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Abstract

This paper presents the QAMDiagnos, a model of Quantum Associative Memory (QAM) that can be
a helpful tool for medical staff without experience or laboratory facilities, for the diagnosis of four tropical
diseases (malaria, typhoid fever, yellow fever and dengue) which have several similar signs and symptoms. The
memory can distinguish a single infection from a polyinfection. Our model is a combination of the improved
versions of the original linear quantum retrieving algorithm proposed by Ventura and the non-linear quantum
search algorithm of Abrams and Lloyd. From the given simulation results, it appears that the efficiency of
recognition is good when particular signs and symptoms of a disease are inserted given that the linear algorithm
is the main algorithm. The non-linear algorithm helps confirm or correct the diagnosis or give some advice
to the medical staff for the treatment. So, our QAMDiagnos that has a friendly graphical user interface for
desktop and smart-phone is a sensitive and a low-cost diagnostic tool that enables rapid and accurate diagnosis
of four tropical diseases.

1 Introduction

Diagnosis is the identification of a situation, a difficulty or a phenomenon by interpreting external signs or
lesions. In the medical field, it consists of identifying abnormal condition that afflicts a specific patient, based
on manifested clinical data. If the final diagnosis matches a disease that afflicts a patient, the diagnostic process
is correct; otherwise, a misdiagnosis occurs. Medical diagnosis can also be defined as the process that allows a
physician, through information collected from a history and physical examination of a person, to make prediction
about features of clinical situations and determine appropriate course of action. It implements a complex decision
process that involves a lot of vagueness and uncertainty management, especially when a disease has multiple signs
and symptoms or non-specific signs and symptoms.

From the point of view of statistics, the diagnostic procedure involves classification tests. That is, the task is
made on the basis of measured features to assign a patient to one of a small set of classes [1]. Then, Artificial
Neural Networks (ANN) provide powerful tools that help physicians avoid misdiagnosis by analyzing, modelling
and making sense of complex clinical data across a broad-range of medical applications. As ANNs have the ability
of prediction, parallel operation and adaptability, they have been widely used as computer-assisted tools among
many techniques about automatic disease diagnosis proposed in the literature [2, 3]. ANNs have been used for
example for the diagnosis of colorectal cancer, multiple sclerosis lesions, colon cancer, tuberculosis, pancreatic
disease, gynecological diseases and early diabetes [2].

Associative Memories (AM) are a class of ANNs specialised in pattern recognition that have drawn the
attention of major research groups in the world due to a number of properties such as a rapidity, a compute
efficient best-match and an intrinsic noise tolerance. Aldape-Pérez et al. gave in the ref. [4] a good summary
of the AM evolution, from the first model, the Lernmatrix developed by Karl Steinbuch in 1961, to the recent
model proposed between 1982-1984 by Hopfield [5, 6]. The latter is an AM that uses the Hebbian learning rule
and it is able to recall patterns from noisy or partial representation.

Some computer-assisted tools in the case of tropical diseases, are already built and some of them use ANNs,
but they are mainly specialized for malaria [7, 8, 9, 10, 2]. It is worth noting that malaria is the most parasitic
disease spread over the world. 40% of the world’s population are concerned, especially those of tropical regions.
In Cameroon, as in the most Sub-Saharan countries, it is a public health problem because the whole population is
exposed to the disease. To diagnose malaria, the World Health Organisation (WHO) [11] recommends the use of
rapid diagnostic tests. However these tools need some conservation facilities that are difficult to find in rural and
semi-urban regions in developing countries. So, the most widely used technique for determining the development
stage of malaria is through visual microscopical evaluation of Giemsa stained blood smears. However, this is
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a routine and time-consuming task and it requires a well-trained operator. In addition, there is frequently a
misdiagnosis because of confusion between signs and symptoms of malaria and that of other tropical diseases such
as typhoid fever, yellow fever and dengue, or inexperience of medical staff. As malaria, these tropical diseases are
also life-threatening.

