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Abstract

Although artificial neural networks have shown great promise in applications
including computer vision and speech recognition, there remains considerable
practical and theoretical difficulty in optimizing their parameters. The seem-
ingly unreasonable success of gradient descent methods in minimizing these
non-convex functions remains poorly understood. In this work we offer some
theoretical guarantees for networks with piecewise affine activation functions,
which have in recent years become the norm. We prove three main results.
Firstly, that the network is piecewise convex as a function of the input data.
Secondly, that the network, considered as a function of the parameters in a
single layer, all others held constant, is again piecewise convex. Finally, that
the network as a function of all its parameters is piecewise multi-convex, a
generalization of biconvexity. From here we characterize the local minima and
stationary points of the training objective, showing that they minimize certain
subsets of the parameter space. We then analyze the performance of two opti-
mization algorithms on multi-convex problems: gradient descent, and a method
which repeatedly solves a number of convex sub-problems. We prove necessary
convergence conditions for the first algorithm and both necessary and sufficient
conditions for the second, after introducing regularization to the objective. Fi-
nally, we remark on the remaining difficulty of the global optimization problem.
Under the squared error objective, we show that by varying the training data,
a single rectifier neuron admits local minima arbitrarily far apart, both in ob-
jective value and parameter space.

Index terms— convex analysis; gradient descent; optimization; machine
learning; neural networks; convergence

1. Introduction

Artificial neural networks are currently considered the state of the art in
applications ranging from image classification, to speech recognition and even
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machine translation. However, little is understood about the process by which
they are trained for supervised learning tasks. The problem of optimizing their
parameters is an active area both practical and theoretical research. Despite
considerable sensitivity to initialization and choice of hyperparameters, neural
networks often achieve compelling results after optimization by gradient descent
methods. Due to the nonconvexity and massive parameter space of these func-
tions, it is poorly understood how these sub-optimal methods have proven so
successful. Indeed, training a certain kind of neural network is known to be NP-
Complete, making it difficult to provide any worst-case training guarantees [1].
Much recent work has attempted to reconcile these differences between theory
and practice [2, 3].

This article attempts a modest step towards understanding the dynamics of
the training procedure. We establish three main convexity results for a certain
class of neural network, which is the current the state of the art. First, that the
objective is piecewise convex as a function of the input data, with parameters
fixed, which corresponds to the behavior at test time. Second, that the objective
is again piecewise convex as a function of the parameters of a single layer, with
the input data and all other parameters held constant. Third, that the training
objective function, for which all parameters are variable but the input data is
fixed, is piecewise multi-convex. That is, it is a continuous function which can
be represented by a finite number of multi-convex functions, each active on a
multi-convex parameter set. This generalizes the notion of biconvexity found
in the optimization literature to piecewise functions and arbitrary index sets
[4]. To prove these results, we require two main restrictions on the definition
of a neural network: that its layers are piecewise affine functions, and that its
objective function is convex and continuously differentiable. Our definition in-
cludes many contemporary use cases, such as least squares or logistic regression
on a convolutional neural network with rectified linear unit (ReLU) activation
functions and either max- or mean-pooling. In recent years these networks have
mostly supplanted the classic sigmoid type, except in the case of recurrent net-
works [5]. We make no assumptions about the training data, so our results
apply to the current state of the art in many practical scenarios.

Piecewise multi-convexity allows us to characterize the extrema of the train-
ing objective. As in the case of biconvex functions, stationary points and local
minima are guaranteed optimality on larger sets than we would have for general
smooth functions. Specifically, these points are partial minima when restricted
to the relevant piece. That is, they are points for which no decrease can be made
in the training objective without simultaneously varying the parameters across
multiple layers, or crossing the boundary into a different piece of the function.
Unlike global minima, we show that partial minima are reliably found by the
optimization algorithms used in current practice.

Finally, we provide some guarantees for solving general multi-convex opti-
mization problems by various algorithms. First we analyze gradient descent,
proving necessary convergence conditions. We show that every point to which
gradient descent converges is a piecewise partial minimum, excepting some
boundary conditions. To prove stronger results, we define a different opti-
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mization procedure breaking each parameter update into a number of convex
sub-problems. For this procedure, we show both necessary and sufficient con-
ditions for convergence to a piecewise partial minimum. Interestingly, adding
regularization to the training objective is all that is needed to prove necessary
conditions. Similar results have been independently established for many kinds
of optimization problems, including bilinear and biconvex optimization, and in
machine learning the special case of linear autoencoders [6, 4, 7]. Our analysis
extends existing results on alternating convex optimization to the case of arbi-
trary index sets, and general multi-convex point sets, which is needed for neural
networks. We admit biconvex problems, and therefore linear autoencoders, as
a special case.

Despite these results, we find that it is difficult to pass from partial to global
optimality results. Unlike the encouraging case of linear autoencoders, we show
that a single rectifier neuron, under the squared error objective, admits arbi-
trarily poor local minima. This suggests that much work remains to be done
in understanding how sub-optimal methods can succeed with neural networks.
Still, piecewise multi-convex functions are in some senses easier to minimize
than the general class of smooth functions, for which none of our previous guar-
antees can be made. We hope that our characterization of neural networks
could contribute to a better understanding of these important machine learning
systems.

2. Preliminary material

We begin with some preliminary definitions and basic results concerning
continuous piecewise functions.

Definition 2.1. Let g1, g2, ..., gN be continuous functions from R
n → R. A

continuous piecewise function f has a finite number of closed, connected sets

S1, S2, ..., SM covering R
n such that for each k we have f(x) = gk(x) for all

x ∈ Sk. The set Sk is called a piece of f , and the function gk is called active

on Sk.

More specific definitions follow by restricting the functions g. A continuous

piecewise affine function has gk(x) = aTx + b where a ∈ R
n and b ∈ R. A

continuous piecewise convex function has gk convex, with Sk convex as well.

