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Abstract

In this paper, we study asymptotic stability of the zero solution of a class of differential

systems governed by a scalar differential inequality with time-varying structures and delays.

We establish a new generalized Halanay inequality for the asymptotic stability of the zero

solution for such systems under more relaxed conditions than the existing ones. We also

apply the theoretical results to the analysis of self synchronization in networks of delayed

differential systems and obtained a more general sufficient condition for self synchronization.
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1 Introduction

The applications of delay differential equations can be found in many areas including control

systems, neural networks, and many others. And a fundamental problem in these applications is

to determine the stability of the solutions, which has been analyzed for decades. For example, in

order to analyze the asymptotic stability of the zero solution of the following delay-differential

equations with fixed delay τ > 0,

ẋ(t) = −ax(t) + bx(t − τ), (1)

Halanay(1966) proved the following inequality which was later called Halanay inequality.

Proposition 1. Let x(t) > 0, t ∈ R, be a differentiable scalar function of t that satisfies

ẋ(t) ≤ −ax(t) + b sup
t−τ≤s≤t

x(s), t ≥ t0 (2)

x(t) = ψ(t), t ≤ t0 (3)

with a > b > 0 being constants and ψ(t) ≥ 0 continuous and bounded for t ≤ t0, then there exist

k > 0 and γ > 0 such that x(t) ≤ ke−γ(t−t0). Hence x(t) → 0 as t→ ∞.

Later on, this inequality has been extended to more general types of delay differential equa-

tions. For example, in Baker & Tang (1996),Wen, Yu & Wang (2008), it has been proved

Proposition 2. Let x(t) > 0, t ∈ R be a differentiable scalar function that satisfies

ẋ(t) ≤ −a(t)x(t) + b(t) sup
q(t)≤s≤t

x(s), t ≥ t0, (4)

x(t) = ψ(t), t ≤ t0, (5)

where ψ(t) > 0 is bounded and continuous for t ≤ t0, a(t), b(t) ≥ 0 for t ≥ t0, 0 < q(t) ≤ t and

q(t) → ∞ as t→ ∞. If there exists σ > 0 such that

−a(t) + b(t) ≤ −σ < 0, t ≥ t0, (6)

then (i) x(t) ≤ sup−∞<s≤t0
|ψ(s)|, (ii) x(t) → 0 as t→ ∞.

In Mohamad & Gopalsamy (2000), the authors consider continuous and discrete time Halanay-

type inequalities and further generalize the results of Baker & Tang (1996) to the case of dis-

tributed delays.
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Proposition 3. (Theorem 2.2 of Mohamad & Gopalsamy, 2000) Let x(t), t ∈ R be a nonnegative

function that satisfies

ẋ(t) ≤ −a(t)x(t) + b(t)

∫ ∞

0

K(s)x(t− s)ds, t > t0,

x(t) = |ϕ(t)| t ≤ t0,

where ϕ(s), s ∈ (−∞, t0], a(t) and b(t), t ∈ R are nonnegative continuous and bounded functions;

the delay kernel K(·) : [0,∞) → [0,∞) satisfies
∫ ∞

0

K(s)eαsds <∞,

for some positive number α. Suppose further that

a(t)− b(t)

∫ ∞

0

K(s)ds ≥ σ, t ∈ R, (7)

where σ = inft∈R[a(t)− b(t)
∫∞

0
K(s)ds] > 0. Then there exists a positive number α̃ such that

x(t) ≤
(
sup
s≤t0

x(s)
)
e−α̃(t−t0), t > t0.

In Baker (2010), the author made some refinement on the decay rate of their pervious works.

Generalized Halanay inequalities have also been developed in the stability analysis of delay

differential systems. For example, in Chen (2001), Lu & Chen (2004), the authors proposed

some variants of the Halanay inequality to solve the global stability of delayed Hopfield neural

networks.

Particularly, in Chen & Lu (2003), Lu & Chen (2004), the following periodic and almost

periodic integro-differential systems

dui(t)

dt
= −di(t)ui(t) +

n∑

j=1

aij(t)gj(uj(t)) +

n∑

j=1

∫ ∞

0

fj(uj(t− τij(t)− s))dsKij(t, s) + Ii(t),

i = 1, 2, . . . , n, (8)

where dsKij(t, s) are Lebesgue-Stieltjes measures for each t, are discussed.

As a direct consequence of the main Theorem in Lu & Chen (2004), we have

Proposition 4. Suppose that |gj(x)| ≤ Gj |x| and |fj(x)| ≤ Fj |x|. If there exist positive constants

ξ1, ξ2, · · · , ξn, α such that for all t > 0 and i = 1, 2, · · · , n,

− ξi(di(t)− α) +

n∑

j=1

ξjGj|aij(t)|+

n∑

j=1

ξjFje
ατij (t)

∫ ∞

0

eαs|dsKij(t, s)| ≤ 0, (9)
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then for any solution u(t) = [u1(t), · · · , un(t)], t > 0 of the system (8) with Ii(t) = 0, i = 1, ·, n,

we have

max
i=1,··· ,n

|ui(t)| ≤ max
i=1,··· ,n

max
−τ≤s≤0

(eαs|ui(s)|)e
−αt. (10)

In particular, when n = 1, dsK11(t, s) = b(t)δ(s), τ11(t) = τ(t), we have

Proposition 5. (also see Chen, 2001) Suppose −(a(t) − α) + |b(t)|eατ(t) ≤ 0, then for any

continuous scalar function x(t) ≥ 0 that satisfies





ẋ(t) ≤ −a(t)x(t) + |b(t)| sups≥0 x(t− s), t > 0,

x(t) = |ϕ(t)|, t ≤ 0,
(11)

we have

|x(t)| ≤ max
−τ≤s≤0

(eαs|φ(s)|)e−αt. (12)

