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Please cite this article as: Tang, F., & Tiňo, P. Ordinal regression based on learning vector
quantization. Neural Networks (2017), http://dx.doi.org/10.1016/j.neunet.2017.05.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.neunet.2017.05.006


Ordinal Regression based on Learning Vector Quantization
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Liaoning Province, 110016, China
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Abstract

Recently, ordinal regression, which predicts categories of ordinal scale, has received

considerable attention. In this paper, we propose a new approach to solve ordinal

regression problems within the learning vector quantization framework. It extends

the previous approach termed ordinal generalized matrix learning vector quantization

with a more suitable and natural cost function, leading to more intuitive parameter

update rules. Moreover, in our approach the bandwidth of the prototype weights is

automatically adapted. Empirical investigation on a number of datasets reveals that

overall the proposed approach tends to have superior out-of-sample performance, when

compared to alternative ordinal regression methods.

Keywords: Ordinal regression, Learning vector quantization, Generalized matrix

learning vector quantization

1. Introduction

Recently a new learning setting that predicts categories of ordinal scale, referred to

as ordinal regression or ranking learning, has received considerable attention [1, 2, 3,

4, 5]. In this setting, the training examples are labeled by categories (ranks) exhibiting

a natural order. Consequently, ordinal regression bears resemblance to both regression

and classification. However, in contrast to regression, the ranks are of discrete and finite
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type, and the difference between the consecutive ranks is not quantified. The existence

of order information in the class labels also makes ordinal regression different from

classification. Ordinal regression problems arise commonly in real world applications,

for example, financial movements grading [6], credit rating [7], life quality assessments

[8], facial beauty assessment [9], etc.

A variety of algorithms have been developed for ordinal regression problems in

the literatures. The simplest idea, presented in [10], is to map the ordinal scales into

numeric values and then solve the problem as a regular regression problem (e.g. by a

regression tree). However, this may be suboptimal since the true distances between or-

dinal scales are unknown in most cases. Another idea is to transform the ordinal regres-

sion problem into a set of binary classification problems. For instance, [11] transforms

an C-class ordinal problem into C − 1 binary classification problems and then com-

bines the C−1 model predictions to estimate the probabilities of the C original ordinal

classes for test instances. This method requires no modification of the standard binary

classification algorithm. However, it cannot capture the overall structure among the or-

dinal classes. It is also possible to formulate the ordinal regression problem as a large

augmented binary classification problem by adding additional constraints. Herbrich

et al. [12] applied the principle of structural risk minimization to ordinal regression,

leading to a new distribution-independent learning algorithm based on a loss function

between pairs of ranks. Crammer and Spinger [13] generalized the online perception

algorithm with multiple thresholds to seek the direction and thresholds for ordinal re-

gression. Shashua and Levin [14] generalized the support vector machine formulation

for ordinal regression by maximizing the margin of C − 1 parallel hyperplanes sepa-

rating adjacent classes in the feature space. The parallel separation hyperplanes share

the same normal vector and are defined by a set of C − 1 thresholds b1, ..., bC−1. The

margin can either be the same for all separating hyperplanes, or can be different for

each adjacent class separation, in which case the sum of the margins is maximized.

However, in this approach it cannot be guaranteed that the optimized thresholds will

preserve the category order. To address this problem, Chu and Keerthi [15, 16] pro-

posed explicit and implicit constraints enforcing the inequalities on the thresholds, i.e

b1 < b2 < ... < bC−1. The explicit constraints directly enforce order on the ad-
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jacent thresholds, while the implicit constraints ensure the threshold order implicitly

through the data by stipulating that the j-th hyperplane (corresponding to threshold bj)

separates all points from classes ≤ j from all points of classes > j. Li and Lin[17] in-

troduced a unified reduction framework from ordinal regression to binary classification.

The explicit and implicit approaches of [16] can be regarded as special instances of this

framework. Chu and Ghahramani [18] proposed a simple non-parametric Bayesian ap-

proach to ordinal regression based on a generalization of the probit likelihood function

for Gaussian process, achieving competitive (often better) generalization performance

to the support vector approaches. Sun et al. [19] augmented kernel discriminate learn-

ing for ordinal regression to take class distribution into consideration.

Recently, Fouad and Tiňo [3] extended generalized matrix learning vector quantiza-

tion approach [20] to ordinal regression, where the order information among different

categories is utilized in the selection of the prototypes to be adapted, as well as in

updating of the selected prototypes. Given an (input, target class) training example,

generalized matrix learning vector quantization identifies two prototypes - the closest

prototype of the target class and the closest prototype among the prototypes with a

different label. The positions of this prototype pair are updated according to a well-

defined cost function. In the extended generalized matrix learning vector quantization

approach to ordinal regression, spatially close prototypes to the training input from

neighbouring classes (in terms of the class order) of the target class are selected as

“correct” prototypes, while prototypes from classes far away in the class order from

the target class, but lying in the neighbourhood of the training input are selected as

“incorrect” prototypes. Correct and incorrect prototypes are then paired into a set of

(correct prototype, incorrect prototype) couples. Updating rules for each such proto-

type couple are formulated in a principled manner through a weighted cost function.

The weights for correct and incorrect prototypes will decrease and increase, respec-

tively, with growing class difference from the target class. In addition, for incorrect

prototypes, the weights will diminish with increasing distance from the input data.

However, the cost function of [3] based on the pairing strategy does not wholis-

tically take into account the global order on classes. While prototype pairing, given

an input vector, of correct and incorrect prototypes naturally extends the generalized
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matrix learning vector quantization approach of [20], the price to be paid is the need to

brake the global linear class order into ordered pairs that are treated independently of

each other. This is unnatural and the updating rules of the prototypes derived from this

cost function cannot consistently guarantee the ordering relation among the prototypes.

In this paper, we propose a new cost function that is not only more natural and

intuitive, but crucially yields prototype updates that explicitly express the global proto-

type ordering. This is in contrast to the approach of [3] that employs partial pair-wise

comparisons reflecting the global prototype order only implicitly. We aslo show that

the deravatives of our cost function vanish at boundaries of the prototype receptive

fields and thus gradient based optimization will constitute a valid gradient descent.

Furthermore, we propose to automatically adapt parameters in the weighting functions

employed in the cost functional, eliminating the need for costly grid search of [3].

Using both artificial and real ordinal regression datasets, we demonstrate that the

generalization performance of the proposed approach is competitive and often better

than the approach presented in [3]. We will refer to the original approach of [3] and the

proposed approach as pair ordinal generalized matrix learning vector quantization (p-

OGMLVQ) and accumulative ordinal generalized matrix learning vector quantization

(a-OGMLVQ), respectively.

The rest of the paper is organized as follows. In section 2, we briefly introduce

learning vector quantization and its extension to ordinal regression. In section 3, we

present the proposed approach along with automatic hyperparameter updates in the

weighting function. Experimental results are given in section 4. Main findings and

conclusions are presented in section 5.

2. Background

Our approach is developed within the framework of learning vector quantization

(LVQ) [21, 22]. LVQ is a prototype-based supervised classification algorithm where

the classifier is parametrized by a set of labeled prototypes which live in the same

space as the input data. The approach has enjoyed popularity because of its simplicity,

intuitive nature, and natural accommodation of multi-class classification problems. In
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this section, we will briefly introduce LVQ and its extension to ordinal regression.

Consider a training dataset (xi, yi) ∈ Rm × {1, ..., C}, i = 1, .., n, where m is

the dimension of the inputs, C is the number of different classes and n is the num-

ber of training examples. A typical LVQ classifier consists M (M ≥ C) prototypes

wi ∈ Rm, which are labeled by c(wi) ∈ {1, ..., C}. The classification is imple-

mented as a winner-takes-all scheme. For a data point x ∈ Rm, the output class is

determined by the class label of its closest prototype: i.e. ŷ(x) := c(wi) such that

i = argminj d(x, wj), where d(·, ·) is a distance measure in Rm. Each labeled pro-

totype wi with label c(wi) defines a receptive filed in the input space – a set of points

which pick this prototype as their winner. The goal of learning the LVQ classifier is

to adapt prototypes automatically such that the class labels of data points within the

receptive field coincide with the label of the respective prototype as much as possible.

A generalization of LVQ, termed generalized learning vector quantization (GLVQ),

was introduced in [23]. In GLVQ the prototypes are updated based on the steepest

descent method on a well defined cost function. The cost function is determined so

that the obtained learning rule satisfies the convergence condition. In the training phase

of GLVQ, for each labeled input xi, a pair of prototypes will be updated. The closest

prototype to xi with the same label yi (correct prototype) is rewarded by dragging it

closer to xi, while the closest prototype with a different label (incorrect prototype) is

penalized by pushing it away from xi.

GLVQ has been extended towards metric learning, where a general adaptive full

metric tensor of the distance measure is learned. In this way important dependencies

between different input featuresas well as their individual importance for the classifica-

tion task can be revealed and utilized [20]. In this approach, termed generalized matrix

learning vector quantization (GMLVQ), again at each training step a single pair of pro-

totypes is updated (the closest correct and the closest incorrect prototype to the current

training input). Unlike in GLVQ, the distance function is also updated so that the dis-

tance between the example xi and its closest correct prototype is shortened, while the

distance between the example xi and its closest incorrect prototype is enlarged.

