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Delay-Distribution-Dependent/ ., State Estimation
for Delayed Neural Networks withe, v)-Dependent
Noises and Fading Channels

Li Sheng, Zidong Wang“*, Engang Tiafh and Fuad E. Alsaadi

Abstract

This paper deals with thH ., state estimation problem for a class of discrete-time ne@tavorks with stochastic
delays subject to state- and disturbance-dependent n@isescalled(z, v)-dependent noises) and fading channels.
The time-varying stochastic delay takes values on certd@rvals with known probability distributions. The system
measurement is transmitted through fading channels desthy the Rice fading model. The aim of the addressed
problem is to design a state estimator such that the esimagrformance is guaranteed in the mean-square sense
against admissible stochastic time-delays, stochasigea@s well as stochastic fading signals. By employing the
stochastic analysis approach combined with the Kroneckadyzt, several delay-distribution-dependent condgion
are derived to ensure that the error dynamics of the neumessts stochastically stable with prescribAd,
performance. Finally, a numerical example is provided lissifate the effectiveness of the obtained results.

Index Terms

Delayed neural networkdi,, state estimation, delay-distribution-dependent coodjtrandom delay(x, v)-
dependent noises, fading channels.

. INTRODUCTION

The past few decades have withessed the successful apigaf recurrent neural networks (RNNs) in many
areas including image processing [40], pattern recognjBf combinatorial optimization [24], associative melesr
[32] and signal processing [35]. In general, these apjdinatare heavily dependent on 1) the dynamic behaviors
(e.g. stability and synchronization) of the RNNs; and 2) thee states of the neurons in a noisy environment.
Therefore, the analysis issues of neural networks suchrehsynization, stability and state estimation have attdc
considerable attention, and a rich body of results have begorted in the literature [20], [39].

It is well known that the time-delay, which is inevitable thg signal transmission between the neurons and in
the implementation of neural networks, is one of the impudrsources which may cause instability and oscillation
of the networks. As such, it is of great significance to inigede the mathematical properties of delayed neural
networks, and much effort has been devoted to various typéisne-delays (continuous, discrete, distributed or
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mixed), see [17], [21], [23], [30], [31], [34], [37], [39]. &lertheless, an important class of time-delays, namely,
probabilistic delays, have not gained sufficient attentiothe context of dynamics analysis for RNNs. Probabilistic
delays occur frequently in practice, for example, by usimg s$tatistical method, it has been found in [31] that a
large delay occurs with a low probability in networked cohtsystems. The time delay in neural networks may
randomly appear as well due to synaptic voltage and tempurige associated with transmitter release. In [39],
the Bernoulli variable has been introduced to charactahieerandom delay and several less conservative stability
conditions have been derived for delayed neural networksem@ploying the information of both the probability
distribution and the variation range of the time delay, tkpamential H, filtering problem has been addressed in
[23] for switched neural networks with random delays.

Due to random fluctuations from the release of neurotramsrsias well as thermal noises in the electronic
equipments, various stochastic perturbations are unabit@dwith both biological and artificial neural networks.
Up to now, most literature has focused on the stochasticahewatworks withstate-dependent noisemly for
the purpose of simplicity [1], [17]. As pointed out in [9], honly system states but also external disturbances
may be corrupted by stochastic noises in the engineeringfipea By means of Hamilton-Jacobi inequalities, the
stochasticH,, control problem has been studied in [18] for nonlinear Mai&o jump systems with state- and
disturbance-dependent noisé¢s, ()-dependent noises for short). For the stochalti¢ H,, control problem, it has
been revealed in [29] that there exist essential differef@tween the system with state-dependent noises and that
with (z,v)-dependent noises. Note th@at, v)-dependent noises are typical phenomena for RNNs becaube 1)
neurotransmitter-induced noises are naturally neuratestependent; 2) the thermal noises are usually external-
disturbance-dependent; and 3) both kinds of noises tendctarcsimultaneously in practice. Nevertheless, the
dynamics analysis issue for neural networks w(thv)-dependent noises has not been addressed and remains
open.

In reality, the information of the neuron states of RNNs isiatal for some specific applications such as
associative memories, optimization and state feedbackalotnfortunately, such information may not be fully
accessible because of the complexity of neural networks il necessary to estimate the neuron states via
available measurements. As such, the problem of stateastimfor neural networks has stirred particular research
interest and a wealth of literature has appeared [14], [[38], [38], [42]. By constructing a new Lyapunov-
Krasovskii functional, the delay-distribution-depentistate estimator has been designed in [1] for discrete-time
neural networks with time-varying delays. In [16], the Akdsgpe state estimator, which is more general than the
widely used Luenberger-type one, has been designed fortéltie seural networks with time delays. Recalling
these existing methods, there has been a common assummionodmmunication channel is ideal such that the
measurements of neural networks can be transmitted to timag¢sr in aninstantaneous waysuch an assumption
is, however, not always true when the RNNs and the estimagoc@nnected via unreliable channels (i.e., wireless
connection) in the case of hardware implementation. As stichakes practical sense to study the state estimation
problem for neural networks in a networked environment.