In order to provide a rapid and accurate tool for the diagnosis of the above mentioned four tropical diseases
(malaria, typhoid fever, yellow fever and dengue), we propose the framwork QAMDiagnos, Quantum Associative
Memory for the Diagnosis, associated with a friendly multi-platform graphical user interface (Android, Linux, MS
Windows). It is a combination of improved versions of the original linear quantum retrieving algorithm proposed
by Ventura [12] and the non-linear quantum search algorithm of Abrams and Lloyd [13]. The aim of QAMDiagnos
is to (i) act as an advisory tool to inexperienced medical staff, especially senior nurses in rural health centres
having no or a limited number of physicians; (ii) act as a decision-support tool for medical diagnosis for physicians
in under-staffed health centres; (iii) provide an alternative way to reach a reasonable tentative diagnosis, and hence
early commencement of clinical management of patients in the absence of laboratory facilities in many rural and
semi-urban health centres; (iv) facilitate the treatment and prevent potential pandemics given the fact that today
the increase of international air travel/traffic, tourism to tropical regions and human migration led to a rising
incidence of tropical diseases (since vaccines are unavailable for most major tropical infections). Our framework,
which is more robust than that of Agarkar and Ghathol [14] that uses the FFANN for the diagnosis of malaria,
typhoid fever and dengue, can be extended to a wide range of tropical diseases.

The paper is structured as it follows: Section 2 provides a description of foundations of our model of Quantum
Associative Memory. In Section 3 a brief description of each disease is given. Signs and symptoms of diseases are
given in Appendix A. Section 4 is devoted to simulations results and discussion whereas in Section 5 we explain
the use of the multi-platform friendly graphical user interface (GUI) of QAMDiagnos, designed for the medical
staff. Finally, we conclude with an outlook of possible future improvements.

2 Description of Quantum Associative Memory

Associative Memories are a class of Artificial Neural Networks that can memorise information, field of knowledge
or patterns and can retrieve that from partial or noisy data. Quantum Associative Memories (QAM) combine
neurocomputing with quantum computations. Therefore, QAM models share main features both of quantum
information theory and Associative Memory.

2.1 Few basic concepts of quantum information theory

2.1.1 Quantum bit

Quantum information use a quantum bit or a qubit instead of an ordinary bit as the fundamental unit of infor-
mation. The qubit can be an atom, a molecule or a photon that can be in a superposed state (energy or spin for
example). As the classical bit, the qubit can take two particular states noted |0〉 and |1〉 that are the basis states
of a Hilbert space H of 2 dimensions. The fundamental difference between the qubit and the classical bit is that
the qubit can take simultaneously both values. So, the state of the qubit can be represented by the following
superposed state:

|ψ〉 = α |0〉+ β |1〉 , (1a)

with at any time
|α|2 + |β|2 = 1, α, β ∈ C. (1b)

|α|2 and |β|2 are the probabilities of the qubit to be found in the states |0〉 and |1〉 respectively after a measurement.
(|0〉 , |1〉) is the most used computational basis that is a pair of orthonormal vectors defined as

|0〉 =
(

1
0

)

, |1〉 =
(

0
1

)

. (2)

Therefore, quantum superposition suggest that an n-qubits register can exist in all its possible 2n states at the
same time.

2.1.2 Quantum entanglement

The use of only one qubit does not highlight the power of quantum information. A purely quantum phenomenon
that has non classical analogue is a quantum entanglement. We are talking about the quantum entanglement
when at least a pair of qubits has quantum correlation. It means that any interaction with one of the qubits
affects instantaneously the other despite the separation distance, highlighting the non-local features of quantum
theory. In this case, we should see the whole qubits as one unique physical system instead of many separated
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subsystems. So, no classical consideration can allow to know the state of each qubit. A well-known entangled
states are the following EPR states:

∣

∣Ψ+
〉

=
1√
2
(|00〉+ |11〉) ,

∣

∣Ψ−〉 =
1√
2
(|00〉 − |11〉) ,

∣

∣Φ+
〉

=
1√
2
(|01〉+ |10〉) ,

∣

∣Φ−〉 =
1√
2
(|01〉 − |10〉) , (3)

that cannot be written as the products of independent states of two separate subsystems.