The GMLVQ approach has been further extended to ordinal regression (ordinal

GMLVQ - OGMLVQ, which is referred to as pair-OGMLVQ (p-OGMLVQ) in this
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1 32 4 5 6 7

Nearly correct class

Input data class

Wrong class

Figure 1: Illustration of ordinal learning vector quantization [3], with threshold τ = 1. The class yi of the

training input xi is 2, indicated with a square. Prototype classes indicated by black circles ( i.e. 1, 2, and 3)

will be regarded as correct ones, while other prototype classes denoted by white circles (i.e. 4 – 7) will be

seen as incorrect ones.

paper in order to ease the presentation) in [3]. In the p-OGMLVQ approach, at each

training step several pairs of “correct” and “incorrect” prototypes are updated. First,

correct and incorrect prototype classes are identified according to the label order. If the

prototype class is “close” to the class yi of the training input xi (label distance smaller

or equal to a threshold τ ), the prototype class will be viewed as “tolerably correct”,

otherwise it will be considered as incorrect (see Figure 1). The correct prototypes are

the spatially closest prototypes to xi (one for each class) from the correct classes. The

incorrect prototypes are the prototypes with incorrect class lying in the neighbourhood

of xi.

As in GMLVQ, the correct prototypes will be dragged towards xi, while the incor-

rect prototypes will be pushed away from xi. However, they will be not all dragged or

pushed away to the same extent - a weighting scheme reflecting how close the class of

the prototype is to the class of xi is introduced. The weights for the correct prototypes

are given as follows:

α+
j = exp

{
−

κ(yi, c(w+
j ))2

2σ2

}
, (1)

where w+
j denotes the j-th correct prototype and κ(·, ·) is the loss function on the class

labels. Commonly absolute error loss is adopted, i.e. κ (yi, c(wj)) = |yi − c(wj)|.
σ is the bandwidth parameter of the Gaussian weighting function. The weight for the

j-the incorrect prototype w−
j is defined as follows:

α−j = exp

{
−
(
T − κ

(
yi, c(w−

j )
))2

2σ2

}
· exp

{
−

dΛ(xi, w
−
j )

2σ′2

}
, (2)

where T = maxu∈W− κ(yi, c(u)) and W− is the set of incorrect prototypes of data

point xi. In other words, T is the maximum class difference between the data point and
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the identified incorrect prototypes. dΛ(·, ·) is the squared distance between data point

and prototype 1, defined as dΛ(x, w) = (x−w)T ·Λ · (x−w), where Λ is an m×m

symmetric positive semi-definite matrix (metric tensor). The positive semi-definiteness

of Λ can be enforced by substituting Λ = ΩT Ω, where Ω is an unconstrained m × m

matrix. Λ needs to be normalized since the (global) scale is irrelevant in GMLVQ.

σ′ is the bandwidth parameter of the Gaussian weighting function corresponding to

distance between data point and prototype. These hyper-parameters can be tuned via

cross-validation.

Motivated by GMLVQ, the cost function of p-OGMLVQ is defined through pairing

correct and incorrect prototypes into the corresponding couples. Suppose there are r

couples, for each couple j, a cost function is defined as follows:

fj(xi) =
α+

j · dΛ(xi, w
+
j )− α−j · dΛ(xi, w

−
j )

α+
j · dΛ(xi, w

+
j ) + α−j · dΛ(xi, w

−
j )

. (3)

Consequently, the overall cost function is given by

Cp−OGMLV Q =
n∑

i=1

r∑

j=1

Φ(fj(xi)), (4)

where Φ(·) is a monotonically increasing function. The core of the formulation in eq.

(3) has been well studied both theoretically and empirically in the past as a large mar-

gin inducing cost function for prototype based classifiers (e.g. [23]). Moreover, dimen-

sionality independent generalization bound can be derived by the LVQ cost function.

Monotonically increasing function Φ plays a modulating role for the margin quan-

tification and can be simply the identity Φ(x) = x, or the logistic function Φ(x) =

1/(1 + e−x) (if the large values need to be squashed - e.g. to dampen the influence of

class-conditional outliers).

The updating rules of the prototypes and the metric can be derived by minimizing

1In this weight definition, the distance dΛ(xi,w
−
j ) is involved in order to take the following aspect into

consideration: if incorrect prototype is already far away from the input point, then we do not need a large

weight to push it away that hard.
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the cost function:

w+
j := w+

j + ǫ · 2 · µ+
j · Λ · (xi −w+

j ), (5)

w−
j := w+

j − ǫ · 2 · µ−j · Λ · (xi −w−
j ), (6)

Ω := Ω− η ·
{
2 · µ+

j · Ω · (xi −w+
j )(xi −w+

j )T

−2 · µ−j · Ω · (xi −w−
j )(xi −w−

j )T
}

, (7)

where

µ+
j =

2α+
j · α−j · dΛ(xi, w

−
j )

(
α+

j · dΛ(xi, w
+
j ) + α−j · dΛ(xi, w

−
j )
)2 , (8)

µ−j =
2α+

j · α−j · dΛ(xi, w
+
j )

(
α+

j · dΛ(xi, w
+
j ) + α−j · dΛ(xi, w

−
j )
)2 , (9)

0 < ǫ < 1 and 0 < η < 1 are learning rates for prototypes and metric, respectively.

The learning rates are monotonically decreasing with time [20, 3] :

ǫ(t) =
ǫ(0)

1 + ν(t− 1)
, (10)

η(t) =
η(0)

1 + ν(t− 1)
, (11)

where ν > 0 is a parameter determining the decay speed, t denotes the number of

training epochs. Commonly the magnitude of η is setted smaller than that of ǫ, in order

to achieve a slower time-scale of metric learning compared to the weight updates [20].

3. Proposed Algorithm

In the p-OGMLVQ approach, µ+
j and µ−j control the magnitude of “forces” when

updating the identified prototypes. Naturally µ+
j should be monotonically decreasing

as a function of label distance between the prototype w+
j and training input xi. In other

words, if w+
j is “less correct” than w+

k , i.e. κ
(
yi, c(w+

j )
)

> κ
(
yi, c(w+

k )
)
, then w+

j

should be dragged towards xi to a lesser extent than w+
k , i.e. µ+

j < µ+
k . However, this

property might be violated as illustrated in Figure 2. The input pattern (x,2) represents

a training input x with class label 2. There are several labeled prototypes (w±
j , c(w±

j ))

in the neighbourhood of x. Assume σ = σ′ = 0.5, Based on the prototype pairing and

8



prototype distances d(x, w±
j ) from x shown in the figure, we get µ+

1 = 0.0514 and

µ+
2 = 0.5381. Obviously, w+

2 with label 1 is “less correct” than w+
1 with label 2

matching the label of x. However, counterintuitively, we have µ+
2 > µ+

1 and the less

correct prototype w+
2 will be updated more than the correct one w+

1 . Similar problems

may occur for µ−.

To solve this problem mentioned above, we propose a new cost function such that

the update rules derived from it will explicitly guarantee that the attractive force de-

creases as the class difference between the correct prototype and the input increases.

It will also be the case that the repulsive force increases as the class difference be-

tween the incorrect prototype and the input increases. Consequently, the ordering of

prototype classes is ensured. Since incorrect prototypes far from the input are of lesser

importance, the repulsive force will decrease with increasing prototype distance from

xi.

Equally importantly, our approach is derived in a principled manner from a single

unified cost function, in contrast to somewhat ad-hoc unnatural decoupling of the p-

OGMLVQ parameter updates into separate updates of binary classifiers.

As in section 2, we assume a training dataset (xi, yi) ∈ Rm × {1, ..., C}, i =

1, ..., n, is given, where m is the dimension of the inputs, C is the number of classes

and n is the number of training examples. As we are dealing with ordinal regression

problems, we add an additional assumption that classes are ordered as 1 ≺ 2, ...,≺ C,

where ≺ denotes the order relation on labels. As in LVQ network, the proposed clas-

sifier is defined by M labeled prototypes (wi, c(wi)), where wi ∈ Rm and c(wi) ∈
{1, ..., C}. The classification scheme is implemented by means of the winner-takes-

all rule, where the output class for a given input x ∈ Rm is determined by its clos-

est prototype. Formally, the output class is determined by ŷ(x) := c(wj) such that

j = argmini dΛ(x, wi), where dΛ(x, wi) is the squared distance between input x

and the prototype wi, as defined in section 2.

