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Abstract

In this paper, we investigate the problem of optimization multivariate per-
formance measures, and propose a novel algorithm for it. Different from
traditional machine learning methods which optimize simple loss functions
to learn prediction function, the problem studied in this paper is how to
learn effective hyper-predictor for a tuple of data points, so that a complex
loss function corresponding to a multivariate performance measure can be
minimized. We propose to present the tuple of data points to a tuple of
sparse codes via a dictionary, and then apply a linear function to compare
a sparse code against a give candidate class label. To learn the dictionary,
sparse codes, and parameter of the linear function, we propose a joint op-
timization problem. In this problem, the both the reconstruction error and
sparsity of sparse code, and the upper bound of the complex loss function
are minimized. Moreover, the upper bound of the loss function is approxi-
mated by the sparse codes and the linear function parameter. To optimize
this problem, we develop an iterative algorithm based on descent gradient
methods to learn the sparse codes and hyper-predictor parameter alternately.
Experiment results on some benchmark data sets show the advantage of the
proposed methods over other state-of-the-art algorithms.
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1. Introduction

In traditional machine learning methods, we usually use a loss function to
compare the true class label of a data point against its predicted class label.
By optimizing the loss functions over all the training set, we seek a optimal
prediction function, named a classifier [1, 2, 3, 4, 5]. For example, in support
vector machine (SVM), a hinge loss function is minimized, and in linear
regression (LR), a logistic loss function is used [6, 7, 8, 9]. However, when we
evaluate the performance of a class label predictor, we usually consider a tuple
of data points, and use a complex multivariate performance measure over
the considered tuple of data points, which is different from the loss functions
used in the training procedure significantly [10, 11, 12, 13, 14]. For example,
we may use area under receiver operating characteristic curve (AUC) as a
multivariate performance measure to evaluate the classification performance
of SVM. Because SVM class label predictor is trained by minimizing the loss
functions over training data points, it cannot be guaranteed to minimize the
loss function corresponding to AUC. Many other multivariate performance
measures are also defined to compare a true class label tuple of a data point
tuple against its predicted class label tuple, and they can also be used for
different machine learning applications. Some examples of the multivariate
performance measures are as F-score [15, 16], precision-recall curve eleven
point (PRBEP) [17, 18], and Matthews correlation coefficient (MCC) [19, 20].
To seek the optimal multivariate performance measures on a given tuple
of data points, recently, the problem of multivariate performance measure
optimization is proposed. This problem is defined as a problem of learning
a hyper-predictor for a tuple of data points to predict a tuple of class labels.
The hyper-predictor is learned so that a multivariate performance measure
used to compare the true class label tuple and the predicted class label tuple
can be optimized directly.

1.1. Related works

Some methods have been proposed to solve the problem of multivariate
performance measures. For example,

• Joachims [10] proposed a SVM method to optimize multivariate nonlin-
ear performance measures, including F-score, AUC etc. This method
takes a multivariate predictor, and gives an algorithm to train the a
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multivariate SVM in polynomial time for large classes so that the po-
tentially non-linear performance measures can be optimized. Moreover,
the translational SVM with hinge loss function can be treated as a spe-
cial case of this method.

• Zhang et al. [12] proposed a smoothing strategy for multivariate per-
formance score optimization., in particular PREBP and AUC. The pro-
posed method combines Nesterov’s accelerated gradient algorithm and
the smoothing strategy, and obtains an optimization algorithm. This
algorithm converges to a given accurate solution in a limited number
of iterations corresponding to the accurate.

• Mao and Tsang [14] proposed a generalized sparse regularizer for mul-
tivariate performance measure optimization. Based on the this regular-
izer, a unified feature selection and general loss function optimization
is developed. The formulation of the problem is solved by a two-layer
cutting plane algorithm, and the convergence is presented. Moreover,
it can also be used to optimize the multivariate measures of multiple-
instance learning problems.

• Li et al. [21] proposed to learn a nonlinear classifier for optimization
of nonlinear and nonsmooth performance measures by novel two-step
approach. Firstly, a nonlinear auxiliary classifiers with existing learning
methods is trained, and then it is adapted for specific performance
measures. The classifier adaptation can be reduced to a quadratic
program problem, similar to the method introduced in [10].