Recently, there have been some results on state estimatiblems of neural networks against network-induced
phenomena such as communication delays [17], missing mexasuts [20], quantization effects [42], and event-
triggered strategy [34]. However, another network-indupbenomenon, i.e., fading channel, has gained relatively
less attention in the context of state estimator designitiesp practical significance in wireless communication
networks. Generally, when signals are transmitted throwgkless channels, they are often subject to several
phenomena such as scattering and reflection due probablpamowing effects from obstacles, the multipath
propagation and the path loss. Therefore, the channelgaalienomenon is unavoidable in wireless networks and
it could deteriorate the performance of networked systdnmot handled properly [10], [26]. In order to reflect
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the changes of the transmitted signals in both the ampliamtk the phase, fading can be modeled by a time-
varying stochastic mathematical model such as Rice fadiagmel model [10] and Rayleigh fading channel model
[28]. So far, some initial results have been reported forpghmblems of stabilization [10]H . filtering [6], H
control [4] and Kalman filtering [25] with fading channelsedertheless, to the best of the authors’ knowledge, the
state estimation problem for delayed neural networks vétlirfg channels has not been adequately studied, not to
mention the case when th{e, v)-dependent noises are also a concern.

Motivated by the above discussions, we aim to investigage HR, state estimation problem for a class of
delayed stochastic neural networkhe main contributions of this paper can be summarized dewsl 1) The
neural network addressed is comprehensive to cover randdaysl and(z, v)-dependent noises, which may reflect
the reality more closely. 2) This paper represents the fiffew attempts to study the problem of state estimation
for neural networks with fading channels. 3) Based on thetststic analysis approach and the Kronecker product,
several delay-distribution-dependent conditions areivdst under which the dynamics of the estimation error is
stochastically stable with the prespecifi&d,, constraint.

The rest of this paper is organized as follows. In Sectiorthié neural networks with random delays;, v)-
dependent noises and fading channels are introduced anel g@timinaries are briefly outlined. In Section I,
the H,, state estimation problem is investigated by applying tlelsstic analysis approach and the Kronecker
product, and the estimator gains are obtained by solvingeati matrix inequality (LMI). A numerical example is
provided to show the effectiveness of the main results irti@edV. Finally, conclusions are drawn in Section V.

Notations. Throughout this papef} (respectivelyNT) is the set of all real numbers (respectively, non-negative
integers).R" is the set of all reah-dimensional vectors an@™*" is the set of allm x n real matricesA > 0
(respectively,A > 0) is a real symmetric positive definite (respectively, gesisemi-definite) matrixA” denotes
the transpose of a matriX. [a : b] is a set involving all integers betweenandb. CKC denotes the class of all
continuous non-decreasing convex functipnsR™ — R* such thatu(0) = 0 and u(r) > 0 for » > 0. C™(R")
denotes the class of functioR§z) that ism times continuously differentiable with respectite= R™. E{z} stands
for the mathematical expectation of diag{- - - } is a block-diagonal matrix. The symbel denotes the Kronecker
product. The asterisk in a matrix is used to denote the term that is induced by symymilatrices, if they are
not explicitly specified, are assumed to have compatibleedsions.

I[I. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we introduce some preliminaries relateddtg state estimation for neural networks and then
give the problem formulation.

A. Neural Networks witl{z, v)-dependent noises
Consider the following discrete-time neural network witlné-varying delays andz, v)-dependent noises:
z(k+1) =Ax(k) + Wi f(z(k)) + Wag(z(k — d(k))) + Cv(k) + [Az(k) + Bz(k — d(k)) + Cv(k)]w(k),
y(k) =Dx(k) + Ev(k),
(k) =Fx(k),
z(j) =¢(j), —dm <j<0

wherez (k) = [z1(k), z2(k), ...,z (k)]T € R" is the state vector associated withneuronsy (k) € R™ is the
measurement output(k) € R": is the neural signal to be estimated angk) is a one-dimensional zero-mean Gaus-
sian white noise sequence on a probability sp@eer, Prob) with E{w?(k)} = 1. Let (0, F, {Fi }ren+, Prob)
be a filtered probability space whefeé ;. }ren+ is the family of subo-algebras ofF generated by{w(k)}ren+ -

1)
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v(k) € R™ is the disturbance input which belongsitg[0, o), R™), wherels([0, c0), R™) is the space of nonan-
ticipatory square-summable stochastic procgss) € R™ }ren+ With respect to{ Fy }ren+. d(k) € [dm @ du]
(dy > dyy, > 0) is the time-varyingandomdelay. ¢(j), —das < j < 0 is the initial condition which is assumed
to be independent of the procegs(-)}. A = diag{as,as,...,a,} with |a;| < 1 describes the rate with which the
i-th neuron will reset its potential to the resting state mlagon when disconnected from the networks and external
inputs. W; and W, are the connection weight matrix and the delayed conneeti®ight matrix, respectivelyC,
A, B, C, D, E and F are known real constant matrices with appropriate dimessio

The neuron activation functiong(z(k)) = [fi(z1(k)), fa(z2(k)), ..., falzn(E)]T, glx(k)) = [g1(z1(k)),
Ga(w2(k)), ..., gnlx, (k)T are continuous, and satisf§(0) = 0, §(0) = 0 and the following sector-bounded
condition:

[f(z) = Fy) = @z = )] [f(2) = Fly) = Vs(z —y)] <O,

[g(2) = g(y) — Py(z — )] [G(x) — Gy) — Vy(z — )] <O
for all z,y € R", where®,, ¥, ®, andV, are real matrices with appropriate dimensions.