As in [3], our algorithm aims to minimize the average absolute error of class mis-

labeling. This is reflected by the utilization of absolute label distance κ(yi, c(w)) =

|yi−c(w)|. Following [3], the ordering information in class label is utilized to identify

the sets of correct and incorrect prototypes. The classes of prototypes within a neigh-

9



Correct prototype 

Input pattern

Wrong prototype 
+
2

+
1

+
3

−
1

−
1

−
2

+
2

+
1

−
2

+
3

(w , 3)

(x, 2)

(w , 5)

(w , 4)

d(x, w )=1.3

d(x, w )=1.4

(w , 2)

(w , 1)

d(x, w )=0.7

d(x, w ) = 0.9

d(x, w )=1

Figure 2: Illustration of the problem of breaking the global class linear order into a set of prototype pairs with

correct and incorrect labels, as done in [3]. The input pattern (x,2) represents a training input x with class

label y(x) = 2. There are several labeled prototypes (w±
j , c(w±

j )) in the neighbourhood of x. Assume

σ = σ′ = 0.5, Based on the prototype pairing and prototype distances d(x,w±
j ) from x shown in the

figure, we get µ+
1 = 0.0514 and µ+

2 = 0.5381. Obviously, w+
2 with label 1 is “less correct” than w

+
1

with label 2 matching the label of x. However, counterintuitively, we have µ+
2 > µ+

1 and the less correct

prototype w
+
2 will be updated more that the correct one w

+
1 .

bourhood (in the label space) of the given input class will be regarded as “correct”.

Formally, the set of correct classes is defined as follows:

C+ = {c(wj) |κ(yi, c(wj)) ≤ τ}, (12)

where τ > 0 is a rank loss threshold. The classes of prototypes which are outside the

neighbourhood of the given input class will be treated as “incorrect” ones. The set of

incorrect classes is given by:

C− = {c(wj) |κ(yi, c(wj)) > τ}. (13)

The spatially closest prototype in each correct class to the input xi will be treated as a

correct prototype. The set of correct prototypes is then

W+ = {wj |j = arg min
c(wl)=k

dΛ(xi, wl), k ∈ C+}. (14)

Prototypes from the identified incorrect classes which lie in the neighbourhood of xi

will be treated as incorrect ones that need to be pushed away from xi. The set of

10



incorrect prototypes is given as follows:

W− = {wj |dΛ(xi, wj) < D, c(wj) ∈ C−}, (15)

where D > 0. We chose D to be the median distance of the example x to all prototypes

from the incorrect classes 2.

We rearrange the set W+ and W− in increasing order in terms of distance to the

input xi. Let r = min(|W+|, |W−|), where |W | is the cardinality of the set W . The

first r prototypes of each prototype set will be selected for updating. However, instead

of updating the prototypes in pairs as in [3], we propose to update all the selected

prototypes collectively with a weighting scheme defined by the ordering information

of the labels.

Weights for correct prototypes with respect to c(xi) are given by a Gaussian kernel:

α+
j = exp

{
−

κ
(
yi, c(w+

j )
)2

2σ2
1

}
. (16)

Label of a correct prototype w+
j further away from the label of the input pattern will

result in a smaller weight α+
j . Weights for incorrect prototypes with respect to yi) are

determined as:

α−j = exp

{
−

T − κ
(
yi, c(w−

j )
)2

2σ2
2

}
· exp

{
− (dΛ(xi, w))2

2σ2
3

}
, (17)

where T is the maximum label difference between input pattern and wrong prototypes,

i.e. T = maxwj∈W− κ (yi, c(wj)). Wrong prototypes spatially closer to the input

pattern and with labels further away from that of the input pattern will have larger

weight α−j . We share the formulation of the weight functions with [3]. However, in

contrast to [3], the scale parameters σ1, σ2 and σ3 are learned as inherent part of the

parameter updates, as explained in section 3.23. Moreover, instead of unnatural pair-

wise cost functions of p-OGMLVQ, we formulate a single unified cost function:

Ca−OGMLV Q =
n∑

i=1

Φ(f(xi)), (18)

2D can be set as mean distance as well.
3In p-OGMLVQ, σ1 = σ2.
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where

f(xi) =
∑r

k=1 α+
k dΛ(xi, w

+
k )−∑r

k=1 α−k dΛ(xi, w
−
k )∑r

k=1 α+
k dΛ(xi, w

+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )

. (19)

Note that instead of having fj for each j-th pair of correct and incorrect prototypes,

we only have one f for all the identified prototypes. The p-OGMLVQ cost function

can be seen as sum of r weighted versions of the GMLVQ cost function [20]. The

correct/incorrect prototypes are not treated equally in the p-OGMLVQ cost function.

In contrast, our cost function treats the correct and incorrect prototypes equally by ac-

cumulating costs of all correct and all incorrect prototypes in a single cost f(xi). Our

approach do not take advantages of binary classifier as [24] does, but directly incor-

porate the class ordering information in a natural multi-class classification algorithm–

GMLVQ.

Following [3], we choose Φ as identity function. The learning rule can be derived

from the cost function by differentiating with respect prototypes:

∂f(xi)
∂w+

j

=
∂f(xi)

∂dΛ(xi, w
+
j )

·
∂dΛ(xi, w

+
j )

∂w+
j

, (20)

where

∂f(xi)
∂dΛ(xi, w

+
j )

(21)

=
α+

j

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2

−
α+

j

(∑r
k=1 α+

k dΛ(xi, w
+
k )−∑r

k=1 α−k dΛ(xi, w
−
k )
)

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2

=
2α+

j

∑r
k=1 α−k dΛ(xi, w

−
k )

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2 ,

and

∂dΛ(xi, w
+
j )

∂w+
j

= −2ΩT Ω(xi −w+
j ) = −2Λ(xi −w+

j ). (22)

Partial derivative of the cost function with respect to w−
j can be writen as:

∂f(xi)
∂w−

j

=
∂f(xi)

∂dΛ(xi, w
−
j )

·
∂dΛ(xi, w

−
j )

∂w−
j

, (23)

12



where

∂f(xi)
∂dΛ(xi, w

−
j )

(24)

= −
∂α−j

∂dΛ(xi,w
−
j )

dΛ(xi, w
+
j ) + α−j

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2

·
(

r∑

k=1

α+
k dΛ(xi, w

+
k ) +

r∑

k=1

α−k dΛ(xi, w
−
k )

)

−
∂α−j

∂dΛ(xi,w
−
j )

dΛ(xi, w
+
j ) + α−j

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2

·
(

r∑

k=1

α+
k dΛ(xi, w

+
k )−

r∑

k=1

α−k dΛ(xi, w
−
k )

)

= −
2
(
1− dΛ(xi, w

−
j )/(2σ2

3)
)
α−j
∑r

k=1 α+
k dΛ(xi, w

+
k )

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2 ,

and

∂dΛ(xi, w
−
j )

∂w−
j

= −2ΩT Ω(xi −w−
j ) = −2Λ(xi −w−

j ). (25)

Denoting µ+
j = ∂f(xi)

∂dΛ(xi,w
+
j )

and µ−j = − ∂f(xi)

∂dΛ(xi,w
−
j )

, derivative of the cost func-

tion with respect to Ω can be computed as follows:

∂f(xi)
∂Ω

=
r∑

k=1

∂f(xi)
∂dΛ(xi, w

+
k )

· ∂dΛ(xi, w
+
k )

∂Ω

+
r∑

k=1

∂f(xi)
∂dΛ(xi, w

−
k )

· ∂dΛ(xi, w
−
k )

∂Ω
(26)

=
r∑

k=1

µ+
k · ∂dΛ(xi, w

+
k )

∂Ω
−

r∑

k=1

µ−k · ∂dΛ(xi, w
−
k )

∂Ω
,

where

∂dΛ(xi, w
+
k )

∂Ω
= 2Ω(xi −w+

k )(xi −w+
k )T , (27)

and

∂dΛ(xi, w
−
k )

∂Ω
= 2Ω(xi −w−

k )(xi −w−
k )T . (28)

13



Consequently, updating rules can be expressed as:

w+
j := w+

j + ǫ · 2 · µ+
j · Λ · (xi −w+

j ), j = 1, ..., r (29)

w−
j := w+

j − ǫ · 2 · µ−j · Λ · (xi −w−
j ), j = 1, ..., r (30)

Ω := Ω− η ·
(

2 ·
r∑

k=1

µ+
k · Ω · (xi −w+

k )(xi −w+
k )T

−2 ·
r∑

k=1

µ−k · Ω · (xi −w−
k )(xi −w−

k )T

)
. (31)

Comparing the prototype updating rules in the original p-OGMLVQ approach ((5)–

(6)), with those of our approach ((29)–(30)), we observe that the prototype updates

differ mainly in the definition of µ+
j and µ−j . In p-OGMLVQ, the updating coefficient

µ+
j , j = 1, ..., r, corresponding to different correct prototypes are not directly compa-

rable (the same holds for µ−j ). However, in our approach µ+
j can be rewritten as

µ+
j = α+

j · γ+, (32)

where

γ+ =
2
∑r

k=1 α−k dΛ(xi, w
−
k )

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2 . (33)

The differences among µ+
j , j = 1, ..., r are solely due to the weights α+

j . Recall that

α+
j will be greater if the class of the corresponding prototype is closer to the class of

the input data xi in the label space. Consequently, greater µ+
j will be assigned to the

prototype whose class is closer to the input data.