1.2. Contributions

In this paper, we try to investigate the usage of sparse coding in the prob-
lem of multivariate performance optimization. Our work is inspired by the
work of multivariate performance optimization using multiple kernel learning
proposed by Wang, et al. [22]. The work in [22] is a original contribution of
major significance, because for the first time, it proposed to map the data
into another space to learn a more effective predictor in the new space for
multivariate performance measure optimization. Specifically, it uses multiple
kernel learning [23] to map the input data to a new space, and then learns
a new predictor to optimize the desired multivariate performance measure.
Our work also follows this strategy, but our work uses sparse coding to map
the original input data to a new sparse code space, instead of using multiple
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kernel learning. Moreover, our method also learns a new predictor in the new
space to optimize the multivariate performance measure. Sparse coding is an
important and popular data representation method, and it represent a given
data point by reconstructing it with regard to a dictionary [24, 25, 26, 27, 28].
The reconstruction coefficients are imposed to be sparse, and used as a new
representation of the data point. Sparse coding has been used widely in both
machine learning and computer vision communities for pattern classification
problems. For example, Mairal et al. [29] proposed to learn the sparse codes
and a classifier jointly on a training set. However, the loss function used
in this method is a traditional logistic loss. In this paper, we ask the fol-
lowing question: How can we learn the sparse codes and its corresponding
class prediction function to optimize a multivariate performance measure?
To answer this question, we propose a novel multivariate performance op-
timization method. In this method, we try to learn sparse codes from the
tuple of training data points, and apply a linear function to match the sparse
code tuple against a candidate class label. Based on the linear function, we
design a hyper-predictor to predict the optimal class label tuple. Moreover,
to the loss function of the desired multivariate performance measure is used
to compare the prediction of the hyper-predictor and the true class label tu-
ple, and minimized to optimize the multivariate performance measure. The
contributions of this paper are of two folds:

1. We proposed a joint model of sparse coding and multivariate perfor-
mance measure optimization. We learn both the sparse codes and the
hyper-predictor to optimize the desired multivariate performance mea-
sure. The input of the hyper-prediction function is the tuple of the
sparse codes, and the output is a class label tuple, which is further
compared the to the true class label tuple by a multivariate perfor-
mance measure. A joint optimization problem is constructed for this
problem. In the objective function of the optimization problem, both
the reconstruction error and the sparsity of the sparse code are consid-
ered. Simultaneously, the multivariate loss function of the multivariate
performance function is also included in the objective. The multivari-
ate loss function may be very complex, and even does not have a close
form, thus it is difficult to optimize it directly. We seek its upper bound,
and approximate is as a linear function of the hyper-predictor function.

2. We proposed a novel iterative algorithm to optimize the proposed prob-
lem. We adapt the alternate optimization strategy, and optimize the
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sparse code, dictionary and the hyper-predictor function alternately in
an iterative algorithm. Both sparse codes and hyper-predictor param-
eters are learned by gradient descent methods, and the dictionary is
learned by Lagrange multiplier method.

1.3. Paper organization

This paper is organized as follows. In section 2, we introduce the proposed
multivariate performance measure optimization method. In section 3, the
proposed method is evaluated experimentally and compared to state-of-the-
art multivariate performance measure optimization methods. In section 4,
the paper is concluded with future works.

2. Proposed method

In this section, we introduce the proposed method. We first model the
problem with an optimization problem, then solve it with an iterative op-
timization strategy, and finally develop an iterative algorithm based on the
optimization results.

2.1. Problem formulation

Suppose we have a tuple of n training data points, x = (x1, · · · ,xn),
and its corresponding class label tuple is denoted as y = (y1, · · · , yn), where
xi ∈ R

d is the d-dimensional feature vector of the i-th training data point, and
yi ∈ {+1,−1} is the binary label of the i-th training data point. We can use
a machine learning method to predict the class label tuple, y∗ = (y∗1, · · · , y

∗
n),

where y∗i is the predicted class label of the i-th data point. A multivariate
performance measure, ∆(y, y∗), is defined to compare a predicted class label
tuple y∗ of a data point tuple against its true class label tuple y. To learn
a hyper-predictor to map a data point tuple x to a optimal class label tuple
y∗, we should learn it to minimize a desired pre-defined multivariate perfor-
mance measure, ∆(y, y∗). The proposed learning framework is shown in the
flowchart in Fig. 1.