The system (1) is described by a discrete-time stochadtereinice equation (SDE). Since the difference equation

is a recursive relation, the solution to the SDE is obtairtedatively by beginning with any initial condition.
According to Theorem 2.2 of [41], a solution of such kind addtastic difference equation exists if the diffusion
and drift terms are measurable. Since the neuron activéinetions in (1) are assumed to be continuous, both the
diffusion and drift terms are therefore continuous. Basedtr. 11.14 of [27], a continuous function is measurable,
and we can conclude that the solution of (1) exists with aitjaincondition.

)

B. Random Delay

In the system (1), it is assumed that the random delgy is bounded and its probability distribution can be
observed. For a given numbar < L%j where|- | means the rounding down function, suppose tl{a) takes
values in[d} : dM], or [d5* : d1], or..., or [dR : dM] with d,, < d' < dM < dp <d)f <. < df <d¥ <dy,
and

Prob{d(k) € [} : dM]} = a1, Prob{d(k) € [d5 : d}!]} = aa, ..., Prob{d(k) e [d% :dM]} =an, (3)
where0 < a; <1,i=1,2,...,N and ZiNzl a; = 1. In order to describe the probability distribution of the &m
delay, we define the following sets

Dy = {kld(k) € [d&" : 4]}, Do = {kld(k) € [d5" : d3"]}, ..., Dy = {kld(k) € [d} : d¥/]}, (4)

which imply thatD; UDy U...UDy =Nt andD; ND; = &, Vi # 4, 3,5 = 1,2,..., N.
Define N mapping functions

dl(k‘) _ d(k‘), ke DDy dg(k?) _ d(k?), k € Dy dN(k‘) _ d(k‘), k€ Dy (5)
dy',  else dgt,  else dq, else.

From (5), it can be found that € D; implies the eventi(k) € [d™ : dM], i = 1,2,..., N occurs. Define the
following stochastic variables

1, keD 1, keD 1, keD
o (k) = Voaa(k) = 2 an(k) = N (6)
0, else 0, else 0, else.
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Fig. 1. Framework of thé, state estimator design for neural networks over networkrenments.

According to (3), we hav®rob{«;(k) =1} = E{a;(k)} = a;, i = 1,2,..., N. Then, the original system (1) can
be rewritten as

N
w(k+ 1) =Ax(k) + Wi f(x(k) + > ci(k)Wag (w (k — d;(k))) + Co(k)
N =1
+ |Az(k) + 2} o;(k)Bx(k — di(k)) + Cu(k) | w(k), .
y(k) =Dx (k) + Ev(k),
z(k) =Fz(k),
z(j) =¢(j), —du <j<0.

C. Fading Channels

In this paper, we consider the phenomenon of fading chanmete signal transmission which could be caused
by the unreliable wireless network medium. The measuremietite neural network is no longer equivalent to the
input of the estimator when there exist fading channels etwthe neural network and the estimator. Considering
the L-th order Rice fading model in [10], the measurement sigaeéived by the estimator is described by

L
(k) =Y Bi(k)y(k — j) + GE(k) 8)
§=0
wherel;, = min{L, k}, L is the given number of paths,(k) (7 = 0,1,...,[;) are the channel coefficients that are

random variables taking values on the interifall] with mathematical expectation and variances;. ¢(k) €
I2([0,00), R) is an external disturbance ard is a constant matrix. For simplicity, we sy(k)}icj—r,—1] = 0
and {v” (k) £7(k)}yej—r,—1) = 0. It is assumed that the random variableg), o;(k), i =1,2,..., N and;(k),
j=0,1,...,1; are mutually independent in this paper.

D. H,, State Estimator

We will investigate the problem off,, state estimation for a class of neural networks withv)-dependent
noises and fading channels, where the framework is showrign 1 For the system (7), we are interested in
constructing a full-order estimator of the form:

{ @(k+ 1) =Aa(k) + Bry(k),
2(k) =Fz(k)

wherez(k) € R" is the estimated stat€(k) € R"- is the estimated output}; and B; are the estimator gain
matrices to be designed.

9)
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Settingn(k) = [zT(k) 2T(k)|T, ¢(k) = T (k) €7 (k)" and 2(k) = z(k) — 2(k), the estimation error system
connecting the neural network (7) with the estimator (9)bsamed as follows:

0k +1) =An(k) + (Bo(k) = Bo)Dn(k) + 3 BPn(k = ) + D _(8;(k) = B;)Pn(k — j) + Wi (1(k)
—+§:cumbg (k — di( -+§:<% ) — @i)Wag(n(k — di(k))) + C¢(k) + (Bo(k) — Bo)EC (k)

i=1
I Ui
# YR 0) + D550~ BEC(h )+ | An(h) Z%&kd
j=1
N

(10)