Note that this definition of piecewise convexity differs from that found in
the convex optimization literature, which focuses on convex piecewise convex
functions, i.e. maxima of convex functions [8]. Note also that we do not claim
a unique representation in terms of active functions gk and pieces Sk, only that
there exists at least one such representation.

Before proceeding, we shall extend definition 2.1 to functions of multidimen-
sional codomain for the affine case.

Definition 2.2. A function f : Rm → R
n, and let fk : Rm → R denote the

kth component of f . Then f is continuous piecewise affine if each fk is.
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Choose some piece Sk from each fk and let S = ∩n
k=1Sk, with S 6= ∅. Then S is

a piece of f , on which we have f(x) = Ax+ b for some A ∈ R
n×m and b ∈ R

n.

First, we prove an intuitive statement about the geometry of the pieces of
continuous piecewise affine functions.

Theorem 2.3. Let f : Rm → R
n be continuous piecewise affine. Then f admits

a representation in which every piece is a convex polytope.

Proof. Let fk : Rm → R denote the kth component of f . Now, fk can be written
in closed form as a max-min polynomial [9]. That is, fk is the maximum of
minima of its active functions. Now, for the minimum of two affine functions
we have

min(gi, gj) = min(aT
i x+ bi,a

T
j x+ bj). (1)

This function has two pieces divided by the hyperplane (aT
i −aT

j )x+bi−bj = 0.
The same can be said of max(gi, gj). Thus the pieces of fk are intersections of
half-spaces, which are just convex polytopes. Since the pieces of f are intersec-
tions of the pieces of fk, they are convex polytopes as well.

See figure 5 in section 8 for an example of this result on a specific neural
network. Our next result concerns the composition of piecewise functions, which
is essential for the later sections.

Theorem 2.4. Let g : Rm → R
n and f : Rn → R be continuous piecewise

affine. Then so is f ◦ g.

Proof. To establish continuity, note that the composition of continuous functions
is continuous.

Let S be a piece of g and T a piece of f such that S ∩ g−1(T ) 6= ∅, where
g−1(T ) denotes the inverse image of T . By theorem 2.3, we can choose S and
T to be convex polytopes. Since g is affine, g−1(T ) is closed and convex [10].
Thus S ∩ g−1(T ) is a closed, convex set on which we can write

f(x) = aTx+ b (2)

g(x) = Cx+ d.

Thus

f ◦ g(x) = aTCx+ aTd+ b (3)

which is an affine function.
Now, consider the finite set of all such pieces S ∩ g−1(T ). The union of

g−1(T ) over all pieces T is just Rn, as is the union of all pieces S. Thus we have

∪S ∪T

(

S ∩ g−1(T )
)

= ∪S

(

S ∩ ∪T g
−1(T )

)

= ∪S (S ∩ R
n)

= R
n.

Thus f ◦ g is piecewise affine on R
n.
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We now turn to continuous piecewise convex functions, of which continuous
piecewise affine functions are a subset.

Theorem 2.5. Let g : Rm → R
n be a continuous piecewise affine function, and

h : Rn → R a convex function. Then f = h ◦ g is continuous piecewise convex.

Proof. On each piece S of g we can write

f(x) = h(Ax+ b). (4)

This function is convex, as it is the composition of a convex and an affine
function [10]. Furthermore, S is convex by theorem 2.3. This establishes piece-
wise convexity by the proof of theorem 2.4.

Our final theorem concerns the arithmetic mean of continuous piecewise
convex functions, which is essential for the analysis of neural networks.

Theorem 2.6. Let f1, f2, ..., fN be continuous piecewise convex functions. Then

so is their arithmetic mean (1/N)
∑N

i=1 fi(x).

The proof takes the form of two lemmas.

Lemma 2.7. Let f1 and f2 be a pair of continuous piecewise convex functions

on R
n. Then so is f1 + f2.

Proof. Let S1 be a piece of f1, and S2 a piece of f2, with S1∩S2 6= ∅. Note that
the sum of convex functions is convex [11]. Thus f1 + f2 is convex on S1 ∩ S2.
Furthermore, S1 ∩ S2 is convex because it is an intersection of convex sets [11].
Since this holds for all pieces of f1 and f2, we have that f1 + f2 is continuous
piecewise convex on R

n.

Lemma 2.8. Let α > 0, and let f be a continuous piecewise convex function.

Then so is αf .

Proof. The continuous function αf is convex on every piece of f .

Having established that continuous piecewise convexity is closed under ad-
dition and positive scalar multiplication, we can see that it is closed under the
arithmetic mean, which is just the composition of these two operations.

3. Neural networks

In this work, we define a neural network to be a composition of functions
of two kinds: a convex continuously differentiable objective (or loss) function
h, and continuous piecewise affine functions g1, g2, ..., gN , constituting the N
layers. Furthermore, the outermost function must be h, so that we have

f = h ◦ gN ◦ gN−1 ◦ ... ◦ g1 (5)
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where f denotes the entire network. This definition is not as restrictive as it
may seem upon first glance. For example, it is easily verified that the rectified
linear unit (ReLU) neuron is continuous piecewise affine, as we have

g(x) = max(0, Ax+ b), (6)

where the maximum is taken pointwise. It can be shown that maxima and min-
ima of affine functions are piecewise affine [9]. This includes the convolutional
variant, in which A is a Toeplitz matrix. Similarly, max pooling is continu-
ous piecewise linear, while mean pooling is simply linear. Furthermore, many
of the objective functions commonly seen in machine learning are convex and
continuously differentiable, as in least squares and logistic regression. Thus this
seemingly restrictive class of neural networks actually encompasses the current
state of the art.