We propose to present the data points to their sparse codes by sparse
coding method, and then use a linear hyper-predictor to predict the class
label tuple. We consider the follow problems in the learning procedure,

• Sparse coding of data tuple: To represent the data points in the
data tuple, we propose to reconstruct each data point in the data tuple
by using a dictionary,
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Figure 1: Flowchart of the proposed learning framework.

xi ≈

m
∑

j=1

sijdj = Dsi, i = 1, · · · , n, (1)

where dj ∈ R
d is the j-th dictionary element of the dictionary, and

D = [d1, · · · ,dm] is the dictionary matrix with its j-th column as the j-
th dictionary element, and m is the number of the dictionary elements.
sij is the coefficient of the j-th dictionary element for the reconstruction
of the i-th data point, and si = [si1, · · · , sim]

⊤ ∈ R
m is the coefficient

vector for the reconstruction of the i-th data point. We assume that
for each data point, only a few dictionary elements are used, thus its
coefficient should be sparse, and we also call it sparse code of the data
point. To learn the dictionary and the sparse codes of the data tuple,
we propose to minimize the reconstruction error and encourage the
sparsity of the sparse codes, and the following optimization problem is
obtained over the data tuple,

min
D,si|ni=1

n
∑

i=1

(

‖xi −Dsi‖
2

2 + C1‖si‖1
)

,

s.t. ‖dj‖
2
2 ≤ c, ∀ j = 1, · · · , m.

(2)

In the objective function, the first part of each term is the reconstruc-
tion error measured by squared ℓ2 norm, and the second part is the
sparsity measured by the ℓ1 norm of si. C1 is a tradeoff parameter to
control the sparsity of si. If we have a larger value of C1, the learned
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si will be more sparse. The optimal value of this parameter can be
selected by linear search or cross validation.

• Learning of hyper-predictor: We apply a linear function, f(s, y′),
to compare the tuple of sparse codes of the data tuple, s = (s1, · · · , sn),
against a candidate class tuple, y′ = (y′1, · · · , y

′
n),

f(s, y′) =

n
∑

i=1

y′iw
⊤si, (3)

where w ∈ R
m is the parameter vector of the function. Then we the

candidate class label tuple y′ which archives the largest response of
f(s, y′) will be output as the optimal class label tuple,

y∗ = argmax
y′∈Y

f(s, y′) (4)

where Y = {+1,−1}n is the hyper-space of the candidate class label
tuple. To learn the linear function parameter vector w for the hyper-
predictor and the sparse codes, we propose to learn it by minimiz-
ing a loss function of a pre-defined multivariate performance measure,
∆(y∗, y). To reduce the complexity of the linear function, we also pro-
pose to minimize the squared ℓ2 norm of the linear function parameter
w. Thus we propose the following optimization problem to learn w,

min
w,si|ni=1

{

C2

2
‖w‖22 + C3∆(y∗, y)

}

, (5)

where C2 and C3 are other tradeoff parameters. C2 is the weight of the
model complexity penalty term, and a larger C2 can leads to a simpler
model. C3 is the weight of the loss functions over the training data
points, and a larger value of C3 can lead the model to fit the training
set better. The values of C2 and C3 can be selected by linear search
of cross validation. Direct minimization of ∆(y∗, y) is difficult, thus
we seek its upper bound and minimize its upper bound to optimize
∆(y∗, y).

Theorem 1 The upper bound of ∆(y∗, y) can be obtained as follows,
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1
∑

y′′:y′′∈Y τy′′

∑

y′′:y′′∈Y

τy′′F (y′′) ≥ ∆(y∗, y), (6)

where

F (y′′) =

n
∑

i=1

(y′′i − yi)w
⊤si +∆(y′′, y), (7)

and

τy′′ =

{

1, if F (y′′) ≥ F (y′′′), ∀ y′′′ ∈ Y
0, otherwise.

(8)

Proof According to (4), since y∗ achieves a maximum f(s, y′), we have

f(s, y∗) ≥ f(s, y)

⇒ f(s, y∗)− f(s, y) ≥ 0

⇒ f(s, y∗)− f(s, y) + ∆(y∗, y) ≥ ∆(y∗, y).

