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• Design a class of memristive neural networks with time-varying delays and general activation functions.
• Investigate the exponential stabilization problem of such systems.
• Set up a delay-dependent criteria for the global exponential stability and stabilization of memristive neural networks.
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a b s t r a c t

This paper addresses the problem of circuit design and global exponential stabilization of mem-
ristive neural networks with time-varying delays and general activation functions. Based on the
Lyapunov–Krasovskii functional method and freeweightingmatrix technique, a delay-dependent criteria
for the global exponential stability and stabilization of memristive neural networks are derived in form of
linear matrix inequalities (LMIs). Two numerical examples are elaborated to illustrate the characteristics
of the results. It is noteworthy that the traditional assumptions on the boundness of the derivative of the
time-varying delays are removed.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Since the experimental prototyping of the memristor (Chua,
1971) was announced by the HP Lab (Strukov, Snider, Stewart, &
Williams, 2008), memristive neural networks (MNNs) have been
widely investigated, for their immense potential applications in
different areas such as brain emulation, combinatorial optimiza-
tion, knowledge acquisition and pattern recognition (Chen, Li,
Huang, Chen, & Wang, 2013; Guo, Wang, & Yan, 2013a, 2013b; Hu
& Wang, 2010; Wang, Li, Huang, & Duan, 2013; Wen, Bao, Zeng,
Chen, & Huang, 2013;Wen, Zeng, Huang, & Zhang, 2013;Wu,Wen,
& Zeng, 2012;Wu& Zeng, 2012). On the other hand, delayed neural
networks have attracted great attention due to their potential ap-
plications inmany fields (Cao, Chen, & Li, 2008; Chen&Dong, 1998;
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Chua & Roska, 2002; Liang, Wang, Liu, & Li, 2008; Wen, Zeng, &
Huang, 2013b; Zhang, Ma, Huang, &Wang, 2010). In some of these
applications, it is a necessary step to analyze the dynamical behav-
iors before the practical design of neural networks (He, Li, Huang,
& Li, 2013; He, Li, Huang, Li, & Huang, 2014; Liu, Dang, & Huang,
2013; Liu &Wang, 2013; Liu, Wang, Zhao, & Wei, 2012; Luo &Wu,
2012;Wen, Zeng, & Huang, 2013a;Wen, Zeng, Huang, & Yu, 2014),
and the equilibrium points of the designed networks are required
to be stable.

In both biological and artificial neural networks, due to inte-
gration and data communication, time delays are ubiquitous and
often become a source of instability. Time delays are usually time-
varying due to the finite switching speed of amplifiers and faults in
the electrical circuitry. Therefore, stability analysis of memristive
neural networks with time-varying delays is an important issue,
and many stability criteria have been developed in the literature
(see Huang, Li, Duan, & Starzyk, 2012, Li, Gao, & Yu, 2011, Wang,
Zhang, Xu, & Peng, 2009, Wu, Feng, & Lam, 2013, Zhang, Zhang,
& Wang, 2011, Zeng, He, Wu, & Zhang, 2011, and the references
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cited therein). Furthermore, the implementation of neuromorphic
circuits and chips has long been hindered by challenges related to
area and power consumption restrictions. More than tens of tran-
sistors and capacitors are needed to estimate a synapse. In par-
ticular, when neural connections become high level, a large part
of neuromorphic chips are utilized for synapses, whereas neurons
take only a small portion compared to that of synapses. However,
shrinking the current transistor size is very difficult. Therefore, it is
critical to introduce a more efficient approach to implement neu-
romorphic circuits and chips.

In the process to analyze the periodicity or stability of a neural
network, the conditions to be imposed on the neural network are
determined by the characteristics of activation functions and net-
work parameters. Whenmemristive neural networks are designed
to solve practical problems, it is desirable for their activation func-
tions to be general. As a result, several researchwork has been done
on the stability ofmemristive neural networkswith nonmonotonic
activation functions. However, the stability and/or exponential
stability of memristive neural networks with general activation
functions which may be nonmonotonic is still an open problem,
therefore, it is necessary to design a feedback controller to provide
exponential stability of memristive neural networks.