0 0 Wy 0
W = ! , Wa=
BfD 0

0 0
B;E 0

BOBJ“D Af
C 0

_ £ =
BoB/E B;G

C =

fzw’—ﬂ,fm@»zlﬁﬁg”, WMH%%mzlgg%_%w2]J=LGwN

Denote
T'=[aI asl --- ayl], T =diag{ai, &, -+, an}, & =a;(1-a), i=12,...,N,
(k:) (a1 (k)T Go(k)T -+ an(k)I], &i(k) =ai(k) —ag, i=1,2,..., N,
©=1[BI BoI -+ B, 10 --- 0], ©=diag{B, B, -+, B, 0, -+, 0},
L L
Ok) = [BL(R)L Bo(k)I -+ B (W)L 0 --- 0], Bi(k) = B;(k) = Bj, § =0,1,2,... .,
L
" (k—=1) 9" (k—=2) - n"(k—L)",
T(k—=1) (T(k=1) - T(k—-LD)],
[ (k= dy(k)) 0" (k = da(R)) -+ 0" (k —dn (k)]
gn(n(k)) = [¢" (n(k — di(K))) g" (n(k = da(k))) --- g" (n(k — dn(k)))
Then, the system (10) can be written as
n(k + 1) =An(k) + o (k)Dn(k) + DO, (k) + DO(k)nr (k) + Wi f (n(k)) + Walgn (n(k))
+ Wol (k) gn (n(k)) + CS (k) + Bo(k)EC(R) + EOCL(R) + EO (k)L (k)
+ [An(k) + BUnx (k) + BE (k) (k) + CC (k) | (k)
(k) =Fn(k).
Definition 1: [33] The zero solution of the estimation error system (11thwi k) = 0 is said to be stochastically
stable if, for anys > 0, there exists & > 0 such that

E{ln(®)Il} <e (12)

nL(k)
Cr(k)
(k)

N (k

3

]T

(11)
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wheneverk € N* andmax;e(_qr _qt 11, o1 {[|6() [} < & with &}, = max{das, L}, where¢(j) = [¢”(j) 0]"
for j = —d,, —dk, +1,...,0.

Lemma 1: [33] If there exists a Lyapunov functiol (p(k)) € C* (Rz(dﬁﬁl)") and a functiona(r) € CK
satisfying the following conditions:

V(0) =0, (13)

a([[p(R)]) < V(p(k)), (14)

E{V(p(k+1)} <E{V(p(k))}, keN' (15)

wherep(k) = [n7 (k) n"(k —1) -~ nT(k — d%) ]T then the zero solution of the system (11) wittk) = 0 is

stochastically stable.
Lemma 2: [13] For a scalar and arbitrary matrices!, B, C, D with appropriate dimensions, the Kronecker
product® satisfies
(1) a(A® B) = (0d) ® B=A® (aB),

(A+B)eC=A®C+B®C,

(A® B)(C® D) = (AC) ® (BD),
(iv) (Ao B)' =AT @ BT,

(Ao B '=A"1e B

Lemma 3:Consideringl’(k), ©(k), T and © in (11), the following equalities hold for any matriX with
appropriate dimension

E{TT(k)XT(k)} =T ® X, (16)
E{OT(k)XO(k)} =0 ® X. (17)
Proof: According to definitions of the matrii?(k) and stochastic variables;(k), i = 1,2,..., N, we have

E{I7(k)XT'(k)} =E {[61 (k)] Ga(k)I --- an(k) T X[a1 (k)] ao(k)] - an(k)I]}
=diag{@ X, X, -, ayX}=T'® X

which is equivalent to (16). The equality (17) can be provem isimilar way and the details are omitted heme.
Our aim in this paper is to design ati,, estimator of the form (9) such that the following requiretseare
satisfied simultaneously:
(i) The zero-solution of the estimation error system (11hwi(k) = 0 is stochastically stable.
(i) Under the zero-initial condition, the estimator errik) satisfies

ZE{H H}<’Y22E{HC )7} (18)

for any nonzerd; (k) = [¢T (k) Cf(k:)] € l3[0,00), where~y > 0 is a given disturbance attenuation level.

Remark 1:In this paper, we consider a general class of delayed sttictmesiral networks (1). The time-varying
delay is characterized by introducing a sequence of Belirstathastic variable, and the system state and distusanc
input are both subject to noises. The neural network modebiisprehensive to describe the practical phenomena
more precisely. The nonlinear description in (2) is quiteegal that includes the usual Lipschitz condition as a
special case, and it provides a vector-based sector-bdwualition that would facilitate the mathematical analysi
on the dynamic behaviors of neural networks.
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Remark 2:Due to the shadowing problem and multipath transmissian/tith order Rice fading model (8) has
been widely used in areas of remote control and signal psaagsSuch a model is capable of accounting for packet
dropouts, channel fading and time-delays simultaneoasigl, may reflect the reality of measurement transmission
especially through wireless networks. Moreover, such aadigropagation process will lead to substantial diffiedlti
in subsequent analysis and design.

I1l. M AIN RESULTS

In this section, we deal with th&,, state estimation problem for the neural network (11) by gisive stochastic
analysis approach and the Kronecker product.