Instead, when n = 1, dsK11(t, s) = b(t)k(s)ds, τ11(t) = 0, we have

Proposition 6. Suppose −(a(t) − α) + b(t)
∫∞

0
eαsK(s)ds ≤ 0, then for any continuous scalar

function x(t) satisfying





ẋ(t) ≤ −a(t)x(t) + b(t)
∫∞

0
K(s)x(t− s)ds, t > 0,

x(s) = |ϕ(s)|, t ≤ 0,
(13)

we have

|x(t)| ≤ max
−τ≤s≤0

(eαs|φ(s)|)e−αt. (14)

For more recent works, refer to Liu, Lu & Chen (2011) and Gil’ (2013). In all the above

mentioned works, there is a basic requirement: a(t) > b(t) for all t. This requirement is not

satisfied in many real systems. For example, it is well known that a system switching among

several subsystems can be stable even not all the subsystems are stable. So it is necessary, if

possible, to further generalize the Halanay inequality so that it can be used to more general

cases.

In this paper, we will first generalize the differential inequalities with bounded time-varying

delays under more relaxed requirements, say, without a(t) > b(t) for all t. Then, we provide two

applications of the theoretical results. First, we apply the theoretical results to the analysis of self
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synchronization in neural networks. Based on our new generalized Halanay inequality, we proved

new sufficient conditions for self synchronization in neural networks with bounded time-varying

delays. Then, we investigate periodic solutions of neural networks with periodic coefficients

and time delays. Under more relaxed requirement, we proved new sufficient conditions for the

existence and exponential stability of the periodic solutions of such neural networks.

The rest of the paper is organized as follows. In Section 2, the new generalized Halanay

inequality is proposed and proved; two applications of the theoretical results are given in Section

3; Numerical examples with simulations are given in Section 4; the paper is concluded in Section

5.

2 Generalized Halanay inequality

Consider a scalar function x(t) governed by the inequality





D+|x(t)| ≤ −a(t)|x(t)| + b(t) supt−τmax≤s≤t |x(t− s)|, t ≥ 0,

x(s) = φ(s), s ∈ [−τmax, 0],
(15)

where D+ represents the upper right Dini derivative, a(·): R+ 7→ R
+, b(·): R+ 7→ R are piecewise

continuous and uniformly bounded, i.e., there exists Ma > 0, Mb > 0 such that 0 < a(t) ≤ Ma,

|b(t)| ≤Mb, φ(s) ≥ 0 is the initial value, and τ(·): R+ 7→ (0, τmax] is the time-varying delay with

τmax being the upper bound.

For a fixed η > 0 and 0 ≤ t1 < t2 <∞, denote the set Sη(t1, t2) = {t ∈ (t1, t2) : a(t)−|b(t)| >

η}, and the set S−(t1, t2) = {t ∈ (t1, t2) : a(t) < |b(t)|}, S+(t1, t2) = (t1, t2)\(Sη(t1, t2) ∪

S−(t1, t2)). It is obvious that Sη(t1, t2), S−(t1, t2), S+(t1, t2) are composed of a series of intervals,

and 0 ≤ a(t)− |b(t)| ≤ η on S+(t1, t2). Let µs(t1, t2) = µ(Ss(t1, t2)) be the Lebesgue measure of

the set Ss(t1, t2), where s = η, ’+’, ’-’. And the parameter δ = 1−
η

2Ma

∈ (0, 1) will also be used

later.

Before stating main results, we summarize the basic conditions into the following

Definition 1 (η-condition). A function pair {a(·), b(·)} with 0 < a(·) ≤ Ma, |b(·)| ≤ Mb is said

to satisfy the η-condition, if there exist t0 ≥ 0, 0 < C∗ < η/2 and an integer N > 0 such that
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(i)

+∞∑

k=0

µη(tk, t
−
k+1) = ∞; (16)

(ii)

lim sup
k→∞

[eMbµ−(tk ,tk+1) − 1]eMaµ+(N+1)τmax

min{ 1
Ma
, µη(tk, t

−
k+1)}

= C∗, (17)

where tk = t0 + k(N + 1)τmax, and t
−
k = tk − τmax.

Remark 1. If 0/0 appears on the left-hand side of (17), then we explain it as 0. Thus (17) will

always hold when the numerator on its left-hand side is zero.

Now, we state the main result which can be called a “Generalized Halanay Inequality”.

Theorem 1. For any given a(·), b(·) in (15), if there exists η > 0 such that {a(·), b(·)} satisfies

the η-condition, then the zero solution of any system governed by (15) is asymptotically stable,

i.e., from any initial value φ(s), s ∈ [−τmax, 0], there exists K > 1 such that the solution x(t)

satisfies

|x(t)| ≤ K max
−τmax≤s≤0

|φ(s)|,

for all t ≥ 0, and x(t) → 0 as t→ ∞. Furthermore, if there exists ǫ > 0 such that µη(tk, tk+1) ≥ ǫ

for each k, then the convergence is exponential, i.e., there exists K̃ > 0, α > 0 such that

|x(t)| ≤ K̃ max
−τmax≤s≤0

|φ(s)|e−αt.

As a direct consequence of Theorem 1, we have

Corollary 1. If µ−(0,+∞) = 0 and there exists η > 0 such that µη(0,+∞) = +∞, then the

zero solution of any system governed by (15) is asymptotically stable.

