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In 2008 (Pinto da Costa, Alonso, & Cardoso, 2008) we proposed
the unimodal paradigm for ordinal data classification and also
a new coefficient to measure the performance of ordinal data
classifiers; that is, classifiers for the important and often neglected
case where there is an order relation between the classes.
Many real life settings exist which involve classifying examples
(instances) into classes which have a natural ordering, like
for instance econometric modelling; information retrieval and
collaborative filtering; stock trading support systems, where one
wants to predict, for instance, whether to buy, keep or sell a
stock. In fact in a very large number of applications the classes are
ordered, although that was rarely taken into account. Recently, the
subject has attracted a growing interest (Cruz-Ramírez, Hervás-
Martínez, Sánchez-Monedero, & Gutiérrez, 2011; Hu, Guo, Yu, &
Liu, 2010; Pinto da Costa, Sousa, & Cardoso, 2011; Seah, Tsang, &
Ong, 2012).

We also proposed in Pinto da Costa et al. (2008), apart from the
unimodal paradigm, a new coefficient tomeasure the performance
of ordinal data classifiers. Since then a growing number of works
have also addressed this issue (Baccianella, Esuli, & Sebastiani,
2009; Cardoso & Sousa, 2011; Cruz-Ramírez, Hervás-Martínez,
Sánchez-Monedero, & Gutiérrez, 2014; Lee & Liu, 2002; Sánchez-
Monedero, Gutiérrez, Tino, & Hervás-Martínez, 2013; Waegeman,
De Baets & Boullart, 2006; Vanbelle & Albert, 2009). The coefficient
rint thatwehaveproposed in Pinto daCosta et al. (2008) has aminor
error in its final formulationwhichmust be corrected otherwise its
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values make no sense. In order to correct its formula we will first
describe briefly the way the coefficient was constructed.

In supervised classification problems with ordered classes, it
is common to assess the performance of the classifier using mea-
sures which are not really appropriate. Very often, every misclas-
sification is considered equally costly and the Misclassification
Error Rate (MER) is used. Two other measures that are also usu-
ally used are the Mean Square Error (MSE) and the Mean Abso-
lute Deviation (MAD), which must assign numbers to each class.
However, this assignment is arbitrary and the numbers chosen to
represent the existing classes will evidently influence the perfor-
mance measurement given by MSE or MAD. In order to avoid the
influence of the numbers chosen to represent the classes on the
performance assessment, we should only look at the order rela-
tion between ‘‘true’’ and ‘‘predicted’’ class numbers. With that in
mind, the use of Spearman’s rank correlation coefficient, rS (Press,
Flannery, Teukolsky, & Vetterling, 1992; Spearman, 1904) and spe-
cially Kendall’s τb (Press et al., 1992), considered in some works,
is progress, although Spearman’s coefficient is still dependent on
the values chosen for the ranks representing the classes. Kendal’s
coefficient is in our view better than the Spearman’s one to mea-
sure the performance of ordinal data classifiers, but still has some
problems that we explained in Pinto da Costa et al. (2008).

Let us designate by C the true value of the class of a test instance
and by Ĉ the value predicted by some model. The variables C and
Ĉ are two special ordinal variables because, as there are usually
very few classes compared to the number of observations, these
variables will take many tied values (most of them, in fact). The
coefficient introduced byus in Pinto da Costa et al. (2008), rint, takes
this into account by defining a suitable order relation associated to
each variable, and it is not sensitive to the values that are chosen
to represent the ordinal classes.
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Table 1
Values of v1 and v2 in O.

O v1 v2

o1 3 1
o2 2 2
o3 1 3
o4 4 4

Fig. 1. S1 ∩ S2 .

Let O = {o1, o2, . . . , on} represent the dataset where the
performance is to be measured and take Ω = O × O − {(o1, o1),
(o2, o2), . . . , (on, on)} to represent the set of pairs corresponding to
different observations. Now, define the order relation Rv as oiRvoj if
and only if v(oi) ≤ v(oj), where v represents a qualitative ordinal
variable on O. Let v1 and v2 be two qualitative ordinal variables
on O, whose exact values are of no importance since the only
information of interest to us is the order relation between those
values. Each of the variables v1 and v2 can thus be fully represented
by a subset of Ω . As a motivating example, suppose that O =

{o1, o2, o3, o4} and consider the following data in Table 1:
According to v1, the subset of Ω whose elements verify the

relation Rv1 is S1 = {(o1, o4), (o2, o1), (o2, o4), (o3, o1), (o3, o2),
(o3, o4)}. Similarly, v2 is represented by S2 = {(o1, o2), (o1, o3),
(o1, o4), (o2, o3), (o2, o4), (o3, o4)}. The intersection S1 ∩ S2, which
in this case has three elements, is the key point for the comparison
of the two variables v1 and v2 (see Fig. 1).

We defined ourmeasure of association between the two ordinal
variables v1 and v2 to be

rint = A + B
card(S1 ∩ S2)

√
card(S1) card(S2)

,

where the denominator is considered to normalise the coefficient,
and the constants A and B are such that rint takes values in the
range [−1, 1]: 1 when the two variables are identical (S1 = S2),
and −1 when they are completely opposite (S1 ∩ S2 = ∅). These
two conditions imply that A + B = 1 and A = −1, respectively;
thus, A = −1, B = 2 and therefore

rint = −1 + 2
card(S1 ∩ S2)

√
card(S1) card(S2)

.

This coefficient allows us to compare any two ordinal variables.
Our purpose now is to apply it to the performance measurement
of a classifier. As above, we will do that by comparing the two
variables C and Ĉ , corresponding to the true and predicted classes.
As these two variables take values in the set {1, 2, . . . , K}, there
will be many observations with the same value in each variable.

This fact led us to define a much quicker way of computing rint,
which is based on the contingency table crossing C with Ĉ:

Ĉ 1 2 . . . K TOTAL
C
1 n11 n12 . . . n1K n1•

2 n21 n22 . . . n2K n2•

...
...

...
...

...
...

K nK1 nK2 . . . nKK nK•

TOTAL n•1 n•2 . . . n•K n

In this table, nij represents the number of observations whose
true class is Ci and whose predicted class is Cj. The total number
of observations whose true class is Ci is given by the sum of row i,
ni•. The total number of observations whose predicted class is Cj is
given by the sum of column j, n•j. Hence,

card(S1) =

K
i=1

ni•


K
j=i

nj• − 1


=

K
i=1

K
j=i

ni•nj• − n,

card(S2) =

K
i=1

n•i


K
j=i

n•j − 1


=

K
i=1

K
j=i

n•in•j − n,

and

card(S1 ∩ S2) =

K
i=1

K
j=1

nij


K

i′=i

K
j′=j

ni′j′ − 1



=

K
i=1

K
j=1

K
i′=i

K
j′=j

nijni′j′ − n,

which can now be considered in the definition of rint. We note that
in Pinto da Costa et al. (2008) there was an error in card(S1) =K

i=1
K

j=1 ni•nj• − n and similarly in card(S2). The computation
of rint involves terms of order K 4, but as K is usually very small,
this shall present no problem. Finally, we get the expression:

rint = −1 + 2

K
i=1

K
j=1

K
i′=i

K
j′=j

nijni′j′ − n K
i=1

K
j=i

ni•nj• − n

 
K

i=1

K
j=i

n•in•j − n

 .
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