Theorem 1Consider the delayed neural network (1) and assume thatasti gainsA; and By in (9) are given.
The estimation error system (11) is stochastically stalite & prescribedH,, performancey > 0 if there exist
positive definite matrice® > 0, Q; > 0, R; > 0 and positive constant scalafs> 0, \; > 0 (: = 1,2,..., N,
j=1,2,...,L) such that the following LMI holds:

M, T |
m=| " P?l<o (19)
x  Ilgo
where
QO +FIF Qi Qi3 Quu Qi
* Qoo 0 Qoy Qo5
Iy = * x 33 0 Qs |,
* * * Q44 Q45
* * * x  Qss
- T
_ | 9l Qf Qs Qs Qg Qs — 71 Q67
Iy = T T T T v Al = 2 ’
with

L N
Q= ATPA=P+ [ D"PD+ ATPA+Y Qi+ (dY —d" + 1) Ry — 6.7,

j=1 i=1
Q1o = ATPDO, Q3 =ATPBT, Q= ATPW, + 6%, Q5= ATPWLT,

Qi = ATPC + GoDTPE + ATPC, Q7 = ATPEO,

Qg0 = OTDTPDO + 6 ® (DTPD) — diag{Q1,Qs,--- ,Q1}, oy = OTDTPW,,

Qo5 = OTDTPWLT, Qg6 = OTDTPC, Qy = OTDTPEO + 6 @ (DTPE),

Q33 = TTBTPBL +T @ (BTPB) — diag{R1, Ry, ,Rn} — AR Y, Q35 = A®@ %, Q36 =TTBTPC,
Qug = WIPW, =61, Qus = WEPWLT,  Que = WEPC, Qur = WIPEO,

Qs5 = TTWIPW,T + T @ WIPWy) —A® T, Q5 =TTWIPC, Q5 =TTWIPEO,

Qo6 = CTPC + BETPE +CTPC, Qg =CTPEO, Q7 =OTETPEO + 6 @ (ETPE),

STV, + U Dy T (P + )T

F1=1® 2 ) F2 2 ) A:diag{)‘laA%”'vAN}?
T T
E%:I@—(I)gg’g—;g’gq)g’ g2:]®(q)g2+\11g)T‘

Proof: Choose the Lyapunov function®l(p(k)) as

Vip(k)) = Vi(k) + Va(k) + (20)

M=
s.l
=

=1
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wherep(k) is defined in Lemma 1 and

Vi(k) = (k‘)P (k) (21)
L k-
=> nT (5)Qjm(s), (22)
j=1 s=k—
B -1 : a =1 k-1
‘/Z(k) = Z 77 + Z Z WT(S)RW(S), i=1,2,...,N. (23)
Jj=k—d;( j=d* s=k—j

Obviously, the conditions (13) and (14) in Lemma 1 are satisfvhenV (p(k)) is chosen as (20). Along the
trajectory of the system (11), we calculate the expectatiotne difference ofi’(p(k)) and have

E{V(p(k +1)) = V(p(F))}
N

N
=K {Vl(k + 1)+ Valk+1)+ ) Vi(k+1) = Vi(k) — Va(k) — Z‘Z(k)}
=1

N
—F {Am(k) +AVa(k) + Y A%(k:)} . (24)
=1
Considering Lemma 3, one has
E{AVi(K)} = E{Vi(k + 1) = Vi(k)} = E{n" (k + )Pn(k + 1) — n" (k)Pn(k)}

= [A0(b) + oKD (k) + DOWL(1) + DOR) () + Wi F(a(I) + W (1)

+ Wal (k) g ((k)) + CC (k) + Fo(k)EC (k) + EOCL(K) + EO(K)CL (K >} P An (k) + Bo (k)P (k)
+DOny (k) + DO (k)L (k) + Wi f(n(k)) + WaTgn (n(k)) + WaT' (k)gn (n(k)) + C¢(k)
+ Bo(k)EC(K) + EOC(K) + EO()CL(R)] + [An(k) + BLaw (k) + BER)aw (k) +CC(k)] P
< [0 + B (h) + BE (R0 + C<0)] — o ()Pt |
=E{ " (k) ATP An(k) — 0" (k)Pu(k) + 207 (k) ATPDONL (k) + 207 (k) ATPW £ (n(k)
+ 217 (k) ATPWaT g (k) + 207 (k) ATPCC (k) + 207 (k) AT PEOC ()
+ Bon” (k)DTPDy(k) + 260" (k)DTPE¢() + nf (k)© DT PDONL (k)
+ 201 (k)OTDTPWf (n(k)) + 207, (K)OT DTPWaTgn (n(k)) + 207 (k)" DTPCS (k)
+ 20 ()OTDTPEOCL (k) + 1 (k) |6 & (DTPD)| i (k) + 20 (k) |6 @ (DTPE)| ¢ (k)
+ T )WEPWLF (n(k)) + 2£T (n(k))WT PWal g (n(k)) + 2£7 (n(k))WT PCC (k)
+2fT (n(k))WEPEOCL(K) + gk (n(k))TT WE PWaTgn (n(k)) + 2% (n(k))TT W PCC (k)
+ 205 (k)T WE PEOCL(K) + gk (n(k)) [T @ OV PW2)| g (n(R))
+ (T (k)CTPCC (k) + 2¢T (k)CTPEOCL(K) + Bo¢T (R)ETPEC(K) + T (k)OT ETPEOL (k)
+ ¢ (k) [@ ® (8T7>5>] CL(k) +n" (k) ATPAn(k) + 20" (k) A"PBL (k) + 20" (k) ATPCC (k)
n (R)TT BT PB (k) + 20k ()T BTPCC(k) + nf (k) [T @ (BTPB)| n (k) + CT(R)CTPCC(R) . (25)
On the other hand, it is not difficult to see that