Similarly, the weight µ−j can be rewritten as:

µ−j =
(
1− dΛ(xi, w

−
j )/(2σ2

3)
)
α−j · γ−, (34)

where

γ− =
2
∑r

k=1 α+
k dΛ(xi, w

+
k )

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2 .

We can see that µ−j increases with α−j but decreases with the distance dΛ(xi, w
−
j ),

which means that if the incorrect prototype is closer to the input, with large class dif-

ference, the updating push-away force µ−j will be greater.

14



3.1. Gradient structure

Following [25], we will now show that the derivatives of our cost function vanish

at boundaries of the prototype receptive fields and hence gradient based optimization

will constitute a valid gradient descent.

For convenience, we denote the squared distance between input x and prototype

wi, (x−wi)T · Λ · (x−wi), by di(x). Let J(x) = {J1, J2, ..., Jr(x)} and K(x) =

{K1, K2, ..., Kr(x)} be the sets of r(x) indices of correct and incorrect prototypes,

respectively, that are selected for updating, given the input x. Note that r(x) can vary,

depending on the input location x. Our scaled general cost function (18)–(19) has the

following form (taking Φ as identity function):

Ŝ =
1
n

n∑

i=1

∑r(xi)
k=1 α+

Jk
(xi) · dJk

(xi)−
∑r(xi)

k=1 α−Kk
(xi) · dKk

(xi)
∑r(xi)

k=1 α+
Jk

(xi) · dJk
(xi) +

∑r(xi)
k=1 α−Kk

(xi) · dKk
(xi)

. (35)

As in [25], suppose the input data comes from a distribution p on the input space Rm

and there is a labeling function y : Rm → {1, ..., C} assigning each input x its class

label y(x). The continuous version of the error function Ŝ reads

S =
∫

Rm

∑r(x)
k=1 α+

Jk
(x) · dJk

(x)−∑r(x)
k=1 α−Kk

(x) · dKk
(x)

∑r(x)
k=1 α+

Jk
(x) · dJk

(x) +
∑r(x)

k=1 α−Kk
(x) · dKk

(x)
dp(x). (36)

To simplify the presentation, in what follows we do not explicitly denote depen-

dence on x, with the understanding that quantities such as r, α±i , di etc. are all

functions of x. We partition the input space and the set of prototypes into class sets

Xℓ = {x|y(x) = ℓ} and Wℓ = {wj |c(wj) = ℓ}, respectively, ℓ = 1, 2, ..., C. As-

suming Xℓ are measurable with respect to p, we decompose S as follows:

C∑

ℓ=1

∫

Xℓ

∑
|l−ℓ|≤τ

∑
wj∈Wl

α+
j djh(j, l, ℓ)−∑|l−ℓ|>τ

∑
wk∈Wl

α−k dkh̃(k, ℓ)
∑

|l−ℓ|≤τ

∑
wj∈Wl

α+
j djh(j, l, ℓ) +

∑
|l−ℓ|>τ

∑
wk∈Wl

α−k dkh̃(k, ℓ)
dp(x)

(37)

where

• h(j, l, ℓ) is an indicator function attaining value 1 if and only if the prototype

wj ∈ Wl is the closest to x among the prototypes in Wl and the class l is among
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the r(x) correct classes w.r.t. class ℓ that are selected for prototype update, given

input x; otherwise h(j, l, ℓ) is zero.

• h̃(k, ℓ) is an indicator function indicating that wk is an incorrect prototype w.r.t.

class ℓ and is among the r(x) incorrect prototypes closest to x.

To find a closed-form expressions for the indicator functions h(j, l, ℓ) and h̃(k, ℓ)

we first introduce two further indicator functions:

• I(j, l) indicates that the prototype wj is the closest prototype to x among those

labeled with class l,

• Ĩ(k, D) indicates that the prototype wk is spatially within the D-neighbourhood

of x. Recall that D is the median distance of the example x of class ℓ = y(x) to

the incorrect prototypes, i.e. prototypes labeled with l, such that |l − ℓ| > τ .

Denoting by H the Heaviside function, we have

I(j, l) = H


 ∑

wq∈Wl

H(dq − dj)− |Wl|


 , (38)

where |Wl| is the size of Wl (and hence the number of prototypes labeled with class l)

and

Ĩ(k, D) = H(D − dk). (39)

Denote by N(ℓ) and Ñ(ℓ) the number of correct and incorrect prototypes, respec-

tively, given the input x and its class ℓ = y(x). We have,

N(ℓ) =
∑

|l−ℓ|≤τ

1, Ñ(ℓ) =
∑

|l−ℓ|>τ

∑

wk∈Wl

Ĩ(k, D).

Hence,

r(x) = min
{
N(ℓ), Ñ(ℓ)

}

= N(ℓ)−
(
N(ℓ)− Ñ(ℓ)

)
·H
(
N(ℓ)− Ñ(ℓ)

)

= Ñ(ℓ)−
(
Ñ(ℓ)−N(ℓ)

)
·H
(
Ñ(ℓ)−N(ℓ)

)
.

We are now ready to formally express h(j, l, ℓ) and h̃(k, ℓ):
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h(j, l, ℓ) = I(j, l) ·H (g(j, ℓ) + f(ℓ)) , (40)

h̃(k, ℓ) = Ĩ(k, D) ·H(g̃(j, ℓ) + f̃(ℓ)), (41)

where

g(j, ℓ) =
∑

|l−ℓ|≤τ

∑

wq∈Wl

I(q, l) ·H(dq − dj), (42)

f(ℓ) = −(N(ℓ)− r(x) + 1)

= −(N(ℓ)− Ñ(ℓ)) ·H(N(ℓ)− Ñ(ℓ))− 1, (43)

g̃(k, ℓ) =
∑

|l−ℓ|>τ

∑

wq∈Wl

Ĩ(q, D) ·H(dq − dk), (44)

f̃(ℓ) = −(Ñ(ℓ)− r(x) + 1)

= −
(
Ñ(ℓ)−N(ℓ)

)
·H(Ñ(ℓ)−N(ℓ))− 1. (45)

The first factor of h(j, l, ℓ) verifies whether the prototype wj is one of the “correct”

prototypes, while the second factor further checks whether this prototype is one of the

first r closest ones among all the “correct” prototypes. This is realized by ordering

the “correct” prototypes through g(j, ℓ) and selecting the r first closest ones by f(ℓ).

The same trick is used in h̃(k, ℓ) to pick the first r closest prototypes among those

“incorrect” ones.

Let ci = c(wi) be the label of prototype wi. Denoting

Di = Λ · (x−wi),

E(ℓ) =
∑

|l−ℓ|≤τ

∑

wj∈Wl

α+
j djh(j, l, ℓ),

and

Ẽ(ℓ) =
∑

|l−ℓ|>τ

∑

wk∈Wl

α−k dkh̃(k, ℓ),

the derivative of (37) with respect to wi reads:
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∑

|ℓ−ci|≤τ

∫

Xℓ

4αiẼ(ℓ)
(E(ℓ) + Ẽ(ℓ))2

Dih(i, ci, ℓ)dp(x) (46)

+
∑

|ℓ−ci|>τ

∫

Xℓ

−4(1− di/(2σ2
3))αiE(ℓ)

(E(ℓ) + Ẽ(ℓ))2
Dih̃(i, ℓ)dp(x) (47)

+
C∑

ℓ=1

∫

Xℓ

∑

|l−ℓ|≤τ

∑

wj∈Wl

2αjdjẼ(ℓ)
(E(ℓ) + Ẽ(ℓ))2

∂h(j, l, ℓ)
∂wi

dp(x) (48)

+
∑

|ℓ−ci|>τ

∫

Xℓ

∑

|l−ℓ|>τ

∑

wk∈Wl

2αkdkE(ℓ)
(E(ℓ) + Ẽ(ℓ))2

∂h̃(k, ℓ)
∂wi

dp(x). (49)

Note that (46) and (47) correspond to updates (29) and (30), respectively. Terms (48)

and (49) will vanish as shown in the appendix.

Similarly, we examine the derivative of (37) with respective to the metric term Ω.

Denoting Ω(x−wi)(x−wi)T by Fi, then the derivative reads:

C∑

ℓ=1

∫

Xℓ

4
(E(ℓ) + Ẽ(ℓ))2


Ẽ(ℓ)

∑

|l−ℓ|≤τ

∑

wj∈Wl

αjFjh(j, l, ℓ) (50)

−E(ℓ)
∑

|l−ℓ|>τ

∑

wk∈Wl

(1− dk/(2σ2
3))αkFkh̃(k, ℓ)


 dp(x) (51)

+
C∑

ℓ=1

∫

Xℓ

2
(E(ℓ) + Ẽ(ℓ))2


Ẽ(ℓ)

∑

|l−ℓ|≤τ

∑

wj∈Wl

αjdj
∂h(j, l, ℓ)

∂Ω
(52)

−Ẽ(ℓ)
∑

|l−ℓ|>τ

∑

k∈Wl

αkdk
∂h̃(k, ℓ)

∂Ω


 dp(x). (53)

Terms (50) and (51) correspond to the update of Ω in (31). As shown in the appendix,

(52) and (53) will vanish. Consequently, with an appropriate choice of learning rate,

the update of a-OGMLVQ constitutes a stochastic gradient descent method.