As an important research focus, several interesting results on
the stabilization of memristive neural networks have been pro-
posed (see Guo et al., 2013b, Wu & Zeng, 2012). In Wu and Zeng
(2012), the problemof exponential stabilization for a class ofmem-
ristive neural networkswith constant time delayswas studied. The
authors proposed some sufficient conditions in terms of linearma-
trix inequalities to achieve exponential stabilization. However, the
authors set the time delays as constants. Utilizing the method in
Phat and Trinh (2010), the results in Wu and Zeng (2012) can be
extended tomemristive neural networkswith time-varying delays
which are with upper boundness on the derivative of the time-
varying delays. At the same time, we observe that available results
on the stabilization ofmemristive neural networks have not specif-
ically considered the global delay-dependent exponential stabi-
lization of memristive neural networks with time-varying delays
which are without upper boundness on their derivatives.

To shorten such gap, we investigate the problem of exponen-
tial stabilization for a class of delayed MNNs. The main contribu-
tions of this paper can be summarized as follows: (1) Based on the
circuit design, a model of MNNs is established; (2) based on the
Lyapunov–Krasovskii functional method and free weighting ma-
trix technique, delay-dependent criteria for the global exponential
stability and stabilization of memristive neural networks are de-
rived in form of linear matrix inequalities; (3) the traditional as-
sumptions on the boundness of the derivative of the time-varying
delays are removed for memristive neural networks.

The rest of the paper is organized as follows. In Section 2,
a memristive circuit is proposed and corresponding dynamical
equation is established. In Section 3, the exponential stabilization
problem of MNNs is discussed by using the Lyapunov–Krasovskii
functional method and free weighting matrix technique. Several
sufficient conditions are derived to ensure the exponential stabi-
lization of MNNs. In Section 4, two illustrative examples are dis-
cussed to demonstrate the effectiveness of the theoretical analysis.
Finally, conclusions are drawn in Section 5.

2. Preliminaries

Notation. The notation used through the paper is fairly standard.N
is the set of natural numbers and N+ stands for the set of nonnega-
tive integers; Rn and Rn×m denote, respectively, the n dimensional
Euclidean space and the set of all n×m real matrices. The notation
P > 0 (≥0)means that P is real positive definite (semi-definite). In
symmetric block matrices or complex matrix expressions, we use
Fig. 1. Schematic diagram of memristive neuronal cell.

an asterisk (∗) to represent a term that is induced by symmetry
and diag{· · ·} stands for a block-diagonal matrix. Matrices, if their
dimensions are not explicitly stated, are assumed to be compatible
for algebraic operations. The notation ∥.∥ refers to the Euclidean
vector norm. Sometimes, when no confusion would arise, the di-
mensions of a function or amatrixwill be omitted for convenience.

2.1. Circuit of an MNN

The neuronal cell of MNNs can be implemented in an MNN as
shown in Fig. 1. By Kirchoff’s current law, the equation of the ith
neuronal state is written as follows:

Ciẋi(t) = −

 n
j=1

 1
R′

ij
+

1
R′′

ij


+ Wi(xi(t))


xi(t)

+

n
j=1

signijfj(xj(t))
R′

ij
+

n
j=1

signijgj(xj(t − τj(t)))
R′′

ij
, (1)

where fj, gj are the activation functions, τj(t) and δj is the
discrete delay, for the ith neuron cell, xi(t) is the voltage of the
capacitance Ci, fj(xj(t)), gj(xj(t − τj(t))) are the functions of xi(t)
without or with discrete respectively, R′

ij is the resistance between
the feedback function fj(xj(t)) and xi(t), R′′

ij is the resistance
between the feedback function gj(xj(t − τj(t))) and xi(t), Mi is
the memristance parallel to the capacitance Ci, where i, j =

1, 2, . . . , n, signij =


1, i ≠ j;
−1, i = j, is the sign function, and Wi(.) is the

memductance of the ith memristorMi, and

Wi(xi(t)) =


W ′

i , fi(xi(s)) − xi(s) ↓→, s ∈ (t − ∆, t];
W ′′

i , fi(xi(s)) − xi(s) ↑, s ∈ (t − ∆, t]

where ↓ means ‘‘decrease’’, → means ‘‘unchange’’, ↑ means ‘‘in-
crease’’, ∆ is a sufficiently small positive constant. The memduc-
tance function may be discontinuous.