(9)

Substituting (3) to the left hand of (9), and according to the
definition of function F (y′′) in (7), we have

f(s, y∗)− f(s, y) + ∆(y∗, y)

=
n
∑

i=1

y∗iw
⊤si −

n
∑

i=1

yiw
⊤si +∆(y∗, y)

=

n
∑

i=1

(y∗i − yi)w
⊤si +∆(y∗, y)

= F (y∗).

(10)

Thus (9) can be rewritten as

F (y∗) ≥ ∆(y∗, y). (11)

To find the upper bound of F (y∗), we scan all the candidate class
label tuples y′′ ∈ Y , and seek the one or more candidates which
can achieve the maximum F (y′′), and we can see the maximum
F (y′′) is a upper bound of F (y∗),
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max
y′′∈Y

F (y′′) ≥ F (y∗) (12)

Moreover, we also define a indicator τy′′ for each y′′ to indicate if
y′′ achieves the maximum F (y′′), as in (8). In this way, we can
rewrite the left hand of (12) as follows,

max
y′′∈Y

F (y′′) =
1

∑

y′′:y′′∈Y τy′′

∑

y′′:y′′∈Y

τy′′F (y′′). (13)

Thus we have

1
∑

y′′:y′′∈Y τy′′

∑

y′′:y′′∈Y

τy′′F (y′′) = max
y′′∈Y

F (y′′) ≥ F (y∗) ≥ ∆(y∗, y).

(14)

Instead of minimizing ∆(y∗, y), we minimize its upper bound in (6),
and (5) is turned out to

min
w,si|ni=1







C2

2
‖w‖22 +

C3
∑

y′′:y′′∈Y τy′′

∑

y′′:y′′∈Y

τy′′F (y′′)

=
C2

2
‖w‖22 +

C3
∑

y′′:y′′∈Y τy′′

∑

y′′:y′′∈Y

τy′′

(

n
∑

i=1

(y′′i − yi)w
⊤si +∆(y′′, y)

)







.

(15)

The overall optimization problem is obtained by combining both problems
in (2) and (15),

min
D,si|ni=1

,w







n
∑

i=1

(

‖xi −Dsi‖
2

2 + C1‖si‖1
)

+
C2

2
‖w‖22 +

C3
∑

y′′:y′′∈Y τy′′

∑

y′′:y′′∈Y

τy′′

(

n
∑

i=1

(y′′i − yi)w
⊤si +∆(y′′, y)

)







.

s.t. ‖dj‖
2
2 ≤ c, ∀ j = 1, · · · , m.

(16)
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Figure 2: Flowchart of the alternate optimization strategy.

In this problem, we learn the dictionary, sparse codes, and the hyper-predictor
parameter jointly.

2.2. Problem optimization

To optimize the problem in (16), we use the alternate optimization strat-
egy. In an iterative algorithm, the variables are updated in turn. When the
sparse codes are optimized, the linear function parameter and the dictionary
are fixed. When the linear function parameter is optimized, the sparse codes
and the dictionary are fixed. When the dictionary is optimized, the sparse
codes and the linear function parameter is fixed. This strategy is shown in a
flowchart in Fig. 2.

2.2.1. Optimization of sparse codes

When we try to optimize the sparse codes, we fix the dictionary and the
linear function parameter, and optimize the sparse codes one by one, i.e.,
when one sparse code si is considered, other sparse codes si′ |i′ 6=i are fixed.
Thus we turn the problem in (16) to the following optimization problem by
only considering si, and removing terms irrelevant to si,

min
si







‖xi −Dsi‖
2

2 + C1‖si‖1

+
C3

∑

y′′:y′′∈Y τy′′

∑

y′′:y′′∈Y

τy′′(y
′′
i − yi)w

⊤si







.