By theorem 2.4, the composition of all layers g = gN ◦gN−1◦ ...◦g1 is contin-
uous piecewise affine. Therefore, a neural network is ultimately the composition
of a continuous convex function with a single continuous piecewise affine func-
tion. Thus by theorem 2.5 the network is continuous piecewise convex. Figure
1 provides a visualization of this result for the example network

f(x, y) =
(

2−
[

[x− y]+ − [x+ y]+ + 1
]

+

)2

, (7)

where [x]+ = max(x, 0). For clarity, this is just the two-layer ReLU network

f(x, y, z) =
(

z −
[

a5 [a1x+ a2y]+ + a6 [a3x+ a4y]+ + b1
]

+

)2

(8)

with the squared error objective and a single data point ((x, y), z), setting z = 2
and a2 = a6 = −1, with all other parameters set to 1.

Before proceeding further, we must define a special kind of differentiability
for piecewise continuous functions, and show that this holds for neural networks.

Definition 3.1. Let f be piecewise continuous. We say that f is piecewise

continuously differentiable if each active function g is continuously differ-

entiable.

To see that neural networks are piecewise continuously differentiable, note
that the objective h is continuously differentiable, as are the affine active func-
tions of the layers. Thus their composition is continuously differentiable. It
follows that non-differentiable points are found only on the boundaries between
pieces.

4. Network parameters of a single layer

In the previous section we have defined neural networks as functions of la-
beled data. These are the functions relevant during testing, where parameters
are constant and data is variable. In this section, we extend these results to the
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Figure 1: The neural network of equation 7, on the unit square. Although f is not convex on

R
2, it is convex in each piece, and each piece is a convex set.

case where data is constant and parameters are variable, which is the function
to optimized during training. For example, consider the familiar equation

f = (ax+ b− y)2 (9)

with parameters (a, b) and data (x, y). During testing, we hold (a, b) constant,
and consider f as a function of the data (x, y). During training, we hold (x, y)
constant and consider f as a function of the parameters (a, b). This is what
we mean when we say that a network is being “considered as a function of its
parameters1.” This leads us to an additional stipulation on our definition of a
neural network. That is, each layer must be piecewise affine as a function of its

parameters as well. This is easily verified for all of the layer types previously
mentioned. For example, with the ReLU neuron we have

f(A, b) = [Ax+ b]+ (10)

so for (Ax+ b)k ≥ 0 we have that the kth component of f is linear in (A, b),
while for (Ax+ b)k < 0 it is constant. To see this, we can re-arrange the
elements of A into a column vector a, in row-major order, so that we have

Ax+ b =









xT
0
T ... ... 0

T
1
T

0
T xT

0
T ... 0

T
1
T

... ... ... ... ... ...
0
T ... ... 0

T xT
1
T









(

a

b

)

. (11)

1This is made rigorous by taking cross-sections of point sets in section 5.
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In section 3 we have said that a neural network, considered as a function of
its input data, is convex and continuously differentiable on each piece. Now, a
neural network need not be piecewise convex as a function of the entirety of its
parameters2. However, we can regain piecewise convexity by considering it only
as a function of the parameters in a single layer, all others held constant.

Theorem 4.1. A neural network f is continuous piecewise convex and piecewise

continuously differentiable as a function of the parameters in a single layer.

Proof. For the time being, assume the input data consists of a single point x. By
definition f is the composition of a convex objective h and layers g1, g2, ..., gN ,
with g1 a function of x. Let fm(x) denote the network f considered as a
function of the parameters of layer gm, all others held constant. Now, the layers
gm−1 ◦ gm−2 ◦ ... ◦ g1 are constant with respect to the parameters of gm, so we
can write y = gm−1 ◦ gm−2 ◦ ... ◦ g1(x). Thus on each piece of gm we have

gm = Ay + b. (12)

By definition gm is a continuous piecewise affine function of its parameters.
Since y is constant, we have that g̃m = gm ◦ gm−1 ◦ ... ◦ g1 is a continuous
piecewise affine function of the parameters of gm. Now, by theorem 2.4 we have
that g = gN ◦ gN−1 ◦ ... ◦ g̃m is a continuous piecewise affine function of the
parameters of gm. Thus by theorem 2.5, fm is continuous piecewise convex.

To establish piecewise continuous differentiability, recall that affine functions
are continuously differentiable, as is h.

Having established the theorem for the case of a single data point, con-
sider the case where we have multiple data points, denoted {xk}Mk=1. Now, by

theorem 2.6 the arithmetic mean (1/M)
∑M

k=1 fm(xk) is continuous piecewise
convex. Furthermore, the arithmetic mean preserves piecewise continuous dif-
ferentiability. Thus these results hold for the mean value of the network over
the dataset.

We conclude this section with a simple remark which will be useful in later
sections. Let fm be a neural network, considered as a function of the parameters
of the mth layer, and let S be a piece of fm. Then the optimization problem

minimize fm(x)

subject to x ∈ S (13)

is convex.

2To see this, consider the following two-layer network: h(x) = x, g2(x) = ax, and g1(x) =
bx. For f = h ◦ g2 ◦ g1 we have f(x) = abx. Now fix the input as x = 1. Considered as a

function of its parameters, this is f(a, b) = ab, which is decidedly not convex.
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5. Network parameters of multiple layers

In the previous section we analyzed the convexity properties of neural net-
works when optimizing the parameters of a single layer, all others held constant.
Now we are ready to extend these results to the ultimate goal of simultaneously
optimizing all network parameters. Although not convex, the problem has a
special convex substructure that we can exploit in proving future results. We
begin by defining this substructure for point sets and functions.

Definition 5.1. Let S ⊆ R
n, let I ⊂ {1, 2, ..., n}, and let x ∈ S. The set

SI(x) = {y ∈ S : (yk = xk)k/∈I} (14)

is the cross-section of S intersecting x with respect to I.