Then, Eq. (1) can be rewritten as follows with control input
ui(t):

ẋi(t) = −di(xi(t))xi(t) +

n
j=1

aijfj(xj(t))

+

n
j=1

bijgj(xj(t − τj(t))) + ui(t) (2)

where

aij =
signij

CiR′

ij
, bij =

signij

CiR′′

ij
,

di(xi(t)) =
1
Ci

 n
j=1

 1
R′

ij
+

1
R′′

ij


+ Wi(xi(t))


=


d1i, fi(xi(s)) − xi(s) ↓, →, s ∈ (t − ∆, t];
d2i, fi(xi(s)) − xi(s) ↑, s ∈ (t − ∆, t].
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Then we have

ẋ(t) = −D(x(t))x(t) + Af (x(t)) + Bg(x(t − τ(t))) + u(t), (3)

where

D(x(t)) = diag{d1(x1(t)), d2(x2(t)), . . . , dn(xn(t))},
A = [aij]n×n, B = [bij]n×n, u(t) = [u1(t), . . . , un(t)]T ,

f (x(t)) =


f1(x1(t)), . . . , fn(xn(t))

T
,

g(x(t − τ(t))) =


g1(x1(t − τ1(t))), . . . , gn(xn(t − τn(t)))

T
.

Remark 1. With the property of multiple memristances, for a
neuron cell, only one memristor is employed to store multiple
states of the input information. Therefore, the synapses of the
neural networks need not to be designed with memristor, which
will obviously reduce the cost to produce the memristive neural
networks in future. Based on the analysis above, D(x(t)) in system
(3) is changed according to the state of the system, so this network
based on memristors is a state-dependent switching system.
System (3) represents a class of MNNs with time-varying delays.

2.2. Modeling of MNNs as switching systems

Considering the state-dependent switching property of the
memristor, MNNs can be modeled as switching systems. Define
an indicator function πp(t) = diag{πp1(t), . . . , πpn(t)}, p = 1, 2,
where

π1i(xi(t)) =


1, fi(xi(s)) − xi(s) ↓, →, s ∈ (t − ∆, t],
0, fi(xi(s)) − xi(s) ↑, s ∈ (t − ∆, t],

π2i(xi(t)) =


0, fi(xi(s)) − xi(s) ↓, →, s ∈ (t − ∆, t],
1, fi(xi(s)) − xi(s) ↑, s ∈ (t − ∆, t].

Then,

ẋi(t) = −

2
r=1

πpi(xi(t))dpixi(t) +

n
j=1

aijfj(xj(t))

+

n
j=1

bijgj(xj(t − τj(t))) + ui(t). (4)

Therefore, system (3) can be represented by

ẋ(t) = −

2
p=1

Πp(x(t))Dpx(t) + Af (x(t))

+ Bg(x(t − τ(t))) + u(t), (5)

where Πp(x(t)) = diag{πp1(x1(t)), . . . , πpn(xn(t))}, and
2

p=1 πpi

(xi(t)) = 1, i = 1, . . . , n, p = 1, 2, and

Dp = diag{dp1, dp2, . . . , dpn}.

The output of this system is y(t) = Ex(t), and the initial condition
of system (5) is in the form of x(t) = φ(t) ∈ C([−τ , 0], Rn) with
the uniform norm

∥φ∥ = max
t∈[−τ ,0]

∥φ(t)∥, (6)

where τ = max{τi}, τi(t) satisfies 0 ≤ τi(t) ≤ τi, i ∈ {1, 2, . . . , n}.
And τ̇ (t) ≤ µ, µ = max{µi}, where µi satisfies τ̇i(t) ≤ µi, for
i ∈ {1, 2, . . . , n}.

Definition 1. Given β > 0. The zero solution of system (5) is β-
exponentially stable if every solution x(t, φ) of the system satisfies

∃ ϖ > 0 : ∥x(t, φ)∥ ≤ ϖ∥φ∥e−βt , ∀t ≥ 0,

where u(t) = 0.
Definition 2. Given β > 0. System (5) is globally β-exponentially
stabilizable if there is a feedback control law

u(t) = Ky(t), (7)
y(t) = Cx(t),

such that the augmented system

ẋ(t) =

2
p=1

Πp(x(t))Dpx(t) + Af (x(t)) + Bg(x(t − τ(t))), (8)

is β-exponentially stable, where

x(t) = φ(t), t ∈ [−τ , 0],
Dp = −(Dp − KC).