E{AVy(k)} =E{Va(k + 1) — Va(k)}
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L
= E{n" (Qm(k)} — E{nf (k)ding{Q1, Q2.+, Qu}mi (k) |- (26)

Moreover, we can show that

E{AVi(k)} =E{Vi(k + 1) = Vi(k)}

k k—1
:E{ Z n" (5)Rin(5) — n" (/)Rin(j)

Jj=k—di(k+1)+1 j=k—di(k)

=dm s=k—j+1 s=k—j

d}—1 k k—1
+ > ( > T (s)Rin(s) — nT(S)Rm(s)) }
Jj=d; J

ZE{ (dM —d* + 1) n" (k)Rin(k) — 0" (k — di(k))Rin(k — di(k))

k—=d k-1 k—1 k—dm
+ ( S SN SR ) nT(J')Rm(j)}
j=k—di(k+1)+1 j=k—dP+1 j=k—di(k)+1 j=k—dM+1

<E{ (! = d" + 1) 0" (k)Ran(k) — 0" (k — di(k)Ran(k — di(K) }, i =1,2,...,N.  (27)

Therefore, we have
N N

E {Z Affi(k)} < S E{[(@ - @+ 1) 0T (R Rin(k) — 0 (k — di(k)Rin(k — dy(k))] |

=1 i=1
N

=S E{(@ — "+ 1) 0" () Rin(k)} — B{uk (k)diag R, Ra, -+ Ruvkun (k) ). (28)
i=1
Notice that (2) implies

Fn(k) = (L © @ )n(k)][F(n(k)) — (I © ¥ )(k)] <0,
lg(n(k — di(k))) — (I © By )k — dy(k)] [g(n(k — di(k))) — (I © Tk — dy(k))] <O, §=1,2,...,N.

There exist scalar§ > 0 and\; > 0 (i = 1,2,..., N) such that

S[f(n(k)) — (I @ @ )n(k)] " [f(n(k)) — (I @ W p)n(k)] <0, (29)
N

> Xilg(n(k — di(k))) — (I @ g)n(k — d; (k)] [g(n(k — di(k))) — (I & Ug)n(k — d;(k))] <0.  (30)
=1

By Lemma 2, the inequality (30) can be written as

T T
G () (A © Dgn (k) + (4 (A ® (I ® w» (k)
<

—n (k) (A® (I® (g +¥g)T)) g (n(k))

where A = diag{\1, X2, -+ An}.

0 (31)
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Denoteii(k) = [n” (k) uf (k) nk (k) fT(n(k)) g% (n(k)) ¢T(k) T (k)]" . According to (25), (26), (28) and
considering (29), (31), we have

E{V(p(k + 1)) = V(p(k))}

N
<E {Avl(k) +AVa(k) +) Avi(k)} = 0Lf(n(k)) — (L @ @p)n(k)]" [ (n(k)) — (I © VU p)n(k)]
i=1
N

=¥ Xilg(n(k = di(k))) = (I @ Dg)n(k — di(k)] [g(n(k — di(k))) — (T © Ug)n(k — di(k))]
i=1

=E{7" (k) 7(k)} (32)

where

Now, we first prove the stochastic stability of the estimat@ror system (11) witl{(k) = 0. From (32), one
can easily obtain that

E{V (p(k + 1)) = V(p(k)}cy=o < E{n" (k)7 (k)}

where
_ T

(k) = [n" (k) ni (k) nx(k) fT(n(k) gn(n(k)]™,

Q1 Q2 iz Quu Qs
) x Qoo 0 Qg os
O = % x Q33 0 Qs

* * x  Qu Qs

* * * * Q55

According to (19), it is easy to see thHt;; < 0 which impliesQ; < 0. By Lemma 1, the system (11) with
((k) = 0 is stochastically stable.

Next, let us show that the estimation error system (11) feadishe H., performance for all nonzero exogenous
disturbances under the zero-initial condition. Adding #eeo term

Z (k)2 (k) = 7*CT(R)C(R) — [Z7 (k)2 (k) — 22T (R)C(R)]
to (32) results in
E{V(p(k +1)) = V(p(k))}
<E {7 (R)7i(k) + 0" (0) FT Fu(l) = 42T (R)C(R) = 72 CE (k)L (k) — [T (R)2(R) = 42T (R)C )]} - (33)
Summing up (33) on both sides frointo n with respect tok, one gets

V(p(n+1)) = V(p(0))
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<EY {i" (W)Wi(k)} - EZ {ZT0z) — 42T W)} (34)
k=0

wherell is defined in (19). Lettingr — oo and conS|der|ng the zero-initial condition, it can be ofoéai from (19)
and (34) that

EZ{NT — 2T (k) }<EZ{77 17 (k)} <0,

which is equivalent to (18), and the proof is now complete. [ |

Having derived the analysis results, we are now ready toesthle state estimator design problem for the neural
network (11) in the following theorem.