3.2. Hyperparameter Learning in the Proposed Algorithm

In this section, we propose to automatically adapt the bandwidth parameters σ1, σ2,

and σ3 in the Gaussian weighting functions during training process through minimizing

the cost function with respect to the parameters σ1, σ2, and σ3.
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Partial derivative of f(xi) with respect to σ1 is computed as follows:

∂f(xi)
∂σ1

=
r∑

j=1

∂f(xi)
∂α+

j

·
∂α+

j

∂σ1
, (54)

where

∂f(xi)
∂α+

j

=
dΛ(xi, w

+
j )

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2

·
(

r∑

k=1

α+
k dΛ(xi, w

+
k ) +

r∑

k=1

α−k dΛ(xi, w
−
k )

)

−
dΛ(xi, w

+
j )

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2

·
(

r∑

k=1

α+
k dΛ(xi, w

+
k )−

r∑

k=1

α−k dΛ(xi, w
−
k )

)

=
2dΛ(xi, w

+
j )
∑r

k=1 α−k dΛ(xi, w
−
k )

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2

= dΛ(xi, w
+
j ) · γ+, (55)

and

∂α+
j

∂σ1
= α+

j

h
(
c(xi), c(w+

j )
)2

2σ3
1

. (56)

Partial derivatives of f(xi) with respect to σ2 and σ3 read:

∂f(xi)
∂σ2

=
r∑

j=1

∂f(xi)
∂α−j

·
∂α−j
∂σ2

, (57)

∂f(xi)
∂σ3

=
r∑

j=1

∂f(xi)
∂α−j

·
∂α−j
∂σ3

, (58)
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where

∂f(xi)
∂α−j

=

−
dΛ(xi, w

−
j )

(∑r
j=1 α+

j dΛ(xi, w
+
j ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2

·
(

r∑

k=1

α+
k dΛ(xi, w

+
k ) +

r∑

k=1

α−k dΛ(xi, w
−
k )

)

−
dΛ(xi, w

−
j )

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2

·
(

r∑

k=1

α+
k dΛ(xi, w

+
k )−

r∑

k=1

α−k dΛ(xi, w
−
k )

)

= −
2dΛ(xi, w

−
j )
∑r

k=1 α+
k dΛ(xi, w

+
k )

(∑r
k=1 α+

k dΛ(xi, w
+
k ) +

∑r
k=1 α−k dΛ(xi, w

−
k )
)2

= −dΛ(xi, w
−
j ) · γ−, (59)

and

∂α−j
∂σ2

= α−j

(
T − h(c(xi)− c(w−

j )
)2

2σ3
2

, (60)

∂α

∂σ3
= α−j

dΛ(xi, wj−)
2σ3

3

. (61)

Hence, updating of σ1, σ2 and σ3 proceeds as follows:

σ1 := σ1 − ǫ · γ+

2σ3
1

·
r∑

j=1

α+
j · dΛ(xi, w

+
j ) ·

(
h(c(xi), c(w+

j )
)2

, (62)

σ2 := σ2 + ǫ · γ−

2σ3
2

·
r∑

j=1

α−j · dΛ(xi, w
−
j ) ·

(
T − h(c(xi), c(w−

j )
)2

, (63)

σ3 := σ3 + ǫ · γ−

2σ3
3

·
r∑

j=1

α−j ·
(
dΛ(xi, w

−
j )
)2

. (64)

The hyperparameter updaptation (62)–(64) is similar to that in Robust Soft LVQ algo-

rithm presented in [26]. However the hyperparameters in our approach serve a differ-

ence purpose, introducing scales to the ordered label and input spaces.

The overall method is summarized in algorithm 1.
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Algorithm 1 The proposed ordinal regression algorithm based on LVQ

1: Initialization : Initialize the prototypes wj ∈ Rd. Initialize the metric tensor

parameter Ω by setting it as identity matrix. Randomly initialize the bandwidth

parameters σ1, σ2, and σ3.

2: while a stopping criterion is not reached do

3: Randomly select a training example (xi, yi).

4: Determine the correct classes C+ and incorrect classes C− for xi based on (12)

and (13), respectively.

5: Identify the correct prototype set W+ and incorrect prototype set W− using

(14) and (15), respectively.

6: Order W+ and W− in increasing order in terms of distance to the input

xi, only keep the first r protptypes in the set W+ and W−, where r =

min(|W+|, |W−|).
7: Compute the weights for the correct and incorrect prototypes found in the pre-

vious step according to (16) and (17), respectively.

8: for ∀wj ∈ W+ do

9: Update wj according to (29)

10: end for

11: for ∀wj ∈ W− do

12: Update wj according to (30)

13: end for

14: Update Ω according to (31). Similarly, Ω is normalized so that
∑

i Λii = 1 to

prevent the algorithm from degeneration.

15: Update σ1, σ2, and σ3 according to (62), (63), and (64), respectively.

16: end while
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4. Experiments

In this section, we study the performance of the proposed ordinal approach. Three

performance measures were used:

1. MZE: The Mean Zero-one Error (MZE), also known as misclassification rate, is

the fraction of incorrect predictions:

MZE =
∑n

i=1 I(yi 6= ŷ(xi))
n

, (65)

where n is the number of the test examples. I(·) is the indicator function whose

function value is 1, if the argument ∗ is true, 0 otherwise. MZE values range

from 0 to 1 and reflect a global performance for the classification task (without

considering class order). However, this performance measurement alone is not

suitable for ordinal regression problems.

2. MAE: The Mean Absolute Error (MAE) is the average absolute deviation of the

predicted ranks from the true ranks:

MAE =
∑n

i=1 |yi − ŷ(xi)|
n

. (66)

The MAE values range from 0 to C − 1. Since MZE does not reflect the cat-

egory order, MAE is typically used in the ordinal regression literature together

with MZE [27]. However, this performance measurement is not suitable for im-

balanced datasets.

3. MMAE: Macroaveraged Mean Absolute Error (MMAE) is specially designed for

evaluating ordinal regression problems with imbalanced classes:

MMAE =
1
C

C∑

j=1

∑
yi=j |yi − ŷ(xi)|

nj
, (67)

where C is the number of classes and nj is the number of examples of class j.

The MMAE values also range from 0 to C − 1.

We first compared our approach with p-OGMLVQ on the ordinal regression bench-

mark datasets provided by Chu et. al [15]. As a baseline, the performance of GMLVQ
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Table 1: Brief description of the ordinal regression benchmark datasets

Dataset Dimension #Training #Test

Pyrimidines 27 50 24

MachineCPU 6 150 59

Boston 13 300 206

Abalone 8 1000 3177

Bank 32 3000 5182

Computer 21 4000 4182

California 8 5000 15640

Census 8 6000 16784

was also reported. A brief description of the datasets is given by Table 1. These

datasets are not real ordinal datasets but regression ones. These datasets will be turned

into ordinal regression through discretization. Following [3], the continuous targets

were discretized into 10 ordinal categories (equal-frequency binning). The input vec-

tors were normalized to zero mean and unit variance. Each data set was randomly

partitioned into training/test splits according to Table 1. The partition was repeated 20

times independently, yielding 20 re-sampled training/test sets.

Prototype initialization and learning rates were set in the same way for all three

approaches. Number of prototypes per class was tuned on the training sets, with can-

didates ranging in {1, 2, 3, 4, 5}, via 5-fold cross validation. For p-OGMLVQ, the

ranking loss threshold τ together with the bandwidth parameters σ and σ1 were also

tuned through 5-fold cross validation. Candidate values for the hyperparameters are

listed as follows: τ ∈ {0, 1, 2}, σ, σ1 ∈ {0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1, 1.2, 2, 3, 5, 50}.

For our approach, we also tuned the ranking loss threshold τ via 5-fold cross validation

over the same candidate values as in p-OGMLVQ (The bandwidth parameters in our

approach are automatically adapted during training process).

The MZE and MAE results 4, along with standard deviation across 20 runs, are

4MMAE results were not given in this case, since these datasets are balanced.
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Figure 3: MZE results for the eight ordinal regression benchmark datasets.

given by Figure 3 and 4, respectively. The results show that our a-OGMLVQ ordinal

approach was better than p-OGMLVQ in terms of MZE and MAE performance mea-

sures in most of the datasets, only occasionally our a-OGMLVQ obtained comparable

performance. One possible reason might be that the problem mentioned in Figure 2 do

not happen in that case. Still, our a-OGMLVQ ordinal approach is consistently better

than the baseline GMLVQ approach.