In other words, SI(x) is the subset of S for which every point is equal to
x in the components not indexed by I. Note that this differs from the typical
definition, which is the intersection of a set with a hyperplane. For example,
R

3
{1}(0) is the x-axis, whereas R

3
{1,2}(0) is the xy-plane. Note also that cross-

sections are not unique, for example R
3
{1,2}(0, 0, 0) = R

3
{1,2}(1, 2, 0). In this case

the first two components of the cross section are irrelevant, but we will maintain
them for notational convenience. We can now apply this concept to functions
on R

n.

Definition 5.2. Let S ⊆ R
n, let f : S → R and let I be a collection of sets

covering {1, 2, ..., n}. We say that f is multi-convex with respect to I if f is

convex when restricted to the cross section SI(x), for all x ∈ S and I ∈ I.

This formalizes the notion of restricting a non-convex function to a variable
subset on which it is convex, as in section 4 when a neural network was restricted
to the parameters of a single layer. For example, let f(x, y, z) = xy + z, and
let I1 = {1, 3}, and I2 = {2, 3}. Then f1(x, y0, z) is a convex function of (x, z)
with y fixed at y0. Similarly, f2(x0, y, z) is a convex function of (y, z) with x
fixed at x0. Thus f is multi-convex with respect to I = {I1, I2}. To fully define
a multi-convex optimization problem, we introduce a similar concept for point
sets.

Definition 5.3. Let S ⊆ R
n and let I be a collection of sets covering {1, 2, ..., n}.

We say that S is multi-convex with respect to I if the cross-section SI(x) is

convex for all x ∈ S and I ∈ I.

This generalizes the notion of biconvexity found in the optimization liter-
ature [4]. From here, we can extend definition 2.1 to multi-convex functions.
However, we will drop the topological restrictions on the pieces of our function,
since multi-convex sets need not be connected.

Definition 5.4. Let f : Rn → R be a continuous function. We say that f
is continuous piecewise multi-convex if each there exists a collection of

multi-convex functions g1, g2, ..., gN and multi-convex sets S1, S2, ..., SN covering
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R
n such that for each k we have f(x) = gk(x) for all x ∈ Sk. Next, let

h : Rm → R
n. Then, h is continuous piecewise multi-convex so long as each

component is, as in definition 2.2.

From this definition, it is easily verified that a continuous piecewise multi-
convex function f : R

m → R
n admits a representation where all pieces are

multi-convex, as in the proof of theorem 2.3.
Before we can extend the results of section 4 to multiple layers, we must

add one final constraint on the definition of a neural network. That is, each of
the layers must be continuous piecewise multi-convex, considered as functions
of both the parameters and the input. Again, this is easily verified for the all of
the layer types previously mentioned. We have already shown they are piecewise
convex on each cross-section, taking our index sets to separate the parameters
from the input data. It only remains to show that the number of pieces is finite.
The only layer which merits consideration is the ReLU, which we can see from
equation 10 consists of two pieces for each component: the “dead” or constant
region, with (Ax)j + bj < 0, and its compliment. With n components we have
at most 2n pieces, corresponding to binary assignments of “dead” or “alive” for
each component.

Having said that each layer is continuous piecewise multi-convex, we can
extend these results to the whole network.

Theorem 5.5. Let f be a neural network, and let I be a collection of index

sets, one for the parameters of each layer of f . Then f is continuous piecewise

multi-convex with respect to I.

We begin the proof with a lemma for more general multi-convex functions.

Lemma 5.6. Let X ⊆ R
n, Y ⊆ R

m, and let g : X → Z and f : Z × Y → R
n

be continuous piecewise multi-convex, g with respect to a collection of index sets

G, and f with respect to F = {IZ , IY }, where IZ indexes the variables in Z,

and IY the variables in Y . Then h(x,y) = f(g(x),y) is continuous piecewise

multi-convex with respect to H = G ∪ {IY }.

Proof. Let G be a piece of g, let F be a piece of f and let H = {(x,y) :
x ∈ G, (g(x),y) ∈ F}, with F chosen so that H 6= ∅. Clearly h is multi-
convex on H with respect to H. It remains to show that H is a multi-convex
set. Now, let (x,y) ∈ H and we shall show that the cross-sections are convex.
First, for any IX ∈ G we have HIX (x,y) = GIX (x) × {y}. Similarly, we have
HIY (x,y) = {x} × {y : (z,y) ∈ FIY (g(x),y)}. These sets are convex, as they
are the Cartesian products of convex sets [11]. Finally, as in the proof of theorem
2.4, we can cover X × Y with the finite collection of all such pieces H , taken
over all G and F .

Our next lemma extends theorem 2.6 to multi-convex functions.

Lemma 5.7. Let I be a collection of sets covering {1, 2, ..., n}, and let f : Rn →
R and g : Rn → R be continuous piecewise multi-convex with respect to I. Then

so is f + g.
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Proof. Let F be a piece of f and G be a piece of g with x ∈ F ∩ G. Then for
all I ∈ I, (F ∩G)I (x) = FI(x)∩GI(x), a convex set on which f + g is convex.
Thus f + g is continuous piecewise multi-convex, where the pieces of f + g are
the intersections of pieces of f and g.

We can now prove the theorem.

Proof. For the moment, assume we have only a single data point. Now, let g1
and g2 denote layers of f , with parameters θ1 ∈ R

m, θ2 ∈ R
n. Since g1 and g2

are continuous piecewise multi-convex functions of their parameters and input,
we can write the two-layer sub-network as h = f(g1(θ1), θ2). By repeatedly
applying lemma 5.6, the whole network is multi-convex on a finite number of
sets covering the input and parameter space.

Now we extend the theorem to the whole dataset, where each data point
defines a continuous piecewise multi-convex function fk. By lemma 5.7, the
arithmetic mean (1/N)

∑N
k=1 fk is continuous piecewise multi-convex.