2.1.3 Quantum parallelism and decoherence

Due to the quantum superposition and the quantum entanglement it is possible to perform multiple computations
simultaneously or quantum parallelism on a system. But a measurement on the system destroys the quantum
superposition and the system collapses to one of its possible states. This phenomenon is the quantum decoherence

that can be seen as an interaction between a qubit and its environment. One of the challenges of quantum
processing consists of increasing the probability to observe a needed state before the quantum decoherence occurs.

2.1.4 Elementary quantum gate

Quantum computing (that is changing the state of a qubit to another) is carried out through unitary operators

or quantum logic gates when they are used in quantum circuit. Unlike many classical logic gates, the quantum
logic gates are reversible, and therefore allow to avoid energy dissipation. Let us recall that the operator U is an
unitary operator if

UU† = U†U = I, (4)

where I is the identity operator, and U† the complex conjugate transpose of U. Any unitary operator can be
written as

U = exp (−iG), (5)

where G is an hermitian operator, that is G = G†.
In the present work, the NOT gate X = |1− x〉 〈x| and theWalsh-Hadamard gate W = 1√

2
((−1)x |x〉 〈x|+ |1− x〉 〈x|)

will be the most using single-qubit quantum logic gates:

|x〉 X |1− x〉 X =

(

0 1
1 0

)

(6)

|x〉 W
1√
2
((−1)x |x〉+ |1− x〉) W =

1√
2

(

1 1
1 −1

)

, (7)

where x ∈ {0, 1}.
The two-qubit quantum logic gate mostly used in this work will be the controlled NOT gate CX = (|0〉 〈0|) ⊗

I+ (|1〉 〈1|)⊗ X:

|x〉 • |x〉

|y〉 X |1− y〉

CX =

(

I O

O X

)

=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, (8)

where x, y ∈ {0, 1}. The CX gate acts on two-qubits and performs the X operation on the second qubit only when
the first qubit is in the state |1〉, and otherwise leaves it unchanged.

2.2 Few basic concepts of Associative Memories

A Neural Network, more properly referred to as an Artificial Neural Network (ANN), is a computing system
made up of several important basic elements, which include the concept of a processing element (neuron), the
transformation performed by this element (in general, input summation and non-linear mapping of the result
into an output value), the interconnection structure between neurons, the network dynamics, and the learning
rules that govern the modification of interconnection strengths [15]. A major dichotomisation of Neural Networks
can be realised by considering whether they are trained in a supervised or unsupervised manner. An example
of the latter is the Hopfield model of content-addressable memory, or Associative Memory, using the concept of
attractor states. This model has an apparent similarity to human episodic memory: it can recall patterns after
a single exposure using a Hebbian learning rule, and it is capable to retrieve the above mentioned patterns from
partial information, partial and noisy information or noisy ones.

In short, Associative Memories are Neural Networks centralised around two algorithms. The first is to mem-
orise information or patterns and known as learning algorithm. The second is for the restitution of learned
information or patterns from partial or noisy data. It is known as retrieving algorithm.
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Related to quantum theory, Associative Memories are called Quantum Associative Memories (QAM) where the
learning and retrieving algorithms are quantum algorithms. The QAM is one of the most promising approaches
to quantum neurocomputing. The linear part of the QAM design here is an improved version of the one built by
Ventura and Martinez where the stored patterns are considered as the basis states of the memory quantum state
[16].

It should be noted that in the classical Hopfield network the existence of symmetric, Hebbian connections,
guarantees the stability of a unique stored pattern; similarly, in a quantum analogue of the Hopfield network the
quantum entanglement ensures the integrity of a stored pattern (basis state).

The Tab. 1 summarises the analogies used in developing a QAM [15].