Remark 2. In previous works, it was always assumed that for all t ≥ 0, a(t) − |b(t)| > η.

Theorem 1 indicates that even the condition a(t)− |b(t)| > η is not satisfied for some t > 0, the

zero solution of any system governed by (15) can still be asymptotically stable if only (16) and

(17) are satisfied. Corollary 1 indicates that in case a(t)− |b(t)| ≥ 0, only if the measure of the

set satisfying a(t)− |b(t)| ≥ η is infinite, then the “0” is a stable equilibrium point.
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In the proof of Theorem 1, instead of proving |x(t)| → 0, we prove the following maximal

function

M0(t) = sup
t−τmax≤s≤t

|x(s)| (18)

tends to zero as t → ∞. The basic idea for the proof is to establish a uniform estimation for

M0(t) on an interval (t1, t2) when S+(t1, t2), S−(t1, t2) and Sη(t1, t2) coexist. This will be proved

by induction.

Before proving Theorem 1, we need to make some preparations by establishing some lammas.

Lemma 1. M0(t) is nonincreasing on the set S+(0,+∞) as well as on the set Sη(0,+∞) for any

given η > 0.

Proof. Given t1 ∈ S+(0,+∞) ∪ Sη(0,+∞), then a(t1) ≥ |b(t1)|. If |x(t1)| < M0(t1), then from

the continuity of x(t), there exists t2 > t1 such that |x(t)| ≤M0(t1) on [t1, t2], which implies that

M0(t) is nonincreasing at t1. Otherwise, |x(t1)| =M0(t1). We have:
{
D+|x(t)|

}
t=t1

≤ −a(t1)|x(t1)|+ |b(t1)|M0(t1) ≤ −[a(t1)− b(t1)]|x(t1)| ≤ 0.

This also implies that M0(t) is nonincreasing at t1. The proof is completed.

Lemma 2. Given any t1 < t2, we have

M0(t2) ≤M0(t1)e
Mbµ−(t1,t2).

Proof. Let t1 ≤ t1 < t1 < t2 < t2 < · · · < ts < ts ≤ t2 such that S−(t1, t2) =
⋃s

i=1(ti, ti). From

Lemma 1, we see that M0(t) can increase only on S−(t1, t2). Thus, M0(t1) ≤ M0(t1). On the

other hand, if M0(t) is increasing at t∗ ∈ (t1, t1),
{
D+M0(t)

}
t=t∗

=
{
D+|x(t)|

}
t=t∗

≤ −a(t)|x(t)| + |b(t)|M0(t) ≤MbM0(t).

This implies that

M0(t1) ≤M0(t1)e
Mb(t1−t1) ≤M0(t1)e

Mb(t1−t1).

Similarly, we have

M0(t2) ≤M0(t2)e
Mb(t2−t2) ≤ M0(t1)e

Mb(t2−t2) ≤M0(t1)e
Mb[(t1−t1)+(t2−t2)].

Repeating this process, finally we can have:

M0(t2) ≤M0(ts) ≤ M0(t1)e
Mb

∑s
i=1(ti−ti) =M0(t1)e

Mbµ−(t1,t2).

The proof is completed.
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Lemma 3. For any t1 < t2,

1. if (t1, t2) = S+(t1, t2), then

|x(t2)| ≤M0(t1)− [M0(t1)− |x(t1)|]e
−Ma(t2−t1); (19)

2. if (t1, t2) = Sη(t1, t2), then for any M̃ ≥M0(t1),

|x(t2)| ≤ max{δM̃, |x(t1)| −
η

2
µ(Sη(t1, t2))M̃}; (20)

3. if (t1, t2) = S−(t1, t2), then

|x(t2)| ≤|x(t1)|+M0(t1)[e
Mb(t2−t1) − 1].

Proof. 1. (t1, t2) = S+(t1, t2); In this case, by Lemma 1, M0(t) is nonincreasing on (t1, t2).

Then,

D+|x(t)| ≤ −a(t)|x(t)| + |b(t)|M0(t1).

By some calculations, we have

|x(t2)| ≤ M0(t1)− [M0(t1)− |x(t1)|]e
−Ma(t2−t1).

2. (t1, t2) = Sη(t1, t2); From Lemma 1, M0(t) is nonincreasing on (t1, t2). For any t ∈ (t1, t2),

if |x(t)| ≥ δM̃ ≥ δM0(t) for t ∈ (t1, t2), then

D+|x(t)| ≤ −a(t)|x(t)|+ |b(t)|M̃ ≤ −a(t)δM̃ + |b(t)|M̃ = −[δa(t)− |b(t)|]M̃ ≤ −
η

2
M̃.

Thus,

|x(t2)| ≤ max{δM̃, |x(t1)| −
η

2
µ(Sη(t1, t2))M̃)}

=M0(t1)−
[
M0(t1)−max{δM0(t1), |x(t1)| −

η

2
µ(Sη(t1, t2))M0(t1)}

]
.

3. (t1, t2) = S−(t1, t2); If M0(t) ≤M0(t1) on (t1, t2), then

D+|x(t)| ≤ −a(t)|x(t)| + |b(t)|M0(t1) ≤MbM0(t1). (21)

Thus,

|x(t2)| ≤ |x(t1)|+MbM0(t1)(t2 − t1) ≤ |x(t1)|+M0(t1)
[
eMb(t2−t1) − 1

]
.
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Otherwise, let t∗ = inf{t ∈ (t1, t2) : |x(t∗)| =M0(t1)}.