In the coming sections, we shall see that multi-convexity allows us to give
certain guarantees about the convergence of various optimization algorithms.
But first, we shall prove some basic results independent of the optimization
procedure. These results were summarized by Gorksi et al. for the case of
biconvex differentiable functions [4]. Here we extend them to piecewise functions
and arbitrary index sets. First we define a special type of minimum relevant for
multi-convex functions.

Definition 5.8. Let f : S → R and let I be a collection of sets covering

{1, 2, ..., n}. We say that x0 is a partial minimum of f with respect to I if

f(x0) ≤ f(x) for all x ∈ ∪I∈ISI(x0).

In other words, x0 is a partial minimum of f with respect to I if it minimizes
f on every cross-section of S intersecting x0, as shown in figure 2. By convexity,
these points are intimately related to the stationary points of f .

Theorem 5.9. Let I = {I1, I2, ..., Im} be a collection of sets covering {1, 2, ..., n},
let f : Rn → R be continuous piecewise multi-convex with respect to I, and let

∇f(x0) = 0. Then x0 is a partial minimum of f on every piece containing x0.

Proof. Let S be a piece of f containing x0, let I ∈ I , and let SI(x0) denote
the relevant cross-section of S. We know f is convex on SI(x0), and since
∇f(x0) = 0, we have that x0 minimizes f on this convex set. Since this holds
for all I ∈ I, x0 is a partial minimum of f on S.

It is clear that multi-convexity provides a wealth of results concerning partial
minima, while piecewise multi-convexity restricts those results to a subset of the
domain. Less obvious is that partial minima of smooth multi-convex functions

11



x0S1(x0)

S2(x0)

S

Figure 2: Cross-sections of a biconvex set.

need not be local minima. An example was pointed out by a reviewer of this
work, that the biconvex function f(x, y) = xy has a partial minimum at the
origin which is not a local minimum. However, the converse is easily verified,
even in the absence of differentiability.

Theorem 5.10. Let I be a collection of sets covering {1, 2, ..., n}, let f : Rn →
R be continuous piecewise multi-convex with respect to I, and let x0 be a local

minimum on some piece S of f . Then x0 is a partial minimum on S.

Proof. The proof is essentially the same as that of theorem 5.9.

We have seen that for multi-convex functions there is a close relationship be-
tween stationary points, local minima and partial minima. For these functions,
infinitesimal results concerning derivatives and local minima can be extended to
larger sets. However, we make no guarantees about global minima. The good
news is that, unlike global minima, we shall see that we can easily solve for
partial minima.

6. Gradient descent

In the realm of non-convex optimization, also called global optimization,
methods can be divided into two groups: those which can certifiably find a
global minimum, and those which cannot. In the former group we sacrifice
speed, in the latter correctness. This work focuses on algorithms of the latter
kind, called local or sub-optimal methods, as only this type is used in practice for
deep neural networks. In particular, the most common methods are variants of
gradient descent, where the gradient of the network with respect its parameters

12



is computed by a procedure called backpropagation. Since its explanation is
often obscured by jargon, we shall provide a simple summary here.

Backpropagation is nothing but the chain rule applied to the layers of a
network. Splitting the network into two functions f = u ◦ v, where u : Rn → R,
and v : Rm → R

n, we have
∇f = ∇uDv (15)

where D denotes the Jacobian operator. Note that here the parameters of u are
considered fixed, whereas the parameters of v are variable and the input data
is fixed. Thus ∇f is the gradient of f with respect to the parameters of v, if it
exists. The special observation is that we can proceed from the top layer of the
neural network gN to the bottom g1, with u = gN ◦gN−1◦ ...◦gm+1, and v = gm,
each time computing the gradient of f with respect to the parameters of gm. In
this way, we need only store the vector ∇u and the matrix Dv can be forgotten
at each step. This is known as the “backward pass,” which allows for efficient
computation of the gradient of a neural network with respect to its parameters.
A similar algorithm computes the value of gm−1 ◦ gm−2 ◦ ... ◦ g1 as a function
of the input data, which is often needed to evaluate Dv. First we compute and
store g1 as a function of the input data, then g2 ◦ g1, and so on until we have f .
This is known as the “forward pass.” After one forward and one backward pass,
we have computed ∇f with respect to all the network parameters.

Having computed ∇f , we can update the parameters by gradient descent,
defined as follows.

Definition 6.1. Let S ⊂ R
n, and f : S → R be partial differentiable, with

x0 ∈ S. Then gradient descent on f is the sequence {xk}∞k=0 defined by

xk+1 = xk − αk∇f(xk) (16)

where αk > 0 is called the step size or “learning rate.” In this work we shall

make the additional assumption that
∑∞

k=0 ak = ∞.

Variants of this basic procedure are preferred in practice because their com-
putational cost scales well with the number of network parameters. There are
many different ways to choose the step size, but our assumption that

∑∞
k=0 ak =

∞ covers what is usually done with deep neural networks. Note that we have
not defined what happens if xk /∈ S. Since we are ultimately interested in neu-
ral networks on R

n, we can ignore this case and say that the sequence diverges.
Gradient descent is not guaranteed to converge to a global minimum for all
differentiable functions. However, it is natural to ask to which points it can
converge. This brings us to a basic but important result.

Theorem 6.2. Let f : Rn → R, and let {xk}∞k=0 result from gradient descent

on f with limk→∞ xk = x∗, and f continuously differentiable at x∗. Then

∇f(x∗) = 0.