2.3. Assumption and lemmas

The following assumption, which was first proposed in Liu,
Wang, and Liu (2006a, 2006b) and Wang, Shu, Liu, Ho, and Liu
(2006), will be needed throughout the paper:
A1. For i ∈ {1, 2, . . . , n}, the activation functions f , g are bounded
and there exist four constant matrices L−

= diag{l−1 , . . . , l−n },
L+

= diag{l+1 , . . . , l+n }, H−
= diag{h−

1 , . . . , h−
n } and H+

= diag
{h+

1 , . . . , h+
n }, such that

l−i ≤
fi(α) − fi(β)

α − β
≤ l+i ,

h−

i ≤
gi(α) − gi(β)

α − β
≤ h+

i ,

for all α, β ∈ R and α ≠ β, i = 1, . . . , n.
As l−i , l+i , h−

i and h+

i are constants, and they can be positive,
negative or zero, therefore, the activation functions may be
nonmonotonic, andmore general than the usual sigmoid functions
as follows in Wu et al. (2012):
∥fi(α) − fi(β)∥ ≤ ∥li(α − β)∥, i = 1, 2, . . . , n.

By recalling the definitions of f , g , from Assumption A1, two
inequalities are first derived in Liu et al. (2006a, 2006b) and Wang
et al. (2006) as follows:

[fi(xi(t)) − l−i xi(t)]
T
[fi(xi(t)) − l+i xi(t)] ≤ 0, (9)

[gi(xi(t)) − h−

i xi(t)]
T
[gi(xi(t)) − h+

i xi(t)] ≤ 0. (10)
In order to derive sufficient conditions for the exponential

stabilization of system (8), we will need the following lemmas.

Lemma 1 (Zhao & Tan, 2007). It is given any real matrices X, Z, P of
appropriate dimensions and a scalar ε0 > 0, where P > 0. Then the
following inequality holds:

XTZ + ZTX ≤ ε0XTPX + ε−1
0 ZTP−1Z .

In particular, if X and Z are vectors, XTZ ≤
1
2 (X

TX + ZTZ).

Lemma 2 (Yue, Tian, Zhang, & Peng, 2009). Suppose that 0 ≤ ηm ≤

η(t) ≤ ηM , and Pi, i ∈ {1, 2, 3} are constant matrices with appro-
priate dimensions, then

P1 + (ηM − η(t))P2 + (η(t) − ηm)P3 < 0, (11)

holds, if and only if the following inequalities hold

P1 + (ηM − ηm)P2 < 0,
P1 + (ηM − ηm)P3 < 0. (12)

Lemma 3 (Peng & Tian, 2008). For any constant positive matrixW ∈

Rn×n, scalar ϑ1 ≤ ϑ(t) < ϑ2, and vector function ẋ(t) : [−ϑ2,
ϑ1] → Rn, such that the following integration is well defined with
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− (ϑ2 − ϑ1)

 t−ϑ1

t−ϑ2

ẋT (s)Wẋ(s)ds

≤

 x(t − ϑ1)
x(t − ϑ(t))
x(t − ϑ2)

T 
−W W 0
∗ −2W W
∗ ∗ −W

  x(t − ϑ1)
x(t − ϑ(t))
x(t − ϑ2)


. (13)

Lemma 4 (Xiong & Lam, 2009). For matrices Q > 0, Y and any
scalar υ , the inequality −YQ−1Y ≤ υ2Q − 2υY holds.

Lemma 5 (Gu, 2000). For any constant symmetric positive definite
matrix P, if there exist a number σ > 0 and vector function x(.), then σ

0
x(s)ds

T
P
 σ

0
x(s)ds


≤ σ

 σ

0
xT (s)Px(s)ds. (14)

3. Main results

In this section, we shall establish our main criterion based on
the LMI approach. For convenience, we denote

Γ1 = diag{l−1 l
+

1 , l−2 l
+

2 , . . . , l−n l
+

n },

Γ2 = diag

l−1 + l+1

2
,
l−2 + l+2

2
, . . . ,

l−n + l+n
2


,

Γ3 = diag{h−

1 h
+

1 , h−

2 h
+

2 , . . . , h−

n h
+

n },

Γ4 = diag

h−

1 + h+

1

2
,
h−

2 + h+

2

2
, . . . ,

h−
n + h+

n

2


.

System (8) can be rewritten as follows:

ẋ(t) =

2
p=1

Πp(x(t))Mpζ (t), (15)

where

ζ (t) =

xT (t) xT (t − τ(t)) xT (t − τ)

f T (x(t)) gT (x(t)) gT (x(t − τ(t)))
T

,

Mp =

Dp 0 0 A 0 B


.