Classical Neural Networks Quantum Associative Memory

Neuronal state xi ∈ {0, 1} Qubit |x〉 = α |0〉+ β |1〉
Connections {wij}p−1

ij=1 Quantum entanglement |x0x1 . . . xp−1〉
Learning rule

∑p
s=1 x

s
ix

s
j Superposition of entangled states

∑p
s=1 αs |x0x1 . . . xp−1〉

Winner search n = maxi arg(fi) Unitary transformation U |ψ〉 = |ψ′〉
Output result n Decoherence

∑

s=1 αs |xs〉 ⇒
∣

∣xk
〉

Table 1: Corresponding concepts from the domains of classical Neural Networks and Quantum Associative Mem-
ory.

It is worth noting that there are some other interesting models of quantum inspired neural networks and
quantum inspired evolutionary optimization algorithms [17, 18, 19, 20].

In Subsections 2.3 and 2.4 we will briefly describe the quantum learning and quantum retrieving algorithms
used on our QAM model. The full details can be found in refs. [12] and [13].

2.3 Quantum learning algorithm

For our QAM an operator name BDD is used as the learning algorithm. The BDD operator is obtained by using
the Binary Superposed Quantum Decision Diagram (BSQDD) proposed by Rosenbaum [21]. Contrarily to other
quantum learning algorithms such as the one of Ventura [22], which needs the initial state to be |00 . . .0〉, the
BSQDD is computed by using any basis states |z〉 of the Hilbert space of 2n dimensions. The idea behind the
BSQDD is to represent a quantum superposition as a decision diagram where each node corresponds to a gate.
The gate that corresponds to the node on each branch of the BSQDD is controlled by the path used to reach it
from the root of the decision diagram. Thereby three steps, given by Algorithm 1, are needed to construct one
BSQDD.

Algorithm 1 Linear QAM retrieving algorithm with distributed query for diagnosis

1: Finding the unsimplified BSQDD by using the Hadamard gates, Feymann gates, and inverters;
{The number of nodes of this unsimplified BSQDD represents the upper bound on the number of the gates
that the quantum array generated by the BSQDD needs for being constructed.}

2: Reducing the BSQDD to obtain the final BSQDD; {The goal is to have the lower bound on the number
of quantum gates. To achieve this goal, we need to merge some nodes (gates) according to the links that can
occur between qubits (like control qubit and target qubit). Two rules are used to obtain the final BSQDD.
The first rule states that in two different branches of different nodes that correspond to the same next node,
that same nodes merge. The second rule states that in different branches of different nodes that generate the
same branch, that same branches merge.}

3: Converting the BSQDD to a quantum array that generates the desired quantum state. {The
array is obtained by adding the gates that correspond to the nodes in each layer of the final BSQDD. The
starting point is the last layer and we always place the new gates to the right of the previously placed gates
in the quantum array.}

Example 1 Fig. 1 gives the three steps allowing to construct the state

√

1
5 (|000〉+ |010〉+ |110〉+ |001〉+ |101〉)

from the starting state |000〉. The elementary gates used are respectively the rotation gates

R(θ) =





√

3
5

√

2
5

√

2
5 −

√

3
5



 , R(α) =





√

2
3

1√
3

1√
3

−
√

2
3



 , (9)
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the Hadamard gate W, and the NOT gate X. Then |ψ3〉 =
√

3
5 |000〉 +

√

2
5 |100〉 and |ψ2〉 =

√

2
5 |000〉 + 1√

5
|010〉 +

1√
5
|100〉+ 1√

5
|110〉.

R(θ)

R(α) W

W I X I

√

3

5
|000〉

√

2

5
|100〉

√

2

5
|000〉 1

√

5
|010〉 1

√

5
|100〉 1

√

5
|110〉

1
√

5
|000〉 1

√

5
|001〉

1
√

5
|010〉 1

√

5
|101〉 1

√

5
|110〉

|000〉

(a) Unsimplified BSQDD

|000〉

√

2

5
|100〉

√

3

5
|000〉 R(θ)

