ∩ 1⊥.

If α1 and α2 are solutions to the problem (2.4), then

(α1 −α2) ∈ N (YKY) ∩ 1⊥ ∩ y⊥.

Proof. The proof employs the same method as in the
proof of Theorem 2 and we only provide the part con-
cerning the WSVM problem.

Let K′ = YKY and consider a family of solutions
αt = (1− t)α1 + tα2, t ∈ [0, 1]. Note that (α1−α2) ∈
y⊥ follows directly from the optimization constraints.
Expanding F (αt) − F (α1) = 0 and differentiating
w.r.t. t yields:

(t− 1)α>1 K
′α1 + (1− 2t)α>1 K

′α2 + tα>2 K
′α2

+1>(α1 −α2) = 0,

(α1 −α2)>K′(α1 −α2) = 0.

It follows that (α1 −α2) ∈ N (K′). Let α1 = α2 + v,
v ∈ N (K′), then from the first equation 1>v = 0,
which completes the proof.

Corollary 3. If K has full rank, then solution to the
problem (2.4) is unique. If K and K̃ have full rank,
then solution to the problem (2.3) is unique.

B.3. Proof of Proposition 1

Proposition. Let (w?, b?, ξ?,α?,β?) be a primal-dual
optimal point for the WSVM problem (2.2). The point
(w?, b?, ξ?) is primal optimal for any weight vector c ∈
W, and all such weights are contained in W.

Proof. The proof consists in a straightforward applica-
tion of the KKT conditions. The additional constraint
that

∑
i µi =

∑
i α

?
i follows from Proposition 3 since

it must hold that (µ−α?) ∈ 1⊥.

B.4. Proof of Theorem 3

Theorem. Let (w?, b?, w̃?, b̃?,α?,β?) be a primal-
dual optimal point for the SVM+ problem. There ex-
ists a choice of weights c, namely c = α?+β?, and ξ?

such that (w?, b?, ξ?,α?,β?) is a primal-dual optimal
point for the WSVM problem.

Proof. Given any fixed feasible α̃, the SVM+ problem
(2.3) is equivalent to the WSVM problem (2.4) with
c = C1 + α̃. In particular, if (α?, α̃?) is a solution
to (2.3), then α? is a solution to (2.4) with c = C1 +
α̃? = α? + β?. Let ξ?i =

〈
w̃?, z̃i

〉
+ b̃?, then the point

(w?, b?, ξ?,α?,β?) verifies the KKT conditions for the
WSVM problem (2.2).

B.5. Proof of Lemma 1

Lemma. Assume any given C > 0, γ ≥ 0 and let
(w?, b?, w̃?, b̃?,α?,β?) be a primal-dual optimal point
for the SVM+ problem (2.1), then the following holds:∑n

i=1(α?i + β?i )hi∑n
i=1(α?i + β?i )

≥ 1

n

n∑
i=1

hi, (B.1)

where hi := [1− yi(〈w?, zi〉+ b?)]+ is the hinge loss at
a point i = 1, . . . , n. If γ = 0, then (B.1) is satisfied
with equality.

Proof. It follows from the KKT conditions that〈
w̃?, z̃i

〉
+ b̃? = hi + δi, δi ≥ 0,

α?i > 0 ∨ β?i > 0⇒ δi = 0, (α?i + β?i )δi = 0.

Multiplying by (α?i + β?i − C) and summing up yields

γ
〈
w̃?, w̃?

〉
=

n∑
i=1

(α?i + β?i )hi − C
n∑
i=1

(hi + δi).

Note that C = 1
n

∑n
i=1(α?i + β?i ) > 0, hence

γ
〈
w̃?, w̃?

〉
=

n∑
i=1

(α?i + β?i )hi

− 1

n

n∑
i=1

(α?i + β?i )

n∑
i=1

(hi + δi).

Since γ
〈
w̃?, w̃?

〉
≥ 0, it must hold that

n∑
i=1

(α?i + β?i )hi ≥
1

n

n∑
i=1

(α?i + β?i )

n∑
i=1

(hi + δi)

≥ 1

n

n∑
i=1

(α?i + β?i )

n∑
i=1

hi. (B.2)

Division by
∑n
i=1(α?i + β?i ) completes the proof.
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B.6. SVM+ reduction to standard SVM

We show that when there is an equality in the previous
lemma, then the SVM+ can be reduced to the stan-
dard SVM. For simplicity, we only state this result in
the linear setting, where x̃i ∈ Rd.
Proposition 4. Assume the setting of Lemma 1 and
let (B.1) be satisfied with equality, then〈

w̃?, x̃i
〉

+ b̃? = hi, i = 1, . . . , n

Furthermore, the following holds.