(17)
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We rewrite the sparsity term in (17), ‖si‖1, as follows,

‖si‖1 =

m
∑

j=1

|sij| =

m
∑

j=1

s2ij

|sij|
= s⊤i diag

(

1

|si1|
, · · · ,

1

|sim|

)

si, (18)

where diag
(

1

|si1|
, · · · , 1

|sim|

)

is a diagonal matrix with its j-th diagonal ele-

ment as 1

|sij |
. To make the objective function a smooth function, we fix the

sparse code elements in the diagonal matrix as the elements of the previous
iteration. Moreover, we note that τy′′ is also a function of si as shown in (8).
We also first calculate by using sparse codes solved in the previous iteration,
and then fix it when we consider si in the current iteration. In this way, (17)
is changed to

min
si







g(si) = ‖xi −Dsi‖
2

2 + C1s
⊤
i diag

(

1

|sprei1 |
, · · · ,

1

|spreim |

)

si

+
C3

∑

y′′:y′′∈Y τ
pre

y′′

∑

y′′:y′′∈Y

τ
pre

y′′
(y′′i − yi)w

⊤si







,

(19)

where s
pre
ij is the j-th element of si solved in previous iteration, and τ

pre

y′′
is

τy′′ calculated using previous solved si and w. To seek its minimization, we
update si by descending it to its gradient of the object g(si),

scuri ← s
pre
i − η∇g(si)|si=s

pre
i

, (20)

where scuri is the sparse code updated in current iteration, sprei is the sparse
code solved in previous iteration, η is the descent step, and ∇g(si) is the
gradient of g(si), which is defined as

∇g(si) = 2D⊤ (xi −Dsi) + 2C1diag

(

1

|sprei1 |
, · · · ,

1

|spreim |

)

si

+
C3

∑

y′′:y′′∈Y τy′′

∑

y′′:y′′∈Y

τy′′(y
′′
i − yi)w.

(21)
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2.2.2. Optimization of linear function parameter

By only considering w in (16), fixing sparse codes, dictionary, and τy′′ as
results of previous iteration, and removing the terms irrelevant to w, we turn
(16) to

min
w







h(w) =
C2

2
‖w‖22 +

C3
∑

y′′:y′′∈Y τ
pre

y′′

∑

y′′:y′′∈Y

τ
pre

y′′

(

n
∑

i=1

(y′′i − yi)w
⊤si +∆(y′′, y)

)







.

(22)
To minimize this objective function, we update w by descending it to the
gradient of h(w),

wcur ← wpre − η∇h(w)|w=w
pre , (23)

where ∇h(w) is the gradient of h(w), which is defined as

∇h(w) = C2w+
C3

∑

y′′:y′′∈Y τ
pre

y′′

∑

y′′:y′′∈Y

τ
pre

y′′

n
∑

i=1

(y′′i − yi)si (24)

2.2.3. Optimization of dictionary

To optimize the dictionary matrix D, we remove the terms irrelevant
to D from the objective, fix the other variables, and obtain the following
optimization problem,

min
D

n
∑

i=1

‖xi −Dsi‖
2

2 ,

s.t. ‖dj‖
2
2 ≤ c, ∀ j = 1, · · · , m.

(25)

The dual optimization problem for this problem is
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max
αj |mj=1

min
D

{

L(D,αj|
m
j=1) =

n
∑

i=1

‖xi −Dsi‖
2

2 +
m
∑

j=1

αj

(

‖dj‖
2
2 − c

)

=

n
∑

i=1

‖xi −Dsi‖
2

2 +

m
∑

j=1

αj‖dj‖
2
2 −

m
∑

j=1

αjc ,

=

n
∑

i=1

‖xi −Dsi‖
2

2 + Tr
(

Ddiag(α1, · · · , αm)D
⊤
)

−

m
∑

j=1

αjc

}

,

s.t. αj ≥ 0, j = 1, · · · , m,

(26)

where αj is the Lagrange multiplier for the constrain ‖dj‖
2
2 ≤ c, diag(α1, · · · , αm)

is a diagonal matrix with ist diagonal elements as α1, · · · , αm, and L(D,αj|
m
j=1)

is the Lagrange function. To minimize the Lagrange function with regard to
D, we set its gradient with regard to D to zero, and we have

∇LD = −2
n
∑

i=1

(xi −Dsi) s
⊤
i + 2Ddiag(α1, · · · , αm) = 0,

⇒ D =

(

n
∑

i=1

xis
⊤
i

)(

n
∑

i=1

sis
⊤
i + diag(α1, · · · , αm)

)−1 (27)

To solve the Lagrange multiplier variables, we use the gradient ascent algo-
rithm to obtain α1, · · · , αm in each iteration. After we obtain α1, · · · , αm,
we can obtain D according to (27).