CR(α)032 CW32

CCW
00

321
CCX

10

321

√

2

5
|000〉 1

√

5
|010〉

1
√

5
|100〉 1

√

5
|110〉

1
√

5
|110〉1

√

5
|101〉1

√

5
|010〉1

√

5
|001〉1

√

5
|000〉

(b) Final BSQDD

|z〉
❴ ❴ ❴✤

✤
✤

✤
✤

✤

✤

✤
✤

✤
✤

✤
❴ ❴ ❴

❴❴✤
✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤
✤
❴❴

|ψ3〉
❴❴✤
✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤
✤
❴❴

|ψ2〉
❴❴✤
✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤
✤
❴❴

❴ ❴ ❴ ❴ ❴ ❴✤
✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤
✤

❴ ❴ ❴ ❴ ❴ ❴

|ψ1〉
❴❴✤
✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤
✤
❴❴

❴ ❴ ❴ ❴✤
✤

✤
✤
✤

✤

✤
✤

✤
✤
✤

✤
❴ ❴ ❴ ❴

|0〉 R(θ) • •

|0〉 R(α) W

|0〉 W X

G3 G2 G1
(c) Corresponding quantum array

Figure 1: BSQDD to obtain the state |ψ1〉 =
√

1
5 (|000〉+ |010〉+ |110〉+ |001〉+ |101〉). The two BSQDDs of the

Fig. are equivalent.

2.4 Quantum retrieving algorithms

We use two quantum retrieving algorithms that work together but with different learning approaches.

2.4.1 Linear QAM algorithm

The linear QAM retrieving algorithm given by Algorithm 2 is a slightly modified version of QAM-C1 that we
have proposed in ref. [12]. It uses an exclusion learning approach. That approach states that the system must be
in the superposition of all the possible states, except the pattern states. Let us consider M as a set of patterns
and m the number of patterns of length n, then

|Ψ〉 = 1√
N −m

N−1
∑

x/∈M

|x〉 , N = 2n. (10)

In the Algorithm 2,

• O is the oracle operator that inverts the phase of the query state |Reqp〉,

O = I− (1− eiπ) |Reqp〉 〈Reqp| , (11)

O : ax 7→ ax − 2Reqpx

(

2n−1
∑

x=0

(Reqpx)
∗ax

)

, (12)

where ax is the probability amplitude of the state |x〉. The distributed query |Reqp〉 is in the following
superposed states

|Reqp〉 =
N−1
∑

x=0

Reqpx |x〉 , (13)
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Algorithm 2 Linear QAM retrieving algorithm with distributed query for diagnosis

1: Apply the oracle operator O to the register;
2: Apply the diffusion operator D to the register;
3: if Λ > 1 then

4: Apply the operator IM to the register;
5: Apply the diffusion operator D to the register;
6: for 1 ≤ i ≤ Λ− 1 do

7: Apply the oracle operator O to the register;
8: Apply the diffusion operator D to the register;
9: i = i+ 1;

10: end for

11: end if

12: Observe the system.

where Reqpx obey to binomial distribution

‖Reqpx‖2 = adH(p,x)(1 − a)n−dH(p,x). (14)

In equation (14),

– p marks the state |p〉 that is referred as the query centre;

– a ∈]0, 12 [ is an arbitrary value that tunes the width of the distribution;

– the Hamming distance dH(p, x) = |p− x| between binary strings p and x is an important tool that
gives the correlation between input and output;

– the amplitudes are such that
∑

x ‖Reqpx‖2 = 1.

• D is the diffusion operator that inverts the probability amplitude of the states of |Ψ〉 over their average
amplitude and for the others over the value 0:

D = (1− eiπ) |Ψ〉 〈Ψ| − I, (15)

D : ax 7→ 2mx

(

N−1
∑

x=0

m∗
xax

)

− ax, (16)

where mx is the probability amplitude of a state of |Ψ〉.