1. If γ > 0, then w̃? = 0 and b̃? = hi for all i, i.e.,
the loss on all data points is the same and the hard
margin SVM is a special case with b̃? = 0.

2. If γ = 0, then X̃α̃? = 0, where X̃ is the matrix of x̃i
stacked. If additionally rank(X̃) = n, then α?i+β?i = C
for all i and any vector in Rn can be represented via〈
w̃?, x̃i

〉
+ b̃?, hence the soft margin SVM is recovered

with ξ?i =
〈
w̃?, x̃i

〉
+ b̃?.

Proof. It follows from (B.2) that δi = 0 and
〈
w̃?, x̃i

〉
+

b̃? = hi for i = 1, . . . , n. If γ > 0, then γ
〈
w̃?, w̃?

〉
= 0

implies w̃? = 0 and thus b̃? = hi for all i.

If γ = 0, then (A.2c) implies X̃α̃? = 0, where
α̃? = α? + β? − C1, as before. If rank(X̃) = n, then
X̃α̃? = 0 yields α̃? = 0, and so α?i + β?i = C for
i = 1, . . . , n. Since (x̃i)

n
i=1 is in this case a basis in

Rn and there is no penalty on ‖w̃‖2 in the objective
function, the SVM+ does not impose any additional
constraints compared to the soft margin SVM. The
primal-dual optimal point of the SVM+ is thus also
optimal for the SVM with ξ?i =

〈
w̃?, x̃i

〉
+ b̃?.

B.7. Proof of Theorem 4

Theorem. Let (w?, b?, ξ?,α?0,β
?
0) be a primal-dual

optimal point for the WSVM problem with instance
weights c0 ∈ Rn+, not all zero. There exists a choice
of C, γ, and correcting features {x̃i}ni=1 such that
(w?, b?) is optimal for the SVM+ problem iff:

∃ c ∈ W : ρ(c, ξ?) := 〈c− c̄1, ξ?〉 ≥ 0, (B.3)

where c̄ := n−1
∑n
i=1 ci. If ρ(c, ξ?) ≥ 0, one such

possible choice is as follows:

C = c̄, γ = ρ(c, ξ?), x̃i = ξ?i − b̃?, ∀i (B.4)

moreover, the optimal w̃? and b̃? in that case are:

w̃? = 1, b̃? = 〈c, ξ?〉 / 〈c,1〉 . (B.5)

Proof. (B.3) is necessary. Assume there exists an
SVM+ setting such that (w?, b?, w̃?, b̃?,α?,β?) is a
primal-dual optimal point for the SVM+ problem (2.1)
and let c = α? + β? (note that (α?,β?) and (α?0,β

?
0)

may be different). Theorem 3 states that there exists
ξ?0 such that (w?, b?, ξ?0,α

?,β?) is primal-dual optimal
for the WSVM problem with weights c. We need to
show that ξ?0 = ξ?. This follows directly from the
KKT conditions when all c0,i > 0 and ci > 0 since hi =
[1−yi(〈w?,xi〉+b?)]+ are the same for both problems.
If some of the weights are zero, then the corresponding
ξ?i is not uniquely defined (it is unbounded from above)
and we have to assume that the algorithm returns the
value at the lower bound, i.e., ξ?i = hi. Now, given that
ξ?0 = ξ?, c ∈ W by Proposition 1 and ρ(c, ξ?) ≥ 0 by
Corollary 2.

(B.3) is sufficient. First, consider the case ρ(c, ξ?) >
0 and let (w?, b?, ξ?,α?,β?) be a primal-dual optimal
point of the WSVM problem with weights c. We con-
struct {x̃i}ni=1 and provide C > 0, γ > 0, w̃?, and b̃?
such that (w?, b?, w̃?, b̃?,α?,β?) is primal-dual opti-
mal for the corresponding SVM+ problem.

It is sufficient to look for one dimensional correcting
features that additionally satisfy

∑n
i=1 cix̃i = 0. The

KKT conditions in this case imply that

w̃? = −C
γ

n∑
i=1

x̃i, C =
1

n

n∑
i=1

ci = c̄. (B.6)

We require for all i = 1, . . . , n that

w̃?x̃i + b̃? = [1− yi(〈w?,xi〉+ b?)]+ = ξ?i . (B.7)

Multiplying both sides by ci and summing up yields

b̃? = 〈c, ξ?〉 / 〈c,1〉 .