Theorem 1. For a given parameter τ and feedback gain K , sys-
tem (8) is exponentially stable, if there exist matrices P > 0, Qi >
0,Mi and Ni, (i = 1, 2) with appropriate dimensions, and positive
scalars ρ , ϕ, ϵ > 0, such that p = 1, 2,

Ψ
p
i =

Ξ p Θ
p
1 Θ2i

∗ −τQ2 0
∗ ∗ −τQ2

 < 0, (16)

where

Ξ p
=


Ξ

p
11 Ξ12 0 Ξ14 Ξ15 Ξ16
∗ Ξ22 Ξ23 0 0 0
∗ ∗ Ξ33 0 0 0
∗ ∗ ∗ Ξ44 0 0
∗ ∗ ∗ ∗ Ξ55 0
∗ ∗ ∗ ∗ ∗ Ξ66

 ,

Θ
p
1 =


τQ2Dp 0 0 τQ2A 0 τQ2B

T
,

Θ21 =

τMT

1 τMT
2 0 0 0 0

T
,

Θ22 =

0 τNT

1 τNT
2 0 0 0

T
,

Ξ
p
11 = PDp + DT

p P + 2βP −
1
τ
exp{−2βτ }Q2

+ exp{−2βτ }(MT
1 + M1) − ρΓ1 − ϕΓ3 − ϵΓ3,
Ξ12 =
1
τ
exp{−2βτ }Q2 + exp{−2βτ }(MT

2 − M1),

Ξ14 = PA − ρΓ2, Ξ15 = −ϕΓ4, Ξ16 = PB − ϵΓ4,

Ξ22 = −
1
τ
exp{−2βτ }(Q T

2 + Q2) + exp{−2βτ }

× (−MT
2 − M2 + NT

1 + N1),

Ξ23 =
1
τ
exp{−2βτ }Q2 + exp{−2βτ }(NT

2 − N1),

Ξ33 = −
1
τ
exp{−2βτ }Q2 − exp{−2βτ }(NT

2 + N2),

Ξ44 = −ρI, Ξ55 = −ϕI + Q1,

Ξ66 = −ϵI − (1 − µ) exp{−2βτ }Q1.

Proof. Choose the Lyapunov–Krasovskii functional candidate to be
V (t) =

3
i=1 Vi(t), and

V1(t) = xT (t)Px(t),

V2(t) =

 t

t−τ(t)
exp{2β(s − t)}gT (x(s))Q1g(x(s))ds,

V3(t) =

 t

t−τ

 t

η

exp{2βs}ẋT (s)Q2ẋ(s)dsdη,

where P > 0,Qi > 0, (i = 1, 2) are positive definite matrices
with appropriate dimensions to be determined.

It is easy to verify that

α̂∥x(t)∥2
≤ V (t) ≤ ᾰ∥x(t)∥2, t ∈ R+, (17)

where α̂ = λmin(P), ᾰ = λmax(P) + λmax(Q1)l2τ + λmax(Q2)τ
2,

l2 = max{(l−i )2, (l+i )2}.
Taking the derivative of Vi(t), i = 1, 2, 3 along the trajectory

of system (15), we can get

V̇1(t) = 2
2

p=1

Πp(x(t))xT (t)PMpζ (t), (18)

V̇2(t) = gT (x(t))Q1g(x(t)) − exp{−2βτ(t)}(1 − τ̇ (t))
× gT (x(t − τ(t)))Q1g(x(t − τ(t))) − 2βV2(t)

≤ gT (x(t))Q1g(x(t)) − exp{−2βτ }(1 − µ)

× gT (x(t − τ(t)))Q1g(x(t − τ(t))) − 2βV2(t), (19)

V̇3(t) = τ ẋT (t)Q2ẋ(t) −

 t

t−τ

exp{2β(s − t)}

× ẋT (s)Q2ẋ(s)ds − 2βV3(t)

≤ τ ẋT (t)Q2ẋ(t) − exp{−2βτ }

 t

t−τ

ẋT (s)

×Q2ẋ(s)ds − 2βV3(t). (20)

Therefore, we have

V̇ (t) + 2βV (t) ≤ 2
2

p=1

Πp(x(t))xT (t)PMpζ (t) + 2βxT (t)Px(t)

+ gT (x(t))Q1g(x(t)) − exp{−2βτ }(1 − µ)

× gT (x(t − τ(t)))Q1g(x(t − τ(t))) + τ ẋT (t)Q2ẋ(t)

− exp{−2βτ }

 t

t−τ

ẋT (s)Q2ẋ(s)ds. (21)