• Λ is the number of iterations that yields the maximal value of amplitudes, which must be as far as possible
nearest to an integer,

Λ = T (
1

4
+ α), T =

2π

ω
, α ∈ N, (17)

with the frequency of Grover

ω = 2 arcsinB, B =
1√

N −m

N−1
∑

x=0,x/∈M

Reqpx. (18)

• According to the approach QAM-C1 of the ref. [12] IM inverts only the phase of the memory pattern
states as in the model of Ventura,

IM = I− (1− eiπ) |ϕ〉 〈ϕ| , |ϕ〉 〈ϕ| =
∑

x∈M

|x〉 〈x| , (19a)

IM : ax 7→
{

−ax if |x〉 ∈M

ax if not.
(19b)

The linear QAM algorithm is used here as main algorithm given that it increases the probability amplitude
of the searched disease.
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2.4.2 Non-linear QAM algorithm

The non-linear QAM retrieving algorithm given by Algorithm 3 is formally the same with the one we have
proposed in ref. [13] (see that ref. for more details) that is an improved version of the one given by [23]. It uses
inclusion learning approach.

Algorithm 3 Non-linear QAM retrieving algorithm for diagnosis

1: Apply the oracle operator Uf , with f a function
2: repeat (c− r) times step (3) to step (5) (i.e., one time per qubit of the first register starting from (r + 1)th

qubit with the flag qubit)
3: Apply the unitary operator U
4: 1. Apply the non-linear operator NL−

2. Apply the non-linear operator NL+

5: Apply the Hadamard operator W on the qubit of the first register and the NOT operator X on the flag qubit
6: Observe the flag qubit

Algorithm 3 is used on the subspace of signs and symptoms and allows to know if signs and symptoms related
to a particular disease exist in the database. In the Algorithm 3,

• n is the number of qubits of the first register.

• p ≤ 2n is the number of stored patterns.

• q ≤ p is the number of stored patterns if the values of t qubits are known (i.e. t qubits have been measured
or are already disentangled to others or the oracle acts on a subspace of (n− t) qubits).

• c = ceil(log2 q), that is the least integer greater or equal to log2 q.

• m ≤ q is the number of values x for which f(x) = 1.

• r = int(log2m) is the integer part of log2m.

3 Database: signs and symptoms of the four tropical diseases

3.1 Short description of the four diseases

Based on [24, 25, 26, 27] we are going to give a briefly description of the four tropical diseases of our study.
Appendix A gives their signs and symptoms.

Malaria is a life-threatening disease caused by protozoan parasites of the genus Plasmodium. The parasite is
generally transmitted from one human to another through the bite of infected females Anopheles mosquitoes.
Five species infect humans by entering the bloodstream: P. knowlesi, P. ovale, P. malariae, P. vivax and

P. falciparum. The last two ones, P. vivax and P. falciparum, are the greatest threat because they affect
a greater proportion of the red blood cells than the others. P. falciparum is the most prevalent malaria
parasite on the African continent. It is generally responsible for most malaria-related deaths. P. vivax has
a wider distribution than P. falciparum, and predominates in many countries outside Africa. About 3.2
billion people, almost half of the world population, are exposed to malaria. Sub-saharan Africa carries a
disproportionately high share of the global malaria burden. In 2015, the region was home of 89% of malaria
cases and 91% of malaria deaths.

Typhoid fever , also known as salmonellosis, is a life-threatening illness caused by the bacterium Sallmonella

typhi, also known as Salmonella enterica serotype typhi, growing in the intestines and blood. Dirt (poor
sanitation and poor hygiene) is the main cause of transmission of the disease. Contaminated food and unsafe
water are the main vectors. Typhoid fever remains a serious worldwide threat, especially in developing
countries. The estimated cases of this disease are nearby 16-33 millions each year; this leads to more than
half million death cases. The disease is endemic in India, Southeast Asia, Africa, South America and many
other areas.

Yellow fever is an acute viral hemorrhagic disease caused by a Flavivirus. The virus is transmitted through the
bite of an infected female mosquito (Aedes aegypti). The virus causes deterioration of the liver. There are
an estimated 200,000 cases of yellow fever, causing 30,000 worldwide deaths each year, with 90% occurring
in Africa. Forty-four endemic countries in Africa and Latin America, with a combined population of over
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900 millions, are at risk. In Africa, an estimated 508 millions people live in 31 countries exposed to the
disease. The remaining population at risk are in 13 countries in Latin America. Bolivia, Brazil, Colombia,
Ecuador and Peru are at greatest risk.