2.3. Iterative algorithm

Based on the optimization results, we develop a novel iterative algorithm,
named JSCHP. The algorithm is described in Algorithm 1. As we can see
from the algorithm, the iterations are repeated T times, and in each itera-
tion, the variables are updated sequentially. The flowchart of the proposed
iterative algorithm is given in Fig. 3.

The novelty of this algorithm is of three folds:

1. This algorithm is the first algorithm to learn the sparse codes, dictio-
nary and hyper-predictor jointly.

2. This algorithm is the first algorithm to use gradient descent principle
to update the hyper-predictor parameters. Traditional hyper-predictor

13



Figure 3: The flowchart of the iterative algorithm of JSCHP.

parameter learning method for multivariate performance optimization
is based on solving a quadratic programming problem in each itera-
tion, which is time-consuming. Our algorithm gives up the quadratic
programming problem, and instead, we used a simple gradient descent
rule to update the parameters efficiently.

3. This algorithm is also the first algorithm to solve the sparse codes

14



using the gradient descent rule. Traditional sparse coding algorithm
solve the sparse codes by optimizing a ℓ2 norm regularized problem
directly, which is not convex and time-consuming. We convert the ℓ1
norm regularization to a ℓ2 norm regularization, which can be easily
solved by gradient descent because it is convex.

Please note that the input of the iterative algorithm requires the param-
eters C1, C2 and C3. C1 is the weight of the sparsity term of the sparse code,
C2 is the weight of the model complexity term, and C3 is the weight of the
losses over the training set.

3. Experiments

In this experiment, we evaluate the proposed algorithm and compare it
against state-of-the-art multivariate performance optimization methods.

3.1. Data sets

In the experiment, we used the following three data sets.

• VANET misbehavior data set: The first data set is for the problem
of detecting misbehaving network nodes of Vehicular Ad Hoc Networks
(VANETs) [30]. To construct this data set, we used NCTUns-5.0 sim-
ulator to conduct simulations, and collected data of 1395 nodes. These
nodes belong to two different classes, which are honest nodes and mis-
behaving nodes. The number of honest nodes is 837, and the number
of the misbehaving nodes is 558. Given a candidate nodes, the problem
of misbehavior detection is to predict if is a honest node, or a misbe-
having node. Thus this is a binary classification problem. To extract
the features from each node, we calculate multifarious features, includ-
ing speed-deviation of node, received signal strength (RSS), number of
packets delivered, dropped packets etc.

• Profile injection attacks data set: The second data set is for
the problem of detecting profile injection attacks in collaborative rec-
ommender systems [31]. It is well known that collaborative recom-
mender systems is vulnerable to profile injection attacks. Injection
attacks is defined as malicious users inserting fake profiles into the rat-
ing database, and biasing the systems’ output. To construct the data
set, we randomly select 1000 genuine user profiles from Movielens 1M
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dataset as positive data points, and randomly generate 300 attacking
fake user profiles as negative data points. The problem of profile injec-
tion attacks detection is to classify a candidate user profile to genuine
user or fake user. To extract features from each user profile, we first
calculate its rating series based on the novelty and popularity of items,
and then use the empirical mode decomposition (EMD) to decompose
its rating series, and finally extract Hilbert spectrum based features.

• UT-kinect 3D action data set: The third data set if for the problem
of recognizing human actions from 3D body data. In this data set,
there are 200 3D body data samples, and each 3D body data samples
is treated as a data point. These data points belong to 10 different
action classes. The number of data points for each class is 20. The 10
classes are listed as follows: walk, sit down, stand up, pickup, carry,
throw, push, pull, wave and clap hands [32]. To extract features from
each data point, we calculate the histogram of the 3D joints of each
data point.

3.2. Experiment setup

To perform the experiments, we used the 10-fold cross validation. A data
set is split to 10 folds randomly. Each fold was used as a test set in turn. The
remaining 9 folds were combined and used as a training set. Given a desired
multivariate performance measure, we performed the proposed algorithm on
the training set to learn the dictionary and the classifier parameter. Then we
used the learned dictionary and the classifier to classify the test data points.
Finally, we compared the classification results of the test data points against
the true class labels using the given multivariate performance measure.

The following multivariate performance measures were used.