We further compared our ordinal approach to other ordinal approaches: two sup-

port vector ordinal approaches proposed in [15] – support vector ordinal regression

with implicit constraints (SVORIM) and support vector ordinal regression with explicit

constraints (SVOREX), SVM based reduction framework of ordinal regression to bi-

nary classification (RED-SVM) proposed in [17], and an ordinal approach extended

from kernel discriminate analysis proposed in [19]. The MZE and MAE results are

reported in Tables 2 and 3, respectively. Our a-OGMLVQ approach beats the other

approaches four times in terms of MZE and twice in terms of MAE. In order to have

a general summary of the results, we computed the mean ranking values when com-
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Figure 4: MAE results for the eight ordinal regression benchmark datasets.

paring the different methods, where rank R = 1 corresponds to the best method, while

R = 6 represents for the worse one. The mean rankings R̄ were computed based on

the performance on the test sets. The results are given in Table 4, indicating that our

approach is the best in terms of MZE and third in terms of MAE. For both performance

measures the mean rank of a-OGMLVQ is clearly superior to that of p-OGMLVQ.

The datasets described in Table 1 are not real ordinal regression tasks but adapted

from regression tasks. Thus, we further evaluated our approach on 10 real ordinal

regression datasets with imballanced classes suggested in [27], which are briefly de-

scribed in Table 5. Following the experimental setup in [27], 30 different random splits

of the datasets were considered, with 75% of the instances for training, the remaining

25% for testing. The data partitions were shared by all the compared methods. The

results reported in Tables 6, 7, and 8 are the average values over 30 runs, together

with standard derivations. From the results, we can see that our approach beats the

other algorithms once in terms of MZE, twice in terms of MAE, and three times in

terms of MMAE. Again, the mean rankings were computed and reported in Table 9.
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Table 2: Mean zero-one error (MZE) results along with standard deviations (±) across 20 runs of the ordinal

regression benchmark datasets given in Table 1. Our a-OGMLVQ approach is compared with KDLOR

reported in [19], SVORIM and SVOREX reported in [15], RED-SVM reported in [17], and p-OGMLVQ

reported in [3]. The best performance for each dataset has been boldfaced.

Dataset/Method KDLOR SVORIM SVOREX RED-SVM p-OGMLVQ a-OGMLVQ

Pyrimidines 0.739 ± 0.055 0.719 ± 0.066 0.752 ± 0.063 0.762 ± 0.021 0.645 ± 0.106 0.623 ± 0.073

MachineCPU 0.480 ± 0.010 0.655 ± 0.045 0.611 ± 0.056 0.572 ±0.013 0.415 ± 0.096 0.385 ± 0.056

Boston 0.560 ± 0.020 0.561 ± 0.026 0.569 ±0.025 0.541 ± 0.009 0.534± 0.024 0.512 ± 0.040

Abalone 0.740 ± 0.020 0.732 ± 0.007 0.736 ± 0.011 0.721 ± 0.002 0.532 ± 0.049 0.482 ± 0.011

Bank 0.745 ± 0.003 0.751 ± 0.005 0.744 ± 0.005 0.751 ± 0.001 0.750 ± 0.008 0.745 ± 0.003

Computer 0.472 ± 0.020 0.473 ± 0.005 0.462 ± 0.005 0.451 ±0.002 0.510 ± 0.010 0.510 ± 0.004

California 0.643 ± 0.005 0.639 ± 0.003 0.640 ± 0.003 0.613 ± 0.001 0.680 ± 0.007 0.682 ± 0.005

Census 0.711 ± 0.020 0.705 ± 0.002 0.699 ± 0.002 0.688 ± 0.001 0.735 ± 0.014 0.724 ± 0.004

Table 3: Mean absolute error (MAE) results along with standard deviations (±) across 20 runs of the ordinal

regression benchmark datasets given in Table 1. Our a-OGMLVQ approach is compared with KDLOR

reported in [19], SVORIM and SVOREX reported in [15], RED-SVM reported in [17], and p-OGMLVQ

reported in [3]. The best performance for each dataset has been boldfaced.

Dataset KDLOR SVOR-IMC SVOR-EXC RED-SVM p-OGMLVQ a-OGMLVQ

Pyrimidines 1.100 ± 0.100 1.294 ± 0.204 1.331 ± 0.193 1.304 ± 0.040 0.985 ± 0.169 1.114 ± 0.208

MachineCPU 0.690 ± 0.015 0.990 ±0.115 0.986 ± 0.127 0.842 ± 0.022 0.630 ± 0.176 0.514 ± 0.083

Boston 0.700 ± 0.035 0.747 ± 0.049 0.773 ± 0.049 0.732 ± 0.013 0.731 ± 0.050 0.702 ± 0.057

Abalone 1.400 ± 0.050 1.361 ± 0.013 1.391 ± 0.021 1.383 ± 0.004 0.731 ± 0.068 0.712 ± 0.028

Bank 1.450 ± 0.020 1.393 ± 0.011 1.512 ± 0.017 1.404 ± 0.002 1.462 ± 0.009 1.460 ± 0.014

Computer 0.601 ± 0.025 0.596 ±0.008 0.602 ±0.009 0.565 ±0.002 0.698±0.023 0.687 ± 0.008

California 0.907 ±0.004 1.008 ±0.005 1.068±0.005 0.940 ±0.001 1.208 ±0.018 1.204 ± 0.009

Census 1.213±0.003 1.205 ±0.007 1.270 ±0.007 1.143±0.002 1.582 ±0.018 1.526 ± 0.038

Table 4: Mean ranking for the generalization sets of the ordinal benchmark datasets.

Method R̄MZE R̄MAE

KDLOR 3.94 2.75

SVORIM 4.19 3.25

SVORIEX 3.75 5.00

RED-SVM 3.19 2.88

p-OGMLVQ 3.69 3.88

a-OGLLVQ 2.25 3.25
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Table 5: Real ordinal regression datasets used for the experiments (n is the number of patterns, d is the

number of attributes and K is the number of classes).

Dataset n d K Ordered Class Distribution

automobile 205 71 6 (3,22,67,54,32,27)

bondrate 57 37 5 (6,33,12,5,1)

contact-lenses 24 6 3 (15,5,4)

eucalyptus 736 91 5 (180,107,130,214,105)

newthyroid 215 5 3 (30,150,35)

pasture 36 25 3 (12,12,12)

squash-stored 52 51 3 (23,21,8)

squash-unstored 52 52 3 (24,24,4)

tae 151 54 3 (49,50,52)

winequality-red 1599 11 6 (10,53,681,638,199,18)

Most importantly, our approach has the best mean rank in terms of the most relevant

measure MMAE (imballanced classes). Again, our approach is consistently better than

p-OGMLVQ in all the three performance measures.

Overall, our method retains a competitive edge when compared with the alternative

methods considered in this study. Of course, there will be situations where one method

is better than the other, but the overall picture emerging from the experiments is that

our methods clearly have competitive performance with other methods, while retaining

the advantages of prototype based models - e.g. interpretability, natural extension to

relevance and metric learning etc. Besides generalization performance, typically there

are other criteria to be considered in real world machine learning applications - for

example training complexity or model interpretability. In terms of generalization per-

formance, there are many application scenarios where LVQ performs on par with e.g.

SVM. Those two approaches are derived in different frameworks and based on differ-

ent principles. SVM focuses on boundaries of receptive fields and hence can construct

more complex decision boundaries naturally, but at the cost of much more complex,

less interpretable models and sufficient data. Often, it is preferable to have simple, in-
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Table 6: Mean zero-one error (MZE) results along with standard deviations (±) across 30 runs of the real

ordinal datasets. The best performance for each dataset has been boldfaced.

Dataset/Method KDLOR SVORIM SVOREX RED-SVM p-OGMLVQ a-OGMLVQ

automobile 0.228 ± 0.058 0.361 ± 0.076 0.335 ± 0.068 0.316 ± 0.055 0.325 ± 0.099 0.275 ±0.055

bondrate 0.458 ± 0.087 0.453 ± 0.092 0.447 ±0.096 0.447 ± 0.073 0.491 ± 0.090 0.477 ± 0.112

contact-lenses 0.411 ± 0.174 0.367 ± 0.127 0.350 ± 0.127 0.300 ± 0.111 0.233 ± 0.112 0.222 ± 0.126

eucalyptus 0.389 ± 0.028 0.361 ± 0.028 0.353 ± 0.029 ± 0.349 ± 0.024 0.368 ± 0.025 0.367 ± 0.026

newthyroid 0.028 ± 0.019 0.031 ± 0.021 0.033 ± 0.022 0.031 ± 0.022 0.055 ± 0.025 0.043 ± 0.021

pasture 0.322 ± 0.125 0.333 ± 0.120 0.370 ± 0.1 0.352 ± 0.134 0.304 ± 0.109 0.314 ± 0.105

squash-stored 0.297 ± 0.112 0.361 ± 0.118 0.372 ±0.113 0.336 ± 0.104 0.394 ± 0.124 0.389 ± 0.133

squash-unstored 0.172 ± 0.104 0.236 ± 0.103 0.282 ± 0.128 0.251 ± 0.086 0.366 ± 0.136 0.271 ± 0.106

tae 0.445 ± 0.052 0.410 ± 0.066 0.419 ± 0.060 0.478 ± 0.074 0.440 ± 0.063 0.428 ± 0.069

winequality-red 0.397 ± 0.017 0.370 ± 0.022 0.361 ± 0.022 0.392 ± 0.022 0.415 ± 0.016 0.415 ± 0.024

Table 7: Mean absolute error (MAE) results along with standard deviations (±) across 30 runs of the real

ordinal datasets. The best performance for each dataset has been boldfaced.