Theorem 2:Consider the delayed neural network (1) and the disturbatieauation levely > 0. The addressed
H,, state estimator design problem is solvable if there exisitpe definite matrices? > 0, Q; > 0, R; > 0,
positive constant scalars> 0, A; >0 (¢ =1,2,...,N, 7 =1,2,...,L) and a matrixX such that the following
LMI holds:

[P 0 0 0 0 0o T
x =P 0 0 0 0 )
* x —IT®P 0 0 0 T3
E= * * * —P 0 0 YTy | <0 (35)
* * * * —IQ7P 0 Ts
* * * * * —I®P YTg
* * * * * * by
where
T = PA+XxA XD©® 0 PW, PWI PC+XC Xsle},
To=1/BXD1 0 0 0 0 /BX& 0],
Ts=| 0 é@XDlooooé@mcel}, T4=[7>A07>Br007>c‘ o},
Ts=[0 0 To(PB) 000 0], Te=[0 000 FaPWy) 0 0],
(Y 0 0 67 0 0o 0 ]
* 222 0 0 0 0 0
* * 233 0 A@gg 0 0
Y= * * x X4 0 0 0 ,
* * * * 55 0 0
* * * * * Y66 O
* * * * * * D77
with
A A 0 0 I 0 O A c 0 0 0
A= ) “41: = ) Dlz ) C= 1= =
0 0 BoD 0 D 0 0 0 BoE G
0 O o . ~ — p / />
gl E 0 ) F:dlag{\/ala Va2, cc, \/aN}7 @ dlag{ 17 527 51;@0 0}

L N
Snu=-P+> Qi+ Y (M —d"+1)R; —6.F1 + FTF, g = —diag{Q1, Qs -, Qr},
=1 i—1

Y33 = —diag{R1,Ra,--- \ RN} —A®D, Su=-6I, S55=-A®I, Yg=-71 r=-L
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Moreover, if the aforementioned inequality is feasibles thesired estimator gains in (9) can be determined by
[A; Bf] = (Z7PT) ' T7x (36)

whereZ = [0 1]".
Proof: Denoting
Ti=[ A Do 0 Wi Wt ¢ €0, To=[ /3D 0 0 0 0 /e o],
Ts=[0 62D 00 00 6we|, Ti=[A 0 Br 00 C 0]
Ts=[0 0 FwB 000 0], Ts=[0000 Faw 0 0],
the LMI (19) can be rewritten as follows
D=Y+YTPY1 +TiPYo+ YT @P)Y3 + TIPYT + YL (I @P)Y5 + YE(I@P)Ye < 0.  (37)

By applying the Schur Complement Lemma and Lemma 2, we knaivttie inequality (37) is equivalent to

P10 0 0 0 0 T,
* —p~1 0 0 0 0 T,
* *  —IeoPt 0 0 0 T3
* * * —p~1 0 0 T, | <O. (38)
* * * * — P! 0 s
* * * * * —ITep! Y
* * * * * * b

In order to avoid partitioning the positive definite matfix the parameters in (38) are rewritten in the following
form:

A=A+1IKA, D=1IKD,, C=C+IKC, &=TIKE,
whereC = [A; By|. Pre- and post-multiplying the inequality (38) by
diag{P, P, I®P, P, I®P, I®P, I}

and setting¥ = PZK, it is easily known that the inequality (38) is equivalent be inequality (35). Furthermore,
the estimator gains can be derived by (36), which complétegtoof. [ |

Remark 3:Different from the existing results for state estimationnefural networks [16], [42], several delay-
distribution-dependent conditions are derived in thisgrajpe., the conditions are dependent on both the probabili
distribution and the variation range of the time delay. lisll known that the more information of the time delay
is employed, the less conservative results may be derivedh®other hand, as can be seen from our main results,
the larger upper bounds” and the larger variatiod -d* would have more side effects to the feasibility of the
obtained LMI conditions.

Remark 4:Assume that# denotes the row size of the LMLy represents the number of decision variables
and 7 stands for a scaling factor, then the number of flops neededltulate are-accurate solution to the LMI
is bounded byO(.# .43 log(¥ /¢)). For the neural network (1) with the measurement (8), theaizségi dimensions
are as followsxz(k) € R, y(k) € R™, v(k) € R™ and¢(k) € R. For the LMI condition in Theorem 2, we have
M = (4L +8N +10)n + (L + 1)(n, + 1) and.A" = (L + N + 1)n(2n + 1) + 2n(n +n,) + N + 1. Hence, the
computational complexity of the derived LMI condition cae tepresented a®((L + N)*n"). It is obvious that
the computational complexity depends polynomially on peetersl, N and the variable dimensiom.
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Remark 5:In Theorem 2, the problem df., state estimation is solved for neural networks with rand@tayks,
(z,v)-dependent noises and fading channels. The optimal soltgiaerive the minimum disturbance attenuation
level, i.e.,vmin, can be found by solving the convex optimization problemadews:

min subject to the LMI (35) withy = ~2.
P20, 0,50, Ri>0, 650, o0, X, i=1,2,. N, j=1.2, . L ) (35) withy =

Remark 61n the neural network (1), although(k) is supposed to be a one-dimensional white noise for sintylici
all our results can be extended to the following neural ndtwaith multiple noises without any difficulty:

x(k +1) =Az(k) + Wy f(x(k)) + Wag(z(k — d(k))) + Co(k)

+ Z[Asx(k) + Bsx(k - d(k)) + ésv(k)]ws(k)7

s=1

y(k) =Dz(k) + Ev(k),

z(k) =Fz(k),

x(j) =¢(j), —du <j<0
wherews(k), s = 1,...,r are independent, standard one-dimensional white noisapavbability spacé?, 7, Prob),
and Ag, B, Cs, s =1,...,r are constant matrices with appropriate dimensions.