Proof. First, we have

x∗ = x0 −
∞
∑

k=0

αk∇f(xk). (17)
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Assume for the sake of contradiction that for the jth partial derivative we have
|∂f(x∗)/∂(x)j | > 0. Now, pick some ε such that 0 < ε < |∂f(x∗)/∂(x)j |,
and by continuous differentiability, there is some δ > 0 such that for all x,
‖x∗ − x‖2 < δ implies ‖∇f(x∗) − ∇f(x)‖2 < ε. Now, there must be some K
such that for all k ≥ K we have ‖x∗−xk‖2 < δ, so that ∂f(xk)/∂(x)j does not
change sign. Then we can write

∣

∣

∣

∣

∣

∞
∑

k=K

αk
∂f(xk)

∂ (x)j

∣

∣

∣

∣

∣

=
∞
∑

k=K

αk

∣

∣

∣

∣

∣

∂f(xk)

∂ (x)j

∣

∣

∣

∣

∣

≥
∞
∑

k=K

αk

(∣

∣

∣

∣

∣

∂f(x∗)

∂ (x)j

∣

∣

∣

∣

∣

− ε

)

= ∞.

But this contradicts the fact that xk converges. Thus ∇f(x∗) = 0.

In the convex optimization literature, this simple result is sometimes stated
in connection with Zangwill’s much more general convergence theorem [12, 13].
Note, however, that unlike Zangwill we state necessary, rather than sufficient
conditions for convergence. While many similar results are known, it is difficult
to strictly weaken the conditions of theorem 6.2. For example, if we relax the
condition that αk is not summable, and take f(x) = x, then xk will always
converge to a non-stationary point. Similarly, if we relax the constraint that
f is continuously differentiable, taking f(x) = |x| and ak decreasing monotoni-
cally to zero, we will always converge to the origin, which is not differentiable.
Furthermore, if we have f(x) = |x| with αk constant, then xk will not converge
for almost all x0. It is possible to prove much stronger necessary and sufficient
conditions for gradient descent, but these results require additional assumptions
about the step size policy as well as the function to be minimized, and possibly
even the initialization x0 [14].

It is worth discussing f(x) = |x| in greater detail, since this is a piecewise
affine function and thus of interest in our investigation of neural networks. While
we have said its only convergence point is not differentiable, it remains subdif-
ferentiable, and convergence results are known for subgradient descent [13]. In
this work we shall not make use of subgradients, instead considering descent
on a piecewise continuously differentiable function, where the pieces are x ≤ 0
and x ≥ 0. Although theorem 6.2 does not apply to this function, the relevant
results hold anyways. That is, x = 0 is minimal on some piece of f , a result
which extends to any continuous piecewise convex function, as any saddle point
is guaranteed to minimize some piece.

Here we should note one way in which this analysis fails in practice. So far
we have assumed the gradient ∇f is precisely known. In practice, it is often
prohibitively expensive to compute the average gradient over large datasets.
Instead we take random subsamples, in a procedure known as stochastic gradient
descent. We will not analyze its properties here, as current results on the topic
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impose additional restrictions on the objective function and step size, or require
different definitions of convergence [15, 16, 17]. Restricting ourselves to the true
gradient ∇f allows us to provide simple proofs applying to an extensive class
of neural networks.

We are now ready to generalize these results to neural networks. There is a
slight ambiguity in that the boundary points between pieces need not be differ-
entiable, nor even sub-differentiable. Since we are interested only in necessary
conditions, we will say that gradient descent diverges when ∇f(xk) does not
exist. However, our next theorem can at least handle non-differentiable limit
points.

Theorem 6.3. Let I = {I1, I2, ..., Im} be a collection of sets covering {1, 2, ..., n},
let f : Rn → R be continuous piecewise multi-convex with respect to I, and piece-

wise continuously differentiable. Then, let {xk}∞k=0 result from gradient descent

on f , with limk→∞ xk = x∗, such that either

1. f is continuously differentiable at x∗, or

2. there is some piece S of f and some K > 0 such that xk ∈ So for all

k ≥ K.

Then x∗ is a partial minimum of f on every piece containing x∗.

Proof. If the first condition holds, the result follows directly from theorems 6.2
and 5.9. If the second condition holds, then {xk}∞k=K is a convergent gradient
descent sequence on g, the active function of f on S. Since g is continuously
differentiable on R

n, the first condition holds for g. Since f |S = g|S , x∗ is a
partial minimum of f |S as well.

The first condition of theorem 6.3 holds for every point in the interior of a
piece, and some boundary points. The second condition extends these results
to non-differentiable boundary points so long as gradient descent is eventually
confined to a single piece of the function. For example, consider the continuous
piecewise convex function f(x) = min(x, x4) as shown in figure 3. When we
converge to x = 0 from the piece [0, 1], it is as if we were converging on the
smooth function g(x) = x4. This example also illustrates an important caveat
regarding boundary points: although x = 0 is an extremum of f on [0, 1], it is
not an extremum on R.

7. Iterated convex optimization

Although the previous section contained some powerful results, theorem 6.3
suffers from two main weaknesses, that it is a necessary condition and that
it requires extra care at non-differentiable points. It is difficult to overcome
these limitations with gradient descent. Instead, we shall define a different
optimization technique, from which necessary and sufficient convergence results
follow, regardless of differentiability.
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Figure 3: Example of a piecewise convex function. The point x = 0 minimizes the function

on the piece [0, 1].

Iterated convex optimization splits a non-convex optimization problem into a
number of convex sub-problems, solving the sub-problems in each iteration. For
a neural network, we have shown that the problem of optimizing the parameters
of a single layer, all others held constant, is piecewise convex. Thus, restricting
ourselves to a given piece yields a convex optimization problem. In this section,
we show that these convex sub-problems can be solved repeatedly, converging
to a piecewise partial optimum.

Definition 7.1. Let I = {I1, I2, ..., Im} be a collection of sets covering {1, 2, ..., n},
and let S ⊆ R

n and f : S → R be multi-convex with respect to I. Then iterated

convex optimization is any sequence where xk is a solution to the optimiza-

tion problem

minimize f(y) (18)

subject to y ∈ ∪I∈ISI(xk−1)

with x0 ∈ S.