Then for t ∈ (t1, t
∗), we have

D+|x(t)| ≤ −a(t)|x(t)| + |b(t)|M0(t1) ≤MbM0(t1). (22)

which implies

M0(t1) = |x(t∗)| ≤ |x(t1)|+MbM0(t1)(t
∗ − t1) ≤ |x(t1)|+M0(t1)

[
eMb(t

∗−t1) − 1
]
.

Therefore, (noting Lemma 2), we have:

|x(t2)| ≤M0(t2) ≤ M0(t
∗)eMb(t2−t∗) ≤M0(t1)e

Mb(t2−t∗)

=M0(t1) +M0(t1)
[
eMb(t2−t∗) − 1

]

≤ |x(t1)|+M0(t1)
[
eMb(t

∗−t1) − 1
]
+M0(t1)

[
eMb(t2−t∗) − 1

]

≤ |x(t1)|+M0(t1)
[
eMb(t

∗−t1) − 1
]
+M0(t1)e

Mb(t
∗−t1)

[
eMb(t2−t∗) − 1

]

= |x(t1)|+M0(t1)
[
eMb(t2−t1) − 1

]
.

The estimation given in the following Lemma is the key step of the proof of main Theorem.

Lemma 4. For any t1 < t2,

|x(t2)| ≤M0(t1)e
Mbµ−(t1,t2) −

[
M0(t1)−max{δM0(t1), |x(t1)| −

η

2
µη(t1, t2)M0(t1)}

]
e−Maµ+(t1,t2).

(23)

Proof. We prove this lemma by induction.

Step 1. We verify the initial case that (t1, t2) is contained in only one of S+(t1, t2), Sη(t1, t2)

and S−(t1, t2). There are totally three cases corresponding to those considered in Lemma 3.

1. (t1, t2) = S+(t1, t2). In this case, (23) reduces to

|x(t2)| ≤M0(t1)−
[
M0(t1)−max{δM0(t1), |x(t1)|}

]
e−Maµ+(t1,t2)

=M0(t1)
[
(1− e−Maµ+(t1,t2)

]
+max{δM0(t1), |x(t1)|}e

−Maµ+(t1,t2).

This is obvious from case 1 of Lemma 3.
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2. (t1, t2) = Sη(t1, t2). In this case, (23) reduces to

|x(t2)| ≤M0(t1)−
[
M0(t1)−max{δM0(t1), |x(t1)| −

η

2
µη(t1, t2)M0(t1)}

]

= max{δM0(t1), |x(t1)| −
η

2
µη(t1, t2)M0(t1)}.

This can be obtained by case 2 of Lemma 3 by letting M̃ =M0(t1).

3. (t1, t2) = S−(t1, t2). In this case, (23) reduces to

|x(t2)| ≤M0(t1)e
Mbµ−(t1,t2) −

[
M0(t1)−max{δM0(t1), |x(t1)|}

]

= max{δM0(t1), |x(t1)|}+M0(t1)[e
Mbµ−(t1,t2) − 1]

This is also obvious from case 3 of Lemma 3.

Step 2. Assume that (23) holds for a given (t1, t2), and consider (t1, t3), where t3 > t2 and

(t2, t3) is contained in only one of S+(t2, t3), Sη(t2, t3) and S−(t2, t3). There are also three cases.

1. Case 1. (t2, t3) = S+(t2, t3). In this case, from Lemma 3, we have

|x(t3)| ≤M0(t2)− [M0(t2)− |x(t2)|]e
−Maµ+(t2,t3)

=M0(t2)
[
1− e−Maµ+(t2,t3)

]
+ |x(t2)|e

−Maµ+(t2,t3)

≤M0(t1)e
Mbµ−(t1,t2)

[
1− e−Maµ+(t2,t3)

]
+

{
M0(t1)e

Mbµ−(t1,t2)

−

[
M0(t1)−max{δM0(t1), |x(t1)| −

η

2
µη(t1, t2)M0(t1)}

]
e−Maµ+(t1,t2)

}
e−Maµ+(t2,t3)

=M0(t1)e
Mbµ−(t1,t2) −

[
M0(t1)−max{δM0(t1), |x(t1)| −

η

2
µη(t1, t2)M0(t1)}

]
e−Maµ+(t1,t3)

=M0(t1)e
Mbµ−(t1,t3) −

[
M0(t1)−max{δM0(t1), |x(t1)| −

η

2
µη(t1, t3)M0(t1)}

]
e−Maµ+(t1,t3).

2. Case 2. (t2, t3) = Sη(t2, t3). In this case, let M̃ = max{M0(t1),M0(t2)}, then M0(t1) ≤

M̃ ≤M0(t1)e
Mbµ−(t1,t2) =M0(t1)e

Mbµ−(t1,t3).
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From Lemma 3, we have

|x(t3)| ≤max{δM̃, |x(t2)| −
η

2
µη(t2, t3)M̃}

≤max{δM0(t1)e
Mbµ−(t1,t3), |x(t2)| −

η

2
µη(t2, t3)M0(t1)}

≤max{δM0(t1)e
Mbµ−(t1,t3),M0(t1)e

Mbµ−(t1,t2) −
[
M0(t1)−max{δM0(t1),

|x(t1)| −
η

2
µη(t1, t2)M0(t1)}

]
e−Maµ+(t1,t2) −

η

2
µη(t2, t3)M0(t1)}

≤max{δM0(t1)e
Mbµ−(t1,t3),M0(t1)e

Mbµ−(t1,t3) −
[
M0(t1)−max{δM0(t1),

|x(t1)| −
η

2
µη(t1, t3)M0(t1)}

]
e−Maµ+(t1,t3)