IV. A NUMERICAL EXAMPLE

In this section, a numerical example is presented so as towlgnate the effectiveness of our main results.
Consider the third-order delayed neural network (1) with fbllowing parameters:

[ 02 0 0 0.2 —02 0 —-02 0.1 0 0.2
A= 0 03 0 |, Wi=| 0 —-03 0 |, We=|-02 03 0 |, C=|-03],
| 0 0 0.1 0 0 02 0 0 0.1 0.1

[ 0.2 —005 0 0.05 —0.02 0 0.05
A=101 0.1 0 , B=1005 0.1 0 , C=1 01|,
|0 0  0.05 0 0 —0.01 0.05

—[02 04 01 , E=02 F= 03 01 01 |.

The activation functions are taken as
0.4z (k) — tanh(0.221 (k)) | 0.4x1 (k) — tanh(0.2x1 (k) + 0.08x2(k))

f(z(k)) = | 0.329(k) — tanh(0.222(k)) |, glx(k)) = 0.2x9(k) — tanh(0.1x2(k))
0.4z3(k) — tanh(0.3x3(k)) | 0.3z3(k) — tanh(0.2x3(k))

wherez (k) (s = 1,2,3) represents the-th element of the system staigk). It is easy to see that the sector-
bounded condition (2) can be met with

02 0 0 04 0 0 0.2 0.08 0 04 008 0
;= 0 01 0 |, V=0 03 0 |, P=|0 01 0 |, Yy=| 0 02 0
0 0 0.1 0 0 03 0 0 01 0 0 03

In this example, the variation of the time-varying det&y:) is shown in Fig. 2 from which it can be calculated
that for N = 3, the probability distribution of the delay is

Prob{d(k) € [1:2]} =0.7, Prob{d(k) € [3:5]} =0.2, Prob{d(k) €[6:8]} =0.1.
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The variation of d(k)

T 1A R )

0 20 40 60 80 100
Time (k)

Fig. 2. The variation of the time-varying delai(k).

Finally, assume that the channel number of the model (&) is 2, the mathematical expectations of the channel
coefficients are3, = 0.8, 51 = 0.3, B> = 0.2, the variances of the channel coefficients dge= 0.01, 3; = 0.09,
By = 0.25, and the constant matrig = 0.1.

The H., performance level is taken ag).9. By using MATLAB software with YALMIP 3.0, we can obtain
the desired estimator gains as follows:

0.2519 —0.0100 —0.0096 0.3118
Ay =] —0.0093 0.2570 —0.0089 |, By= | 0.3154
—0.0090 —0.0090  0.2549 0.3135

In this simulation, the initial values are assumed to{bé)},c(_s 1) = [0 0 0]” andz(0) = [0.5 — 0.5 0.3]7.
The exogenous disturbance inputs are selected as

v(k) = e % sin(k), E(k) = e cos(k).

The simulation results are shown in Figs. 3-5. Fig. 3 deglmsmeasurement output and the received signal
by the estimator, respectively. Fig. 4 plots the plant artahedor outputs while Fig. 5 shows the estimation error.
The simulation results have confirmed that the desighHgdestimator performs very well.

V. CONCLUSIONS

The problem off, state estimation for delayed neural networks withv)-dependent noises and fading channels
has been investigated in this paper. A sequence of randoi@bies obeying the Bernoulli distribution has been
employed to characterized the time-varying delay, and tlee Rading model has been utilized to describe the
phenomenon of fading channels. Several delay-distribtdigpendent conditions have been derived in terms of
LMIs, which guarantee that the estimation error system déghsistically stable with the giveRl,, constraint.
Finally, a numerical example has been presented to show ffeetieeness of the results derived. It would be
interesting to study the following future research topity:development of less conservative conditions for the
problem of H,, state estimation for delayed neural networks; 2) extensfathe results obtained in this paper to
neural networks with other network-induced phenomena[8],[7], [8], [11], [12], [15], [19], [22], [43].
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0.2

——— The measurement y(k)
——— The received signal (k)

0.1 b

0.051

-0.05 ]

The measurement and the received signal

_015 L L L L
0 20 40 60 80 100

Time (k)

Fig. 3. The measuremeni(k) and the received signai(k).

0.08

——— The output z(k)
——— The estimated output Z(k)

0.06

0.04

0.02

-0.02

The output and its estimation

-0.04

-0.06 : : : :
0 20 40 60 80 100

Time (k)

Fig. 4. The plant output(k) and the estimator output(k).
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