Plugging (B.6) into (B.7) and solving for x̃i one gets:

x̃i = ±
√

γ

ρ(c, ξ?)
(b̃? − ξ?i ). (B.8)

Choosing γ = ρ(c, ξ?) and the plus sign in (B.8) for
convenience, (B.6) leads to w̃? = ρ(c, ξ?)/γ = 1.

Now, consider ρ(c, ξ?) = 0. Let X̃ = [x̃1 · · · x̃n] and
set γ = 0. Proposition 4 and the KKT conditions
imply:

C = c̄, X̃(c− c̄1) = 0, X̃>w̃? + b̃?1 = ξ?.

Hence, the matrix X̃ must satisfy

(c− c̄1) ∈ N (X̃), (ξ? − b̃?1) ∈ R(X̃>).

The above requirements translate to

〈c− c̄, ξ? − b̃?1〉 = 0,

which holds for (B.4), (B.5), and ρ(c, ξ?) = 0.
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B.8. Proof of Proposition 2

Proposition. Let (w?, b?, ξ?,α?,β?) be a primal-dual
optimal point for the WSVM problem with instance
weights c ∈ Rn+, not all zero. If

N (YKY) ∩ 1⊥ ∩ y⊥ = {0},

then there exists a choice of C, γ, and {x̃i}ni=1 such
that (w?, b?) is optimal for the SVM+ problem iff:

ρ(α?, ξ?) = ξ?>
(
I− 1

n11
>)α? ≥ 0.

Proof. Sufficiency follows directly from Theorem 4
since c = α? is a valid choice of weights (cf. Defi-
nition 1). For necessity, note that α? is unique by
Proposition 3 and all weights in W are of the form
c = α? + β, β ∈ V. The maximum in (4.2) corre-
sponds to

max
β

n∑
i=1

ξ?i βi −
1

n

n∑
i=1

ξ?i

n∑
i=1

βi, s.t. βi ≥ 0,

which is attained at β = 0 since ∀i ξ?i βi = 0.

B.9. Proof of Theorem 5

Theorem. Let the loss function ` be convex and twice
continuously differentiable and let the kernel matrix K
be (strictly) positive definite. Define vectors u and v
componentwise for i = 1, . . . , n as

ui := yi`
′(yi[K

>
i α

? + b?]),

vi := ci`
′′(yi[K

>
i α

? + b?]),

where (α?, b?) is a solution of (5.7) for a given c. If
v 6= 0, then the solution is unique, α? and b? are con-
tinuously differentiable w.r.t. c and the corresponding
gradient can be computed as follows.[

∂α?

∂c
∂b?

∂c

]
= −

[
I + diag(v)K v

1> 0

]−1 [
diag(u)

0>

]
(B.9)

Proof. Uniqueness of solution follows from a similar
argument as in the proof of Theorem 2 and is obvious
for α. Let b?1 and b?2 be two optimal b and define
b?t = (1 − t)b?1 + tb?2. Considering the difference of
the objective function at b?t and b?1 and differentiating
twice w.r.t. t, one arrives at

(b?2 − b?1)1>v = 0 ⇒ b?2 = b?1.

The optimality conditions of (5.7) yield

K(α? + diag(u)c) = 0, 〈u, c〉 = 0.

Since K is non-singular it can be dropped from the
first equation. Computation of the total derivatives
yields the linear system below.[

I + diag(v)K v
v>K 1>v

][
∂α?

∂c
∂b?

∂c

]
= −

[
diag(u)
u>

]
(B.10)

Note that (B.10) is equivalent to the system in (B.9)
since the last equation can be equivalently replaced by
the sum of the first n equations minus the last one.
To apply the implicit function theorem, it remains to
show that the matrix in (B.9) is invertible. Recall
that the determinant of a block matrix factors as the
determinant of a block and its Schur complement. It
is thus sufficient to show that

det(I + diag(v)K) 6= 0, 1>(I + diag(v)K)−1v 6= 0.

Assume w.l.o.g. that the first m ≤ n components of v
are non-zero and define M := I + diag(v)K. Further,

M =

[
A B
C D

]
=

[
Im + diag(vm)Km B

0n−m,m In−m

]
,

where the B block is irrelevant. It now follows that

det(M)

= det(D) det(A−BD−1C) = det(A)

= det(diag(vm)) det(diag(vm)−1 + Km) 6= 0,

where we use that diag(vm)−1 is positive definite since
vm � 0m due to convexity of `. Finally,

1>M−1v = 1>
[

A−1 −A−1BD−1
0n−m,m D−1

]−1
v

= 1>m

(
diag(vm)−1 + Km

)−1
1m > 0.
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