Dataset/Method KDLOR SVOR-IMC SVOR-EXC RED-SVM p-OGMLVQ a-OGMLVQ

automobile 0.334 ± 0.076 0.424 ± 0.090 0.408 ± 0.089 0.393 ± 0.073 0.448 ± 0.122 0.403 ± 0.104

bondrate 0.587 ± 0.107 0.591 ± 0.102 0.573 ± 0.121 0.598 ± 0.008 0.564 ± 0.121 0.536 ± 0.137

contact-lenses 0.539 ± 0.208 0.506 ± 0.167 0.489 ± 0.185 0.378 ± 0.169 0.338 ± 0.172 0.327 ± 0.188

eucalyptus 0.424 ± 0.032 0.395 ± 0.035 0.392 ± 0.031 0.380 ± 0.027 0.422 ± 0.030 0.419 ± 0.032

newthyroid 0.028 ± 0.019 0.031 ± 0.021 0.033 ± 0.022 0.032 ± 0.022 0.055 ± 0.024 0.043 ± 0.021

pasture 0.322 ± 0.125 0.333 ± 0.120 0.370 ± 0.125 0.359 ± 0.142 0.307 ± 0.116 0.318 ± 0.112

squash-stored 0.308 ± 0.128 0.372 ± 0.126 0.382 ± 0.139 0.346 ± 0.110 0.415 ± 0.141 0.410 ±0.151

squash-unstored 0.172 ± 0.104 0.239 ± 0.109 0.282 ± 0.128 0.251 ± 0.086 0.394 ± 0.158 0.227 ± 0.096

tae 0.473 ± 0.069 0.461 ± 0.081 0.485 ± 0.078 0.515 ± 0.087 0.551 ± 0.090 0.536 ± 0.096

winequality-red 0.443 ± 0.019 0.406 ± 0.022 0.408 ± 0.023 0.419 ± 0.021 0.458 ± 0.020 0.458 ± 0.022
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Table 8: Mean macro-averaged absolute error (MMAE) results along with standard deviations (±) across 30

runs of the real ordinal datasets. The best performance for each dataset has been boldfaced.

Dataset/Method KDLOR SVOR-IMC SVOR-EXC RED-SVM p-OGMLVQ a-OGMLVQ

automobile 0.345 ± 0.104 0.518 ± 0.096 0.523 ± 0.105 0.468 ± 0.096 0.482 ± 0.125 0.446 ± 0.132

bondrate 1.037 ± 0.270 1.114 ± 0.233 1.072 ± 0.217 1.184 ± 0.225 0.768 ± 0.243 0.737 ± 0.251

contact-lenses 0.519 ± 0.280 0.589 ± 0.259 0.517 ± 0.303 0.385 ± 0.198 0.243 ± 0.166 0.221 ± 0.182

eucalyptus 0.426 ± 0.038 0.420 ± 0.043 0.411 ± 0.030 0.414 ± 0.030 0.450 ± 0.035 0.477 ± 0.035

newthyroid 0.059 ± 0.040 0.055 ± 0.042 0.054 ± 0.042 0.057 ± 0.049 0.124 ± 0.056 0.097 ± 0.051

pasture 0.322 ± 0.125 0.333 ± 0.120 0.370 ± 0.125 0.359 ± 0.142 0.307 ± 0.116 0.318 ± 0.112

squash-stored 0.349 ± 0.156 0.427 ± 0.148 0.433 ± 0.172 0.391 ± 0.149 0.415 ± 0.171 0.411 ± 0.181

squash-unstored 0.309 ± 0.180 0.367 ± 0.140 0.426 ± 0.157 0.348 ± 0.159 0.488 ± 0.187 0.228 ± 0.130

tae 0.471 ± 0.070 0.459 ± 0.081 0.484 ± 0.079 0.513 ± 0.086 0.553 ± 0.091 0.537 ±0.096

winequality-red 1.258 ± 0.069 1.093 ± 0.072 1.095 ± 0.067 1.068 ± 0.069 1.078 ± 0.044 1.069 ± 0.041

Table 9: Mean ranking for the generalization sets of the real ordinal datasets.

Method R̄MZE R̄MAE R̄MMAE

KDLOR 3.2000 2.900 3.100

SVORIM 3.150 3.200 3.900

SVORIEX 3.450 3.700 4.100

RED-SVM 3.000 3.300 3.200

p-OGMLVQ 4.550 4.550 3.900

a-OGMLVQ 3.650 3.350 2.800
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terpretable models with generalization performance approaching that of more complex

models, while retaining the advantage of constant (as opposed to linear) time classifi-

cation effort and linear (as opposed to cubic) time training effort. Last but not least,

LVQ models are particularly well suited for life-long learning.

5. Conclusion

We have proposed a new approach to classify data with ordered categories within

the learning vector quantization framework. This approach extends the existing p-

OGMLVQ method to more natural cost function and more intuitive prototype updating

rules.

In contrast to p-OGMLVQ, which pairs the identified correct and incorrect proto-

types in distinct couples and then effectively defines a cost for each such couple, our

approach defines a single unified cost for all the identified prototypes. Consequently,

the updating rule derived from our cost function explicitly reflects the global ordinal

relations amongst the prototype classes. Furthermore, we proposed to automatically

adapt the bandwidth parameters of the weighting functions during training.

Empirical experiments have been conducted to verify the effectiveness of our ordi-

nal approach. The experimental results show that the performance of our ordinal ap-

proach is better than p-OGMLVQ. We also compared our approach with other ordinal

classifiers. The results show that our approach could obtain comparable performance

sometimes superior performance, especially in terms of (the most relevant) MMAE

performance measure.
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Appendix: Proof of Vanishing Gradient

In this appendix we will show that the terms (48), (49), (52) and (53) of the gradient

of our error function vanish.

Note that derivative of the Heaviside function is the delta function δ, which is a

symmetric function with δ(x) = 0 for x 6= 0 and
∫

R δ(x) = 1. We will first concentrate

on terms (48) and (49). The integrand in (48) can be expanded as

∑

|l−ℓ|≤τ

∑

wj∈Wl

2αjdjẼ(ℓ)
(E(ℓ) + Ẽ(ℓ))2

H(g(j, ℓ) + f(ℓ))
∂I(j, l)

∂wi
(68)

+
∑

|l−ℓ|≤τ

∑

wj∈Wl

2αjdjẼ(ℓ)
(E(ℓ) + Ẽ(ℓ))2

I(j, l)δ(g(j, ℓ) + f(ℓ))
∂g(j, ℓ)

∂wi
(69)

+
∑

|l−ℓ|≤τ

∑

wj∈Wl

2αjdjẼ(ℓ)
(E(ℓ) + Ẽ(ℓ))2

I(j, l)δ(g(j, ℓ) + f(ℓ))
∂f(ℓ)
∂wi

. (70)

First, we show that (68) vanishes. Denoting

2αjdjẼ(ℓ)
(E(ℓ) + Ẽ(ℓ))2

·H(g(j, ℓ) + f(ℓ)) · δ


 ∑

wq∈Wl

H(dq − dj)− |Wl|




by T (j, l, ℓ), (68) can then be rewritten as

∑

|l−ℓ|≤τ

∑

wj∈Wl

[
2αjdjẼ(ℓ)

(E(ℓ) + Ẽ(ℓ))2
·H(g(j, ℓ) + f(ℓ))

δ


 ∑

wq∈Wci

H(dq − dj)− |Wci |


 ∑

wq∈Wl

δ(dq − dj)
(

∂dq

∂wi
− ∂dj

∂wi

)


=
∑

|l−ℓ|≤τ

∑

wj∈Wl

j 6=i

T (j, l, ℓ)δ(di − dj)2Di

+T (i, ci, ℓ)
∑

|l−ℓ|≤τ

∑

wq∈Wl

q 6=i

δ(dq − di)(−2Di).

This expression vanishes since δ is symmetric and non-vanishing only for di = dj and

dq = di.