Based on equality (20) and Lemma 3, we can get

−

 t

t−τ

ẋT (s)Q2ẋ(s)ds

≤
1
τ

 x(t)
x(t − τ(t))
x(t − τ)

T 
−Q2 Q2 0
∗ −2Q2 Q2
∗ ∗ −Q2

  x(t)
x(t − τ(t))
x(t − τ)


. (22)
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Utilizing the free weighting matrix method, it is obvious to de-
rive that

0 = 2ζ TM

x(t) − x(t − τ(t)) −

 t

t−τ(t)
ẋ(s)ds


, (23)

0 = 2ζ TN

x(t − τ(t)) − x(t − τ) −

 t−τ(t)

t−τ

ẋ(s)ds

, (24)

where

M =

MT

1 MT
2 0 0 0

T
,

N =

0 NT

1 NT
2 0 0

T
.

From (23) and (24), it follows

−2ζ T (t)M
 t

t−τ(t)
ẋ(s)ds

≤ τ(t)ζ T (t)MQ−1
2 MT ζ (t) +

 t

t−τ(t)
ẋT (s)Q2ẋ(s)ds, (25)

−2ζ T (t)N
 t−τ(t)

t−τ

ẋ(s)ds

≤ (τ − τ(t))ζ T (t)NQ−1
2 NT ζ (t) +

 t−τ(t)

t−τ

ẋT (s)Q2ẋ(s)ds. (26)

Under Assumption A1, we have
x(t)

f (x(t))

T 
Γ1 Γ2

Γ T
2 I

 
x(t)

f (x(t))


≤ 0, (27)

x(t)
g(x(t − τ(t)))

T 
Γ3 Γ4

Γ T
4 I

 
x(t)

g(x(t − τ(t)))


≤ 0. (28)

Then, for any given ρ, ϕ, ϵ > 0, there exist

−ρ


x(t)

f (x(t))

T 
Γ1 Γ2

Γ T
2 I

 
x(t)

f (x(t))


≥ 0, (29)

−ϕ


x(t)

g(x(t))

T 
Γ3 Γ4

Γ T
4 I

 
x(t)

g(x(t))


≥ 0, (30)

−ϵ


x(t)

g(x(t − τ(t)))

T 
Γ3 Γ4

Γ T
4 I

 
x(t)

g(x(t − τ(t)))


≥ 0. (31)

From (18)–(29),

V̇ (t) + 2βV (t) ≤ 2
2

p=1

Πp(x(t))xT (t)PMpζ (t) + 2βxT (t)Px(t)

+ gT (x(t))Q1g(x(t)) − (1 − µ) exp{−2βτ }

× gT (x(t − τ(t)))Q1g(x(t − τ(t)))

+ τ

2
p=1

2
q=1

Πp(x(t))Πq(x(t))ζ T (t)MT
pQ2Mqζ (t)

+
1
τ
exp{−2βτ }

 x(t)
x(t − τ(t))
x(t − τ)

T

×


−Q2 Q2 0
∗ −2Q2 Q2
∗ ∗ −Q2

  x(t)
x(t − τ(t))
x(t − τ)



+ 2 exp{−2βτ }ζ TM

x(t) − x(t − τ(t))



+ 2 exp{−2βτ }ζ TN

x(t − τ(t)) − x(t − τ)


+ exp{−2βτ }τ(t)ζ T (t)MQ−1

2 MT ζ (t)

+ exp{−2βτ }(τ − τ(t))ζ T (t)NQ−1
2 NT ζ (t)

− ρ


x(t)

f (x(t))

T 
Γ1 Γ2

Γ T
2 I

 
x(t)

f (x(t))


− ϕ


x(t)

g(x(t))

T 
Γ3 Γ4

Γ T
4 I

 
x(t)

g(x(t))


− ϵ


x(t)

g(x(t − τ(t)))

T 
Γ3 Γ4

Γ T
4 I

 
x(t)

g(x(t − τ(t)))


.

By the Schur Complement and Lemma 2, from (16), we have the
following inequality

2
p=1

2
q=1

Πp(x(t))Πq(x(t))

Ξ p

+ τMT
pQ2Mq


+ τ(t)MQ−1

2 MT
+ (τ − τ(t))NQ−1

2 NT < 0, (32)

which implies

V̇ (t) + 2βV (t) ≤ λmax(Ψ
p
i )|ζ (t)|2, (33)

where λmax(Ψ
p
i ) < 0, i, p = 1, 2. Therefore

V (t) ≤ V (0) exp{−2βt}, t ≥ 0. (34)

With the condition (17), we have

∥x(t, φ)∥ ≤


ᾰ

α̂
∥φ∥ exp{−βt}, t ≥ 0, (35)

which implies that system (15) is β-exponentially stabilizable. �

Based on Theorem 1, the following result can be obtained for
the feedback control design of the augmented system (8).