}

=M0(t1)e
Mbµ−(t1,t3) −min{(1− δ)M0(t1)e

Mbµ−(t1,t3),
[
M0(t1)−max{δM0(t1),

|x(t1)| −
η

2
µη(t1, t3)M0(t1)}

]
e−Maµ+(t1,t3)}

≤M0(t1)e
Mbµ−(t1,t3) −min{(1− δ)M0(t1),

[
M0(t1)−max{δM0(t1),

|x(t1)| −
η

2
µη(t1, t3)M0(t1)}

]
e−Maµ+(t1,t3)}

≤M0(t1)e
Mbµ−(t1,t3) −min{(1− δ)M0(t1),M0(t1)−max{δM0(t1),

|x(t1)| −
η

2
µη(t1, t3)M0(t1)}}e

−Maµ+(t1,t3)

=M0(t1)e
Mbµ−(t1,t3) −

[
M0(t1)−max{δM0(t1),max{δM0(t1),

|x(t1)| −
η

2
µη(t1, t3)M0(t1)}}

]
e−Maµ+(t1,t3)

=M0(t1)e
Mbµ−(t1,t3) −

[
M0(t1)−max{δM0(t1), |x(t1)|

−
η

2
µη(t1, t3)M0(t1)}

]
e−Maµ+(t1,t3)

3. Case 3. (t2, t3) = S−(t2, t3). In this case, from Lemma 3, we have

|x(t3)| ≤|x(t2)|+M0(t2)
[
eMbµ−(t2,t3) − 1

]

≤M0(t1)e
Mbµ−(t1,t2) −

[
M0(t1)−max{δM0(t1), |x(t1)|

−
η

2
µη(t1, t2)M0(t1)}

]
e−Maµ+(t1,t2) +M0(t1)e

Mbµ−(t1,t2)
[
eMbµ−(t2,t3) − 1

]

=M0(t1)e
Mbµ−(t1,t3) −

[
M0(t1)−max{δM0(t1), |x(t1)|

−
η

2
µη(t1, t3)M0(t1)}

]
e−Maµ+(t1,t3)

The proof is completed.

Based on the estimation (23) given in Lemma 4, we are to prove Theorem 1.
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Proof of Theorem 1.

For t ∈ [t−1 , t1], from Lemma 4, and noting |x(t0)| ≤M0(t0), we have

|x(t)| ≤M0(t0)e
Mbµ−(t0,t) −

[
M0(t0)−max

{
δM0(t0), |x(t0)| −

η

2
µη(t0, t)M0(t0)

}]
e−Maµ+(t0,t)

≤M0(t0)e
Mbµ−(t0,t) −

[
M0(t0)−max

{
δM0(t0),M0(t0)−

η

2
µη(t0, t)M0(t0)

}]
e−Maµ+(t0,t)

=M0(t0)

[
eMbµ−(t0,t) −min{1− δ,

η

2
µη(t0, t)}e

−Maµ+(t0,t)

]

=M0(t0)

[
eMbµ−(t0,t) −

η

2
min{

1

Ma

, µη(t0, t)}e
−Maµ+(t0,t)

]

This implies

M0(t1) ≤M0(t0)
[
eMbµ−(t0,t1) −

η

2
min

{ 1

Ma

, µη(t0, t
−
1 )
}
e−Maµ+(t0,t1)

]

≤M0(t0)
[
eMbµ−(t0,t1) −

η

2
min

{ 1

Ma

, µη(t0, t
−
1 )
}
e−Ma(N+1)τmax

]

Repeating this process, we have

M0(tm) ≤M0(t0)

m−1∏

k=0

[
eMbµ−(tk ,tk+1) −

η

2
min

{ 1

Ma

, µη(tk, t
−
k+1)

}
e−Ma(N+1)τmax

]

Under the condition (17), for a given C ∈ (C∗, η/2), we can choose k∗ large enough such that for

all k ≥ k∗,

[eMbµ−(tk ,tk+1) − 1]eMa(N+1)τmax

min{ 1
Ma
, µη(tk, t

−
k+1)}

≤ C

which implies

eMbµ−(tk ,tk+1) ≤ 1 + Cmin{
1

Ma

, µη(tk, t
−
k+1)}e

−Ma(N+1)τmax

Thus for m > k∗,

M0(tm) ≤M0(tk∗)
m−1∏

k=k∗−1

[
1− (

η

2
− C)min{

1

Ma

, µη(tk, t
−
k+1)}e

−Ma(N+1)τmax

]
(24)

By the condition (16), we have

+∞∑

k=0

min{
1

Ma

, µη(tk, t
−
k+1)}e

−Ma(N+1)τmax = ∞. (25)

Thus

lim
m→+∞

M0(tm) = 0
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For t ∈ [t−m, tm], |x(t)| ≤M0(tm), and for t ∈ [tm, t
−
m+1], we have the estimation that

|x(t)| ≤M0(tm)e
MbNτmax . (26)

Therefore,we have

lim
t→+∞

|x(t)| = 0.

On the other hand, when a(·), b(·) are given, we can find a fixed k∗ for (24). Thus let K ′ =

max1≤k≤k∗ M0(tk)/M0(t0), we have

M0(tm) ≤ K ′M0(0) = max
−τmax≤s≤0

K ′|φ(s)|

for each m. Let K = K ′eMbNτmax , then

|x(t)| ≤ K max
−τmax≤s≤0

|φ(s)|

for each t.