We call this iterated convex optimization because problem 18 can be divided
into convex sub-problems

minimize f(y) (19)

subject to y ∈ SI(xk−1).

for each I ∈ I. In this work, we assume the convex sub-problems are solv-
able, without delving into specific solution techniques. Methods for alternating
between solvable sub-problems have been studied by many authors, for many
different types of sub-problems [6]. In the context of machine learning, the same
results have been developed for the special case of linear autoencoders [7]. Still,
extra care must be taken in extending these results to arbitrary index sets. The
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key is that xk is not updated until all sub-problems have been solved, so that
each iteration consists of solving m convex sub-problems. This is equivalent
to the usual alternating convex optimization for biconvex functions, where I
consists of two sets, but not for general multi-convex functions.

Some basic convergence results follow immediately from the solvability of
problem 18. First, note that xk−1 is a feasible point, so we have f(xk) ≤
f(xk−1). This implies that limk→∞ f(xk) exists, so long as f is bounded below.
However, this does not imply the existence of limk→∞ xk. See Gorski et al. for
an example of a biconvex function on which xk diverges [4]. To prove stronger
convergence results, we introduce regularization to the objective.

Theorem 7.2. Let I be a collection of sets covering {1, 2, ..., n}, and let S ⊆ R
n

and f : S → R be multi-convex with respect to I. Next, let inf f > −∞, and

let g(x) = f(x) + λ‖x‖, where λ > 0 and ‖x‖ is a convex norm. Finally, let

{xk}∞k=0 result from iterated convex optimization of g. Then xk has at least one

convergent subsequence, in the topology induced by the metric d(x,y) = ‖x−y‖.

Proof. From lemma 2.7, g is multi-convex, so we are allowed iterated con-
vex optimization. Now, if inf f + λ‖x‖ > g(x0) we have that g(x) > g(x0).
Thus g(x) > g(x0) whenever ‖x‖ > (g(x0)− inf f) /λ. Since g(xk) is a non-
increasing sequence, we have that ‖xk‖ ≤ (g(x0)− inf f) /λ. Equivalently, xk

lies in the set A = {x : ‖x‖ ≤ (g(x0)− inf f) /λ}. Since ‖x‖ is continuous, A is
closed and bounded, and thus it is compact. Then, by the Bolzano-Weierstrauss
theorem, xk has at least one convergent subsequence [18].

In theorem 7.2, the function g is called the regularized version of f . In
practice, regularization often makes a non-convex optimization problem easier
to solve, and can reduce over-fitting. The theorem shows that iterated convex
optimization on a regularized function always has at least one convergent sub-
sequence. Next, we shall establish some rather strong properties of the limits
of these subsequences.

Theorem 7.3. Let I be a collection of sets covering {1, 2, ..., n}, and let S ⊆ R
n

and f : S → R be multi-convex with respect to I. Next, let {xk}∞k=0 result from

iterated convex optimization of f . Then the limit of every convergent subse-

quence is a partial minimum on So with respect to I, in the topology induced by

the metric d(x,y) = ‖x−y‖ for some norm ‖x‖. Furthermore, if {xmk
}∞k=1 and

{xnk
}∞k=1 are convergent subsequences, then limk→∞ f(xmk

) = limk→∞ f(xnk
).

Proof. Let xnk
denote a subsequence of xk with x∗ = limn→∞ xnk

. Now,
assume for the sake of contradiction that x∗ is not a partial minimum on intS
with respect to I. Then there is some I ∈ I and some x′ ∈ SI(x

∗) with x′ ∈ So

such that f(x′) < f(x∗). Now, f is continuous at x′, so there must be some
δ > 0 such that for all x ∈ S, ‖x−x′‖ < δ implies |f(x)−f(x′)| < f(x∗)−f(x′).
Furthermore, since x′ is an interior point, there must be some open ball B ⊂ S
of radius r centered at x′, as shown in figure 4. Now, there must be some K
such that ‖xnK

− x∗‖ < min(δ, r). Then, let x̃ = xnK
+ x′ − x∗, and since
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Figure 4: Illustration of the proof of theorem 7.3. Note the cross-sections of the biconvex set

S.

‖x̃−x′‖ < r, we know that x̃ ∈ B, and thus x̃ ∈ SI(xnK
). Finally, ‖x̃−x′‖ < δ,

so we have f(x̃) < f(x∗) ≤ f(xnK+1), which contradicts the fact that xnK+1

minimizes g over a set containing x̃. Thus x∗ is a partial minimum on So with
respect to I.

Finally, let {xmk
}∞k=1 and {xnk

}∞k=1 be two convergent subsequences of xk,
with limk→∞{xmk

} = x∗
m and limk→∞{xnk

} = x∗
n, and assume for the sake

of contradiction that f(x∗
m) > f(x∗

n). Then by continuity, there is some K
such that f(xnK

) < f(x∗
m). But this contradicts the fact that f(xk) is non-

increasing. Thus f(x∗
m) = f(x∗

n).

The previous theorem is an extension of results reviewed in Gorski et al. to
arbitrary index sets [4]. While Gorski et al. explicitly constrain the domain to a
compact biconvex set, we show that regularization guarantees xk cannot escape
a certain compact set, establishing the necessary condition for convergence.
Furthermore, our results hold for general multi-convex sets, while the earlier
result is restricted to Cartesian products of compact sets.

These results for iterated convex optimization are considerably stronger than
what we have shown for gradient descent. While any bounded sequence in R

n

has a convergent subsequence, and we can guarantee boundedness for some
variants of gradient descent, we cannot normally say much about the limits of
subsequences. For iterated convex optimization, we have shown that the limit of
any subsequence is a partial minimum, and all limits of subsequences are equal
in objective value. For all practical purposes, this is just as good as saying that
the original sequence converges to partial minimum.
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8. Global optimization

Although we have provided necessary and sufficient conditions for conver-
gence of various optimization algorithms on neural networks, the points of con-
vergence need only minimize cross-sections of pieces of the domain. Of course
we would prefer results relating the points of convergence to global minima of
the training objective. In this section we illustrate the difficulty of establishing
such results, even for the simplest of neural networks.