Theorem 2. For a given parameter τ , system (8) is exponentially
stable, if there exist matrices P > 0, Qi > 0,Mi and Ni, (i = 1, 2)
with appropriate dimensions, and scalars ρ > 0, ϕ, ϵ > 0, such that
p = 1, 2,

Π̃
p
i =

Ξ
p

Θ̃
p
1 Θ2i

∗ −2τP + τQ2 0
∗ ∗ −τQ2

 < 0, (36)

where

Ξ
p

=


Ξ̃

p
11 Ξ12 0 Ξ14 Ξ15 Ξ16
∗ Ξ22 Ξ23 0 0 0
∗ ∗ Ξ33 0 0 0
∗ ∗ ∗ −ρI 0 0
∗ ∗ ∗ ∗ Ξ55 0
∗ ∗ ∗ ∗ ∗ Ξ66

 ,

Ξ̃
p
11 = −PDp − DT

pP + YC + CTY T
+ 2βP

−
1
τ
exp{−2βτ }Q2 + exp{−2βτ }(MT

1 + M1)

− ρΓ1 − ϕΓ3 − ϵΓ3,

Θ̃
p
1 =


−τPDp + τYC 0 0 τA 0 τB

T
,

the other parameters are defined as in Theorem 1. Moreover, a desired
controller gain matrix in (7) is given by K = P−1Y .
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Proof. By Schur complement and Theorem 1, Ψ
p
i < 0, (i, p =

1, 2) can be rewritten as follows:

2
p=1

2
q=1

Πp(x(t))Πq(x(t))

Ξ p

+ τMT
pQ2Mq


+ τMQ−1

2 MT < 0,

2
p=1

2
q=1

Πp(x(t))Πq(x(t))

Ξ p

+ τMT
pQ2Mq


+ τNQ−1

2 NT < 0. (37)

By Lemma 2,

Ψ
p
i =

Ξ
p

Θ
p
1 Θ2i

∗ −τQ−1
2 0

∗ ∗ −τQ2

 < 0, (38)

where

Θ
p
1 =


τDp 0 0 τA 0 τB

T
.

Then, performing congruence transformation of Γ = diag{I, P, I}
to (38), we have

Ψ̃
p
i =

Ξ
p

Θ̃
p
1 Θ2i

∗ −τPQ−1
2 P 0

∗ ∗ −τQ2

 < 0. (39)

In view of the inequality

− PQ−1
2 P ≤ −2P + Q2, (40)

we can readily arrive at (36) from (39). �

4. Numerical examples

In this section, two numerical examples are discussed to
demonstrate the obtained results.

Example 1. Consider memristive system (8) with

A =


1.8 10
0.1 1.8


, B =


−1.5 0.1
0.1 −1.5


, C = I,

fi(xi) = gi(xi) =
1
2


|xi + 1| − |xi − 1|


, i = 1, . . . , n.

It can be verified that the activation functions f (.), g(.) satisfy
Assumption A1 with

l−i = h−

i = −1, l+i = h+

i = 1.

Let

d1(x1(t)) =


0.9, f1(x1(s)) − x1(s) ↓, →, s ∈ (t − ∆, t];
1.0, f1(x1(s)) − x1(s) ↑, s ∈ (t − ∆, t],

d2(x2(t)) =


1.0, f2(x2(s)) − x2(s) ↓, →, s ∈ (t − ∆, t];
0.9, f2(x2(s)) − x2(s) ↑, s ∈ (t − ∆, t].

If the time delay is set as 0.8 sin(1.5t), neither the sufficient con-
ditions on exponential stabilization of neural networks with 0 ≤

τ̇ ≤ µ < 1 in Phat and Trinh (2010), nor the sufficient condi-
tions on exponential stabilization of memristive neural networks
with constant time delay in Wu and Zeng (2012) can be applied
to solve the stabilization problem of memristive neural networks
with time-varying delays which are without upper boundness of
the time derivatives.
Given τ(t) = 0.12 sin(10t) and β = 0.1 by Theorem 2, a
feasible solution can be obtained as follows:

P =


1.7362 −0.5224

−0.5224 4.7202


,

Y =


−24.9671 −1.3641
−1.3641 −17.3225


,

Q1 =


1.0158 0.0238
0.0238 0.9255


,

Q2 =


0.5866 −0.2398

−0.2398 1.9507


,

M1 =


−0.0229 −1.2659
−1.2659 7.2083


,

M2 =


0.1338 0.6356
0.6356 −3.4931


,

N1 =


0.0914 −1.0555

−1.0555 6.1099


,

N2 =


0.1811 0.7573
0.7573 −4.1310


,

ρ = 5.9508, ϵ = 5.6621, ϕ = 4.4532.