Furthermore, if there exists ǫ > 0 such that µη(tk, tk+1) ≥ ǫ, then

1−(
η

2
−C)min{

1

Ma

, µη(tk, t
−
k+1)}e

−Ma(N+1)τmax ≤ 1−(
η

2
−C)min{

1

Ma

, ǫ}e−Ma(N+1)τmax , λ0 < 1.

Then from (24) we have for m ≥ k∗,

M0(tm) ≤M0(tk∗)λ
m−k∗

0 .

Thus for t ∈ [tm, tm+1], we have the estimation

|x(t)| ≤ M0(tm)e
Mb(N+1)τmax ≤M0(tk∗)e

Mb(N+1)τmaxλm−k∗

0 ≤ K ′M0(t0)e
Mb(N+1)τmaxλ

−(k∗+1)
0 e(m+1) lnλ0

= K ′M0(t0)e
Mb(N+1)τmaxλ

−(k∗+1)
0 e

lnλ0
(N+1)τmax

(m+1)(N+1)τmax

≤ K ′M0(t0)e
Mb(N+1)τmaxλ

−(k∗+1)
0 e

lnλ0
(N+1)τmax

t,

where the last inequality comes from the fact that lnλ0

(N+1)τmax
< 0 and t ≤ (m + 1)(N + 1)τmax.

Let α = − lnλ0

(N+1)τmax
> 0, and K̃ = max

{
maxt0≤t≤tk∗

|x(t)|
M0(t)

, K ′eMb(N+1)τmaxλ
−(k∗+1)
0

}
eαk

∗(N+1)τmax ,

then

|x(t)| ≤ K̃ max
−τmax≤s≤0

|φ(s)|e−αt.

The proof is completed.
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3 Applications

In this section, we will give two applications the theoretical results, including self synchronization

in a class of neural networks with time varying delays, and the existence and exponential stability

of periodic solutions of a class of neural networks with periodic coefficients and delays.

3.1 Self synchronization of neural networks

First, we apply the theoretical results obtained in previous sections to the self synchronization

analysis of neural networks. In Liu, Lu & Chen(2011), we have discussed almost sure self syn-

chronization in neural networks with randomly switching connections without time delays. In

this paper, we discuss self synchronization in neural networks with bounded time-varying delays.

To be more general, consider the following Volterra functional differential systems

dxi(t)

dt
=− di(t)xi(t) + fi(x1, · · · , xn, x1(t− τi1(t)), · · · , xn(t− τin(t)), t) + Ii(t), i = 1, · · · , n,

(27)

where

(i)

∣∣∣∣
∂fi(u1, · · · , un, v1, · · · , vn, t)

∂uj

∣∣∣∣ ≤ Aij(t),

∣∣∣∣
∂fi(u1, · · · , un, v1, · · · , vn, t)

∂vj

∣∣∣∣ ≤ Bij(t);

(ii) τij(t) ≤ τmax, i, j = 1, 2, · · · , n.

Before state our main result, we first extend the η-condition to the case of n function pairs.

Definition 2 (Common η-condition). Given n function pairs {ai(·), bi(·)}
n
i=1 with 0 < ai(·) ≤Ma,

|bi(·)| ≤ Mb, we say they satisfy the common η-condition if the function pair {a(·), b(·)}

satisfies the η-condition, where a(t) = ait(t), b(t) = bit(t), with it satisfying ait(t) − |bit(t)| =

minj{aj(t)− |bj(t)|} for each t.

Then we have

13



Theorem 2. Suppose that 0 < di(t) −
∑n

j=1Aij(t) ≤ Ma,
∑n

j=1Bij(t) ≤ Mb for any t ≥ 0. If

{di(·)−
∑n

j=1Aij(·),
∑n

j=1Bij(·)}
n
i=1 satisfy the common η-condition for a constant η > 0, then the

network (27) will reach outer self synchronization, i.e., for any two initial values φ(s), ψ(s) ∈ R
n,

s ∈ [−τmax, 0], the trajectories with initial values φ(s), ψ(s) respectively will satisfy

lim
t→∞

‖x(t)− y(t)‖ = 0.

Proof. Let τ(t) = maxi,j=1,··· ,n τij(t), zi(t) = |xi(t)− yi(t)|, and z(t) = maxi{zi(t)}, then we have

D+zi(t) = − sign(xi(t)− yi(t))di(t)[xi(t)− yi(t)] + sign(xi(t)− yi(t))[fi(x1(t), · · · , xn(t),

x1(t− τi1(t)), · · · , xn(t− τin(t)), t)− fi(y1(t), · · · , yn(t), y1(t− τi1(t)), · · · , yn(t− τin(t)), t)]

≤ −di(t)zi(t) +
n∑

j=1

Aij(t)zj(t) +
n∑

j=1

Bij(t)zj(t− τij(t))

which implies

D+z(t) ≤ −[dit(t)−
n∑

j=1

Aitj(t)]z(t) +
n∑

j=1

Bitj(t) sup
t−τ(t)≤s≤t

z(s)

It is easy to see that {dit(·)−
∑n

j=1Aitj(·),
∑n

j=1Bitj} satisfies the η-condition with the same η

if {di(·)−
∑n

j=1Aij(·),
∑n

j=1Bij(·)} satisfies the η-condition, by Theorem 1, we conclude

lim
t→∞

z(t) = 0, (28)

which implies

lim
t→∞

‖x(t)− y(t)‖ = 0.

In particular, if Ii(t) ≡ 0 and fi(0, · · · , 0) = 0 for i = 1, · · · , n. Then x = 0 is a equilibrium.

As a direct consequence of Theorem 2, we have

Corollary 2. Under the conditions in Theorem 2, if Ii(t) ≡ 0, and fi(0, · · · , 0) = 0 for each i,

then the equilibrium 0 of (27) is globally asymptotically stable.