We now show that (69) vanishes. Denoted by Q(j, l, ℓ) the term

2αjdjẼ(ℓ)
(E(ℓ) + Ẽ(ℓ))2

· I(j, l) · δ(g(j, ℓ) + f(ℓ)),
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then, (69) yeilds:

∑

|l−ℓ|≤τ

∑

wj∈Wl

Q(j, l, ℓ)
∑

|s−ℓ|≤τ

∑

wq∈Ws

H(dq − dj)
∂I(q, s)

∂wi
(71)

+
∑

|l−ℓ|≤τ

∑

wj∈Wl

Q(j, l, ℓ)
∑

|s−ℓ|≤τ

∑

wq∈Ws

I(q, s)δ(dq − dj)
[

∂dq

∂wi
− ∂dj

∂wi

]
(72)

Let

A(q, s) = H(dq − dj) · δ
( ∑

wt∈Ws

H(dt − dq)− |Ws|
)

,

(71) vanishes because

∑

|s−ℓ|≤τ

∑

wq∈Ws

H(dq − dj)
∂I(q, s)

∂wi

=
∑

|s−ℓ|≤τ

∑

wq∈Ws

H(dq − dj) δ

( ∑

wt∈Ws

H(dt − dq)− |Ws|
)

∑

wq∈Ws

δ(dt − dq)
(

∂dt

∂wi
− ∂dq

∂wi

)

=
∑

|s−ℓ|≤τ

∑

wq∈Ws

q 6=i

A(q, s)δ(di − dq)2Di

+A(i, ci)
∑

|s−c|≤τ

∑

wt∈Ws
t6=i

δ(dt − di)(−2Di)

vanishes since δ is symmetric and non-vanishing only for di = dq and dt = di.

(72) will also vanish, since it leads to:

∑

|l−ℓ|≤τ

∑

wj∈Wl

j 6=i

Q(j, l, ℓ)I(q, s)δ(di − dj)2Di

+ Q(i, ci, ℓ)
∑

|l−ℓ|≤τ

∑

wq∈Ws

q 6=i

I(q, s)δ(dq − di)(−2Di).

Since both (71) and (72) are vanishing, (69) vanishes.

Finally, we show (70) vanishes. (70) leads to

∑

|l−ℓ|≤τ

∑

wj∈Wl

Q(j, l, ℓ)

(
∂Ñ(ℓ)
∂wi

H(N(ℓ)− Ñ(ℓ))

+ (N(ℓ)− Ñ(ℓ))δ(N(ℓ)− Ñ(ℓ))
∂Ñ(ℓ)
∂wi

)
.
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This term vanishes because

∂Ñ(ℓ)
∂wi

=
∑

|l−ℓ|>τ

∑

wj∈Wl

δ(D − dk)
(

∂D

∂wi
− ∂dk

∂wi

)
(73)

vanishes (δ is symmetric and non-vanishing only for D = dk).

In summary, (68), (69), and (70) all vanish and hence the integrand in (48) van-

ishes as well. We will now show with analogous arguments that the integrand of (49)

vanishes. We have:

∑

|l−ℓ|>τ

∑

wk∈Wl

2αkdkE(ℓ)
(E(ℓ) + Ẽ(ℓ))2

H(g̃(k, ℓ) + f̃(ℓ))
∂Ĩ(k, D)

∂wi
(74)

+
∑

|l−ℓ|>τ

∑

wk∈Wl

2αkdkE(ℓ)
(E(ℓ) + Ẽ(ℓ))2

Ĩ(k, D)δ(g̃(k, ℓ) + f̃(ℓ))
∂g̃(k, ℓ)

∂wi
(75)

+
∑

|l−ℓ|>τ

∑

wk∈Wl

2αkdkE(ℓ)
(E(ℓ) + Ẽ(ℓ))2

Ĩ(k, D)δ(g̃(k, ℓ) + f̃(ℓ))
∂f̃(ℓ)
∂wi

. (76)

As before, we argue that (74), (75), and (76) vanish, separately.

First, (74) vanishes, since

∂Ĩ(k, D)
∂wi

= δ(D − dk)(
∂D

∂wi
− ∂dk

∂wi
) = 0. (77)

This is because δ is symmetric and non-vanishing only for D = dk. Let us move on to

(75). Denoting
2αkdkE(ℓ)

(E(ℓ) + Ẽ(ℓ))2
Ĩ(k, D)δ(g̃(k, ℓ) + f̃(ℓ))

by G̃(k, ℓ), (75) leads to

∑

|l−ℓ|>τ

∑

wk∈Wl

G̃(k, ℓ)
∑

|s−ℓ|>τ

∑

wq∈Ws

H(dq − dk)
∂Ĩ(q, D)

∂wi
(78)

+
∑

|l−ℓ|>τ

∑

wk∈Wl

G̃(k, ℓ)
∑

|s−ℓ|>τ

∑

wq∈Ws

Ĩ(q, D)δ(dq − dk)(
∂dq

∂wi
− ∂dk

∂wi
)(79)

Now, (78) vanishes, since we have already shown that ∂Ĩ(q,D)
∂wi

= 0. The term (79)

leads to

∑

|l−ℓ|>τ

∑

wk∈Wl
k 6=i

G̃(k, ℓ)Ĩ(i, D)δ(di − dk)2Di

+ G̃(i, ℓ)
∑

|s−ℓ|>τ

∑

wq∈Ws

q 6=i

Ĩ(q, D)δ(dq − di)(−2Di),
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which vanishes, since δ is symmetric and non-vanishing only for di = dk and dq = di.

Finally, (76) vanishes as it leads to:

∑

|l−ℓ|>τ

∑

wk∈Wl

G̃(k, ℓ)

(
−H(Ñ(ℓ)−N(ℓ))

∂Ñ(ℓ)
∂wi

− ((Ñ (ℓ)−N(ℓ))δ(Ñ(ℓ)−N(ℓ))
∂Ñ(ℓ)
∂wi

)

and this term vanishes, since ∂Ñ(ℓ)
∂wi

= 0, as shown in (73).

We now turn our attention to terms (52) and (53):

∑

|l−ℓ|≤τ

∑

wj∈Wl

2αjdjẼ(ℓ)
(E(ℓ) + Ẽ(ℓ))2

H(g(j, ℓ) + f(ℓ))
∂I(j, l)

∂Ω
) (80)

+
∑

|l−ℓ|≤τ

∑

wj∈Wl

Q(j, l, ℓ)
(

∂g(j, ℓ)
∂Ω

+
∂f(ℓ)
∂Ω

)
(81)

−
∑

|l−ℓ|>τ

∑

wk∈Wl

2αkdkE(ℓ)
(E(ℓ) + Ẽ(ℓ))2

H(g̃(k, ℓ) + f̃(ℓ))
∂Ĩ(k, D)

∂Ω
(82)

−
∑

|l−ℓ|>τ

∑

wk∈Wl

G̃(k, ℓ)

(
∂g̃(k, ℓ)

∂Ω
+

∂f̃(ℓ)
∂Ω

)
. (83)

The partial derivatives ∂I(j,l)
∂Ω ), ∂g(j,ℓ)

∂Ω , ∂f(ℓ)
∂Ω , ∂Ĩ(k,D)

∂Ω , ∂g̃(k,ℓ)
∂wi

, and ∂f̃(ℓ)
∂wi

all vanish as

∂I(j, l)
∂Ω

= δ(
∑

wq∈Wl

H(dq − dj)− |Wl|)

·
∑

wq∈Wl

δ(dq − dj)(
∂dq

∂Ω
− ∂dj

∂Ω
), (84)

∂Ĩ(k, D)
∂Ω

= δ(D − dk)
(

∂D

∂Ω
− ∂dk

∂Ω

)
. (85)
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and δ is symmetric and non-vanishing only for dq = dj , and D = dk. We have:

∂g(j, ℓ)
∂Ω

=
∑

|s−ℓ|≤τ

∑

wj∈Ws

(
∂I(j, l)

∂Ω
H(dq − dj)

+I(q, s)δ(dq − dj)(
∂dq

∂Ω
− ∂dj

∂Ω
)
)

=
∑

|s−ℓ|≤τ

∑

wj∈Ws

I(q, s)δ(dq − dj)(
∂dq

∂Ω
− ∂dj

∂Ω
),

∂g̃(k, ℓ)
∂Ω

=
∑

|s−ℓ|>τ

∑

wq∈Ws

(
∂Ĩ(k, D)

∂Ω
H(dq − dk)

+Ĩ(q, D)δ(dq − dk)(
∂dq

∂Ω
− ∂dk

∂Ω
)
)

=
∑

|s−ℓ|>τ

∑

wk∈Ws

Ĩ(q, D)δ(dq − dk)(
∂dq

∂Ω
− ∂dk

∂Ω
).

The last two terms vanish since δ is symmetric and non-vanishing only for dq = dj

and dq = dk.

From
∂Ñ(ℓ)

∂Ω
=

∑

|s−ℓ|>τ

∑

wk∈Ws

∂Ĩ(k, D)
∂Ω

= 0,

it follows that

∂f(ℓ)
∂Ω

=
∂Ñ(ℓ)

∂Ω
H(N(ℓ)− Ñ(ℓ))

+(N(ℓ)− Ñ(ℓ))δ(N(ℓ)− Ñ(ℓ))
∂Ñ(ℓ)

∂Ω
= 0,

∂f̃(ℓ)
∂Ω

= −∂Ñ(ℓ)
∂Ω

H(Ñ(ℓ)−N(ℓ))

−(Ñ(ℓ)−N(ℓ))δ(Ñ(ℓ)−N(ℓ))
∂Ñ(ℓ)

∂Ω
= 0.

38