Then the desired control gain K in (7) can be obtained as follows:

K =


−14.9659 −1.9551
−1.9454 −3.8863


. (41)

The simulation results are shown in Figs. 2 and 3.
As τ̇ (t) = 1.2 > 1, the presented results in Phat and Trinh

(2010) andWu and Zeng (2012) cannot be utilized to calculate the
control gain as well as the upper bounds τ . Table 1 gives the upper
bounds of derived τ by Theorem 2 for various β where µ = 1.2.

Example 2. Consider memristive system (8) with

A =


2 −0.1

−5 4.5


, B =


−1.5 −0.1
−0.2 −4


,

fi(xi) = gi(xi) = tanh(xi), i = 1, . . . , n.

Let

d1(x1(t)) =


0.9, f1(x1(s)) − x1(s) ↓, →, s ∈ (t − ∆, t];
1.1, f1(x1(s)) − x1(s) ↑, s ∈ (t − ∆, t],

d2(x2(t)) =


1.1, f2(x2(s)) − x2(s) ↓, →, s ∈ (t − ∆, t];
0.9, f2(x2(s)) − x2(s) ↑, s ∈ (t − ∆, t].

Given β = 0.2 and τ(t) = 0.1 sin(10t) by Theorem 2, a feasible
solution can be obtained as follows:

P =


4.6461 0.2654
0.2654 1.7714


,

Y =


−10.8288 −0.3887
−0.3887 −12.0142


,

Q1 =


2.2467 0.0235
0.0235 2.0305


,

Q2 =


2.1975 0.0852
0.0852 1.1575


,

M1 =


6.5432 0.3208
0.3208 2.3756


,



54 S. Wen et al. / Neural Networks 63 (2015) 48–56
Table 1
Upper bounds of derived τ by Theorem 2 for various β , where µ = 1.2.

β 0 0.01 0.02 0.1 0.2 0.5 0.8 1.6

Theorem2 0.2943 0.2938 0.2932 0.2887 0.2832 0.2677 0.2536 0.2215
Fig. 2. State trajectories of system (8) without the feedback controller.

M2 =


−2.7070 −0.1792
−0.1792 −0.3049


,

Fig. 3. State trajectories of system (8) with the feedback control gain (41).

N1 =


5.6683 0.3141
0.3141 2.0506


,
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Fig. 4. State trajectories of system (8) without the feedback controller.

N2 =


−3.4205 −0.2286
−0.2286 −0.6119


,

ρ = 8.2032, ϵ = 11.1507, ϕ = 9.9823.

Then the desired control gain K in (7) can be obtained as follows:

K =


−2.3382 0.3064
0.1309 −6.8281


. (42)

The simulation results are shown in Figs. 4 and 5.
Fig. 5. State trajectories of system (8) with the feedback control gain (42).

As τ̇ (t) = 1.0, the presented results in Guo et al. (2013b) and
Wu and Zeng (2012) cannot be suitable to obtain the control gain
as well as the upper bounds τ . Table 2 gives the upper bounds of
derived τ by Theorem 2 for various β where µ = 1.0.

5. Conclusion

In this paper, the problem of circuit design and global exponen-
tial stabilization has been investigated for a class of memristive
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Table 2
Upper bounds of derived τ by Theorem 2 for various β , where µ = 1.0.

β 0 0.01 0.02 0.1 0.2 0.5 0.8 1.6

Theorem2 0.5237 0.5218 0.5199 0.5052 0.4878 0.4413 0.4020 0.3222
neural networks with time-varying delays and general activation
functions. Based on the Lyapunov–Krasovskii functional method
and free weighting matrix technique, delay-dependent criteria for
the global exponential stability and stabilization of memristive
neural networks were established in terms of linear matrix in-
equalities. Twonumerical exampleswere discussed to substantiate
the effectiveness of the obtained results.
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