3.2 Periodic neural networks

As another application, we discuss periodic neural networks, which can be described as

dui(t)

dt
= −di(t)ui(t) +

n∑

j=1

aij(t)gj(uj(t)) +

n∑

j=1

bij(t)fj(uj(t− τij(t))) + Ii(t) (29)
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where di(t) > di > 0, aij(t), bij(t), τij(t) > 0, Ii(t) : R
+ → R are continuously periodic functions

with period ω > 0, i, j = 1, 2, . . . , n.

By using a maximum function and the Brouwer fixed point theorem, it was proved in Lu &

Chen(2004) that

Proposition 7. Under the conditions that for i = 1, · · · , n, |gi(x+h)−gi(x)| ≤ Gi|h|, |fi(x+h)−

fi(x)| ≤ Fi|h| and −di(t)+
n∑

j=1

Gj|aij(t)|+
n∑

j=1

Fj|bij(t)| < −η, the system (29) has an ω−periodic

solution x(t), and there exists α > 0 such that for any solution u(t) = [u1(t), · · · , un(t)], we have

||u(t)− x(t)|| = O(e−αt), t→ ∞. (30)

Obviously, if the requirement −di(t) +
n∑

j=1

Gj |aij(t)| +
n∑

j=1

Fj |bij(t)| < −η, i = 1, 2, · · · , n is

not satisfied, then the Brouwer fixed point theorem is no longer applicable. Here, as application

of the theoretical results, we can prove the same result without this requirement. First, we make

the following assumption.

Assumption 1. 1. di(t) > di > 0, aij(t), bij(t), 0 < τij(t) ≤ τmax, Ii(t) are continuously

periodic functions of t with period ω > 0, i, j = 1, 2, . . . , n;

2. There exist Gi > 0, Fi > 0, i = 1, · · · , n, such that |gi(x+ h)− gi(x)| ≤ Gi|h|, |fi(x+ h)−

fi(x)| ≤ Fi|h| for each h ∈ R;

3. There exists Ma > 0, Mb > 0 such that 0 ≤ di(t)−
n∑

j=1

Gj|aij(t)| ≤Ma,
n∑

j=1

Fj |bij(t)| ≤Mb;

For some η > 0, denote Sη = {t ∈ [0, ω] : di(t) −
∑n

j=1

[
Gj |aij(t)| + Fj|bij(t)|

]
≥ η, i =

1, · · · , n}, and µη = µ(Sη). Denote S− = {t ∈ [0, ω] : di(t) −
∑n

j=1

[
Gj|aij(t)| + Fj |bij(t)|

]
<

0 for some i}, and µ− = µ(S−). Let p be the smallest integer such that τmax ≤ pω.

Theorem 3. Under Assumption 1, if there exists some η > 0, N > 0 such that µ(Sη) > 0 and

[
eMbp(N+1)µ

− − 1
]
eMap(N+1)ω

min{ 1
Ma
, pNµη}

<
η

2
, (31)

then the periodic neural network (29) has an ω−periodic solution x(t). Furthermore, for any

solution u(t) = [u1(t), · · · , un(t)], we have

||u(t)− x(t)|| = O(e−αt), t→ ∞. (32)
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Proof. First, we prove the existence of an ω period solution x(t). Let u(t) = [u1(t), · · · , un(t)]
⊤

be an arbitrary solution of (29). Let ū(t) = u(t)− u(t− ω), then we have:

dūi(t)

dt
= −di(t)ūi(t) +

n∑

j=1

aij(t)[gj(uj(t))− gj(uj(t− ω))]

+

n∑

j=1

bij(t)[fj(uj(t− τij(t)))− fj(uj(t− τij(t)− ω))].

Let v(t) = maxi{|ūi(t)|}, and denote it the index such that v(t) = |ūit(t)|, then we have:

D+v(t) ≤ −dit(t)v(t) +
n∑

j=1

|Gjaitj(t)|v(t) +
n∑

j=1

Fj |bitj(t)| sup
0≤s≤pω

v(t− s).

From definition, we have Sη(0, ω) ⊇ Sη and S−(0, ω) ⊆ S−. Let τmax = pω, from Theorem 1,

v(t) will converge to zero exponentially. Then for any given t∗, the sequence {
∑k

m=1 ū(t
∗+ kω)},

k = 1, 2, 3, · · · is a Cauchy sequence. Thus there exists x(t∗) ∈ R
n such that limk→∞

∑k

m=1 ū(t
∗+

kω) = x(t∗). From the definition of ū(t), this implies

lim
k→∞

u(t∗ + kω) = x(t∗).

Since limk→∞ u(t∗ + kω) = limk→∞ u(t∗ + ω + kω), it is easy to see that x(t∗) = x(t∗ + ω).

For any t1 > 0, t2 > 0,

xi(t2)− xi(t1) = lim
k→∞

[ui(t2 + kω)− ui(t1 + kω)]

= lim
k→∞

∫ t2

t1

[
− di(t)ui(t+ kω) +

n∑

j=1

aij(t)gj(uj(t + kω))

+
n∑

j=1

bij(t)fj(uj(t+ kω − τij(t)))
]
dt

=

∫ t2

t1

[
− di(t)xi(t) +

n∑

j=1

aij(t)gj(xj(t))

+

n∑

j=1

bij(t)fj(xj(t− τij(t)))
]
dt.