• F1 score: The first multivariate performance measure is the F1 score,
and it is defined as

F1score

=
2×Number of correctly classified positive data points
(

2×Number of correctly classified positive data points

+Number of wrongly classified data points

) .

(31)
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• PRBEP: The third multivariate performance measure is PRBEP, precision-
recall curve eleven point. It is defined as a point where precision and
recall values are equal to each other. The precision-recall curve is ob-
tained by plotting precisions against recalls. Precision and recall are
defined as,

precision =
Number of correctly classified positive data points

Nnumber of data points classified as positive
,

recall =
Number of correctly classified positive data points

Total number of positive test data points
.

(32)
We can generate different groups of precisions and recalls, and plot
precisions against corresponding recalls to obtain the precision-recall
curve. The point in the curve where precision is equal to the recall is
defined as PRBEP.

• AUC: The second multivariate performance measure is the AUC, area
under operating characteristic curve. Operating characteristic curve is
defined as a curve obtained by plotting true positive rate against false
positive rate. True positive rate and false positive rate are defined as
follows,

true positive rate =

Number of correctly classified positive data points

Total number of positive test data points
,

false positive rate =

Number of wrongly classified negative data points

Total number of negative test data points
.

(33)

By changing a threshold parameter of the classifier, we can have dif-
ferent groups of true positive rates and false positive rates. Plotting
true positive rates against its corresponding false positive rates, the
operating characteristic curve can be obtained.

3.3. Experiment results

3.3.1. Comparison to state-of-the-arts

In this experiment, we first compared the proposed algorithm JSCHP
to some state-of-the-art machine learning algorithms for multivariate perfor-
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Figure 4: Results of comparison to state-of-the-arts on VANET misbehavior data set.

mance optimization, including the cutting-plane subspace pursuit (CPSP)
[10], multivariate performance measure smoothing (MPMS) [13], feature se-
lection based multivariate performance measure optimization (FSMPM) [14],
and classifier adaptation based multivariate performance measure optimiza-
tion (CAMPM) [21]. The boxplots of different performances measures of
the 10-fold cross validation over different data sets are given in Fig. 4, 5
and 6. From these figures, we can see that the proposed algorithm JSCHP
outperforms the compared algorithms in most cases. For example, in the
experiments over VANET misbehavior data set, when PRBEP performance
is considered, only JSCHP algorithm achieves a median value higher than
0.6, while the media values of all other algorithms are lower than 0.6. More-
over, in the experiments over UT-kinect 3D action data set, we can see that
the median value of the F1 scores of JSCHP is even higher than the 75-th
percentile values of other algorithms. These are strong evidences that the
proposed algorithm is more effective than the compared algorithms for the
problem of optimizing multivariate performance measures. It is also inter-
esting to see that AUC seems a easier multivariate performance measure to
optimized than F1 score and PRBEP. In all the experiments over three data
sets, the observed AUC values are higher then corresponding F1 scores and
PRBEP values. The results of CAMPM, FSMPM and MPMS are compara-
ble to each other, and better than CPSP.
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Figure 5: Results of comparison to state-of-the-arts on profile injection attacks data set.
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3.3.2. Parameter sensitivity

We are also interested in the sensitivity of the proposed algorithm against
three tradeoff parameters C1, C2 and C3. Thus we varied the tradeoff pa-
rameters C1, C2 and C3 contemporaneously to compute the sensitivity of the
algorithm to the parameters. The average F1 score of the proposed algorithm
of combinations of different values of these parameters are given in Fig. 7.
From Fig. 7(a) and Fig. 7(b), we can see that when C1 is increasing, the
performances are also being improved. C1 is the weight of the sparsity term
of the sparse code, and from the experiment results, we can conclude that
when we have a larger sparsity penalty, the performance can be better. This
means that a sparse representation is important for learning hyper-predictor
to optimize multivariate performance measures. It is well known that sparse
representation can benefit the learning of a good classifier using common and
simple performance measures. However, it is still unknown if such sparse
representation can also benefit the learning of hyper-predictor for complex
multivariate performance measure optimization. Our experiments answer
this question, and we find that the sparsity of the presentation is also impor-
tant for the optimization of complex multivariate performance measures, just
like it works for the simple performance measure optimization. From Fig.
7(a) and Fig. 7(c), we can see that the improvement of the performances
against the C2 parameter is not clear. However, the performance is stable
for different parameters. This parameter is the weight for the complexity of
the hyper-predictor parameter. From the results, we cannot conclude that a
simpler predictor can optimize the multivariate performance measure better
than a complex predictor. From Fig. 7(b) and Fig. 7(c), we can see that a
larger C3 can also improve the performance. This is because C3 is the weight
of the upper bound of the corresponding loss function. A larger C3 can lead
to a better solution for the minimization of the loss function, and thus leads
to a better performance measure.