In recent years much work has been devoted to providing theoretical expla-
nations for the empirical success of deep neural networks, a full accounting of
which is beyond the scope of this article. In order to simplify the problem,
many authors have studied linear neural networks, in which the layers have the
form g(x) = Ax, where A is the parameter matrix. With multiple layers this is
clearly a linear function of the output, but not of the parameters. As a special
case of piecewise affine functions, our previous results suffice to show that these
networks are multi-convex as functions of their parameters. This was proven
for the special case of linear autoencoders by Baldi and Lu [7].

Many authors have claimed that linear neural networks contain no “bad”
local minima, i.e. every local minimum is a global minimum [2, 3]. This is
especially evident in the study of linear autoencoders, which were shown to
admit many points of inflection, but only a single strict minimum [7]. While
powerful, this claim does not apply to the networks seen in practice. To see
this, consider the dataset D = {(0, 1/2), (−1, α), (1, 2α)} consisting of three
(x, y) pairs, parameterized by α > 1. Note that the dataset has zero mean and
unit variance in the x variable, which is common practice in machine learning.
However, we do not take zero mean in the y variable, as the model we shall
adopt is non-negative.

Next, consider the simple neural network

f(a, b) =
∑

(x,y)∈D

(

y − [ax+ b]+
)2

(20)

=

(

1

2
− [b]+

)2

+
(

α− [b − a]+
)2

+
(

2α− [b+ a]+
)2

.

This is the squared error of a single ReLU neuron, parameterized by (a, b) ∈ R
2.

We have chosen this simplest of all networks because we can solve for the local
minima in closed form, and show they are indeed very bad. First, note that f
is a continuous piecewise convex function of six pieces, realized by dividing the
plane along the line ax + b = 0 for each x ∈ D, as shown in figure 5. Now,
for all but one of the pieces, the ReLU is “dead” for at least one of the three
data points, i.e. ax+ b < 0. On these pieces, at least one of the three terms of
equation 20 is constant. The remaining terms are minimized when y = ax+ b,
represented by the three dashed lines in figure 5. There are exactly three points
where two of these lines intersect, and we can easily show that two of them are
strict local minima. Specifically, the point (a1, b1) = (1/2 − α, 1/2) minimizes
the first two terms of equation 20, while (a2, b2) = (2α − 1/2, 1/2) minimizes
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the first and last term. In each case, the remaining term is constant over the
piece containing the point of intersection. Thus these points are strict global
minima on their respective pieces, and strict local minima on R

2. Furthermore,
we can compute f(a1, b1) = 4α2 and f(a2, b2) = α2. This gives

lim
α→∞

a1 = −∞,

lim
α→∞

a2 = +∞,

and
lim

α→∞
(f(a1, b1)− f(a2, b2)) = ∞. (21)

Now, it might be objected that we are not permitted to take α → ∞ if we require
that the y variable has unit variance. However, these same limits can be achieved
with variance tending to unity by adding ⌊α⌋ instances of the point (1, 2α) to
our dataset. Thus even under fairly stringent requirements we can construct
a dataset yielding arbitrarily bad local minima, both in the parameter space
and the objective value. This provides some weak justification for the empirical
observation that success in deep learning depends greatly on the data at hand.

We have shown that the results concerning local minima in linear networks
do not extend to the nonlinear case. Ultimately this should not be a surprise, as
with linear networks the problem can be relaxed to linear regression on a convex
objective. That is, the composition of all linear layers g(x) = A1A2...Anx is
equivalent to the function f(x) = Ax for some matrix A, and under our previous
assumptions the problem of finding the optimal A is convex. Furthermore, it is
easily shown that the number of parameters in the relaxed problem is polynomial
in the number of original parameters. Since the relaxed problem fits the data
at least as well as the original, it is not surprising that the original problem is
computationally tractable.

This simple example was merely meant to illustrate the difficulty of estab-
lishing results for every local minimum of every neural network. Since training
a certain kind of network is known to be NP-Complete, it is difficult to give
any guarantees about worst-case global behavior [1]. We have made no claims,
however, about probabilistic behavior on the average practical dataset, nor have
we ruled out the effects of more specialized networks, such as very deep ones.

9. Conclusion

We showed that a common class of neural networks is piecewise convex in
each layer, with all other parameters fixed. We extended this to a theory of a
piecewise multi-convex functions, showing that the training objective function
can be represented by a finite number of multi-convex functions, each active on
a multi-convex parameter set. From here we derived various results concerning
the extrema and stationary points of piecewise multi-convex functions. We es-
tablished convergence conditions for both gradient descent and iterated convex
optimization on this class of functions, showing they converge to piecewise par-
tial minima. Similar results are likely to hold for a variety of other optimization
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Figure 5: Parameter space of the neural network from equation 20, with pieces divided by

the bold black lines. The points (a1, b1) and (a2, b2) are local minima, which can be made

arbitrarily far apart by varying the dataset.

algorithms, especially those guaranteed to converge at stationary points or local
minima.

We have witnessed the utility of multi-convexity in proving convergence re-
sults for various optimization algorithms. However, this property may be of
practical use as well. Better understanding of the training objective could lead
to the development of faster or more reliable optimization methods, heuristic
or otherwise. These results may provide some insight into the practical success
of sub-optimal algorithms on neural networks. However, we have also seen that
local optimality results do not extend to global optimality as they do for linear
autoencoders. Clearly there is much left to discover about how, or even if we
can optimize deep, nonlinear neural networks.
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