Therefore, xi(t) is absolutely continuous and

dxi(t)

dt
= −di(t)xi(t) +

n∑

j=1

aij(t)gj(xj(t)) +
n∑

j=1

bij(t)fj(xj(t− τij(t))).

Thus, x(t) is a periodic solution of (29).
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Again, let u(t) = [u1(t), · · · , un(t)]
⊤ be an arbitrary solution of (29). Denote ũ(t) = u(t) −

x(t), and ṽ(t) = maxi{|ũi(t)|}. Then, using an argument similar as above, we can show that ṽ(t)

tends to zero exponentially. This implies

||u(t)− x(t)|| = O(e−αt), t→ ∞ (33)

for some α > 0. The proof is completed.

From Theorem 3, we can have the following corollary.

Corollary 3. Under Assumption 1, if di(t) −
∑n

j=1 |aij(t)|Gj −
∑n

j=1 |bij(t)|Fj ≥ 0, and there

exists η > 0 such that µ(Sη) > 0, then the periodic neural network (29) has an ω-period solution

which is exponentially asymptotically stable.

4 Numerical Examples

In this section, we provide two simple examples with simulation to illustrate the theoretical

results.

4.1 Delay differential system

We consider the following delay differential system:

ẋ(t) = −a(t)x(t) + b(t)x(t− τ(t)). (34)

Here we take τ(t) = t− ⌊t⌋, where ⌊t⌋ denotes the largest integer that is no greater than t. Let

a(t) ≡ 1, and b(t) be a step function such that

b(t) =





0.8, t ∈ [2k, 2k + 0.5],

1.2, t ∈ [2k + 1, 2k + 1.002]

1, otherwise.

Thus, τmax = 1, Ma = 1, and Mb = 1.2. We take η = 0.2, then Sη(0,+∞) = ∪+∞
k=0[2k, 2k + 0.5],

and S−(0,+∞) = ∪+∞
k=0[2k+1, 2k+1+0.002]. Let t0 = 0, and N = 1, then µ−(tk, tk+1) = 0.004,

µη(tk, t
−
k+1) = 0.5, and we have

[eMbµ−(tk ,tk+1) − 1]eMaµ+(N+1)τmax

min{ 1
Ma
, µη(tk, t

−
k+1)}

=
(e1.2×0.004 − 1)e2

min{1, 0.5}
≃ 0.0711 < 0.1 =

η

2
.
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Figure 1: Asymptotic stability of the zero solution of Eq. (34)

.

Then from Theorem 1, the zero solution of (34) is asymptotically stable. The simulation

results are provided in Fig. 1, where the initial value are chosen randomly.

4.2 Periodic neural network with delays

In this simulation, we consider the following delay periodic neural network with 3 neurons:

dxi(t)

dt
= −(2 + sin2(πt))xi(t) + | sin3(πt)| tanh(xi(t)) + sin2(2πt) tanh(xi+1(t))

+ cos2(2πt) tanh(xi+2(t)) + sin2(4πt) arctan(xi+1(t− | sin(2πt)|))

+ cos2(4πt) arctan(xi+2(t− | cos(2πt)|)) + sin(iπt), i = 1, 2, 3.

Here, i+1 and i+2 are understood as i+1 mod 3, i+2 mod 3 if they exceed 3. Now, we verify that

the conditions in Theorem 3 can be satisfied. In accordance to model (29), di(t) = 2 + sin2(πt),

[aij(t)] =




| sin3(πt)| sin2(2πt) cos2(2πt)

cos2(2πt) | sin3(πt)| sin2(2πt)

sin2(2πt) cos2(2πt) | sin3(πt)|


 , [bij(t)] =




0 sin2(4πt) cos2(4πt)

cos2(4πt) 0 sin2(4πt)

sin2(4πt) cos2(4πt) 0


 .

And we can choose τmax = 1, Fi = Gi = 1. Thus,

0 < di(t)−
∑3

j=1Gj|aij(t)| = 1 + sin2(πt)− | sin3(πt)| ≤ 29
27
,

∑3
j=1 Fj|bij(t)| =

∑3
j=1 |bij(t)| = 1.
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Figure 2: Asymptotic stability of periodic solutions in a delayed periodic neural networks.

This implies that we can set Ma = 29/27, Mb = 1. On the other hand, di(t)−
∑3

j=1[Gj |aij(t)|+

Fj |bij(t)|] = sin2(πt)−| sin3(πt)| ≥ 0. This means that µ− = 0, so the left-hand term in Ineq. (31)

is 0 and Ineq. (31) holds for any η > 0. Since the maximum of di(t)−
∑3

j=1[Gj|aij(t)|+Fj|bij(t)|]

is 2/27, we can choose η = 1/27, and from the continuity of di(t)−
∑3

j=1[Gj |aij(t)|+ Fj|bij(t)|],

we have µ(Sη) > 0. So the requirements in Theorem 3 are satisfied and this network has a

periodic solution which is asymptotically stable. This is verified by the simulation results in Fig.

2.

5 Conclusions

In this paper, we discuss generalized Halanay inequality and its applications. First, we prove a

new generalized Halanay inequalities under less restricted conditions, which are useful for the

asymptotic stability of the zeros solution of a delayed differential equation. To our knowledge,

these conditions are the least restricted ones known. We also give two applications of the the-

oretical results. First, we provide more general sufficient conditions for the self synchronization

of the neural networks with time varying delays. Then, under more relaxed requirements, we

prove a sufficient condition for the existence and exponential stability periodical solutions for a

class of neural networks with periodic coefficients and time varying delays. Yet, we only consider

bounded time varying delays. The case of unbounded time-varying delays is also very important

and will be our next research topic.
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