3.3.3. Running time

We are also interested in the running time of the proposed algorithm
and the compared algorithms. The boxplots of running time of different
algorithms of the 10-fold cross validation over UT-kinect 3D action data set
is given in Fig. 8. It is obvious that the proposed algorithm has shorter
running time than the other algorithms. A possible reason is that the other
algorithms are based on cutting-plane algorithm. In this algorithm, in each
iteration, a active set is maintained, and a quadratic programming algorithm
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Figure 7: Parameter sensitivity curves of F1 scores over UT-kinect 3D action data set.
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Figure 8: Boxplots of running time of 10-fold cross validation over UT-kinect 3D action
data set.

is solved over this active set. The solving of the quadratic algorithm is
time consuming. Moreover, to update the active set, we need to seek a
maximization over all possible class label tuples. However, in our algorithm,
we only seek a maximization in the class label tuple space to approximate the
upper bound, and no quadratic programming problem is considered, while
only a gradient descent updating procedure is conducted.

4. Conclusion and future works

In this paper, we proposed a novel method for the problem of multi-
variate performance measure optimization. This method is based on joint
learning of sparse codes of data point tuple and a hyper-predictor to predict
the class label tuple. In this way, the sparse code learning is guided by the
minimization of the multivariate loss function corresponding to the desired
multivariate performance measure. Moreover, we also proposed a novel up-
per bound approximation of the multivariate loss function. We model the
learning problem as an minimization problem and solve it by developing a it-
erative algorithm based on gradient descent method. The proposed algorithm
is compared to state-of-the-art multivariate performance measure optimiza-
tion algorithms, and the results show its advantage. In the future, we will
consider extend the proposed framework to structured label prediction prob-
lem, since it is similar to multivariate performance measure optimization. In

22



the future, we will also use the proposed algorithm for the application of
computer vision [33, 34].
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Algorithm 1 Iterative learning algorithm of joint learning of sparse code
and hyper-predictor parameter for multivariate performance measure opti-
mization (JSCHP).

Input: A training tuple of n data points x = (x1, · · · ,xn), and its corre-
sponding class label tuple y = (y1, · · · , yn);
Input: Tradeoff parameters C1, C2, C3.
Input: Maximum iteration number T ;
Initialize s0i |

n
i=1, w

0 and αj|
m
j=1;

for t = 1, · · · , T do

Update Dt by the updating rule in (27) and fixing st−1
i |

n
i=1 and αt−1

j |
m
j=1,

Dt =

(

n
∑

i=1

xis
t−1
i

⊤

)(

n
∑

i=1

st−1
i st−1

i

⊤
+ diag(αt−1

1 , · · · , αt−1
m )

)−1

(28)

for i = 1, · · · , n do

Update sti by the updating rule in (20) and fixing st−1
i and Dt,

sti =st−1
i − η

(

2Dt⊤
(

xi −Dtsi
)

+ 2C1diag

(

1

|st−1
i1 |

, · · · ,
1

|st−1
im |

)

st−1
i

+
C3

∑

y′′:y′′∈Y τy′′

∑

y′′:y′′∈Y

τy′′(y
′′
i − yi)w

t−1.





(29)
end for

Update wt by the updating rule in (23) and fixing wt−1,

wt = wt−1 − η



C2w
t−1 +

C3
∑

y′′:y′′∈Y τy′′

∑

y′′:y′′∈Y

τy′′

n
∑

i=1

(y′′i − yi)s
t
i





(30)
Upate αt

j|
m
j=1 by fixing sti|

n
i=1 and using gradient ascent;

end for

Output: The sparse codes sTi |
n
i=1, dictionary matrix DT , and hyper-

predictor parameter wT .
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