Dengue fever is a painful, debilitating mosquito-borne tropical disease caused by dengue virus. The virus is
transmitted by several species of mosquito within the genus Aedes, principally Aedes aegypti. WHO has
classified dengue as one of the neglected tropical diseases and reported the resurgence of the disease [28].
Dengue is common in more than 110 countries. It infects 50 to 528 millions people worldwide a year, leading
to half million hospitalisations, and approximately 25,000 deaths. Cases of the disease have been reported
at least in 22 countries in Africa; but it is likely present in all of them with 20% of the population at risk.
This makes it one of the most common vector-borne diseases worldwide.

3.2 Description of the database

Our database contains signs and symptoms of four tropical diseases: malaria, typhoid fever, dengue fever and
yellow fever (see Appendix A). There are seventeen signs and symptoms specific to malaria, eighteen to typhoid
fever, twenty-three to dengue and seventeen to yellow fever. Some signs and symptoms are common to different
diseases, not only the four, such as fever and headache for example, thereby our database contains ninety-five
signs and symptoms. We need six qubits for the computation because each symptom is labelled with a number
in its binary form. Therefore we can compute 26 signs and symptoms per disease. In the subspace of disease we
label the signs and symptoms in decimal form by starting with 0. Furthermore, we need four qubits to label the
ten groups of diseases presented by the Tab. 2 that are used in the linear QAM algorithm. There is one group
per individual disease (N° 1-4); two groups corresponding to common signs and symptoms to malaria and typhoid
fever or yellow fever (N° 5-6); two groups corresponding to common signs and symptoms to yellow fever and
typhoid fever or dengue (N° 7- 8); one group corresponding to common signs and symptoms to malaria, yellow
fever and dengue (N° 9); and finally one group corresponding to common signs and symptoms to each of the four
diseases. The last can be found in other diseases such as headache, fever and abdominal pain (N°10). For the
non-linear QAM algorithm we need four flag qubits, one for each disease. It appears that we need a register that
contains n = 14 qubits, six for signs and symptoms, four for diseases for each QAM algorithm. So, there are two
output registers. The labels of the output qubits for the linear QAM algorithm are mentioned above. The other
possibilities are pointed to be other diseases and signs and symptoms in our model. Two sets of four qubits for
output are needed due to the fact that the learning process of the linear QAM algorithm is different from the
one used for the non-linear QAM algorithm. For the non-linear QAM algorithm each flag qubit is associated to
one disease. That qubit allows to know if a symptom specific to a particular disease is present. Therefore value
0 means that this particular disease is not present, whereas value 1 means that it is present. Nevertheless, if the
values of that four qubits are 0, it means that none specific symptom is introduced.

N° Group of diseases by signs and symptoms Label

1 Malaria |0001〉
2 Typhoid fever |0010〉
3 Yellow fever |0100〉
4 Dengue |1000〉
5 Malaria + Typhoid fever |0011〉
6 Malaria + Yellow fever |0101〉
7 Yellow fever + Typhoid fever |0110〉
8 Yellow fever + Dengue |1100〉
9 Malaria + Yellow fever + Dengue |1101〉
10 Other diseases |1111〉

Table 2: Groups of diseases by signs and symptoms and their labels in binary form for the linear algorithm. The
hamming distance between the label of two groups of diseases is equal to 1 when the signs and symptoms are
common to these two groups of diseases and is equal to 2 otherwise. The group N° 10 or Other diseases is devoted
to signs and symptoms that are common to each 4 diseases and that can also occur in other groups of diseases
not mentioned here. We point out the fact that other labels are also consider to be Other diseases.

For the linear QAM retrieving algorithm, the determination of the number of iterations is mentioned above.
Labelling all the fourteen qubits from |q1〉 to |q14〉, the entire QAM looks as illustrated in Fig. 2.
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Figure 2: Schematic structure of the QAMDiagnos. BSQDD E is the learning part of the linear QAM algorithm,
whereas, after reinitialisation, BSQDD I is the learning part of the non-linear QAM algorithm. LA is the set of
gates simulating the linear QAM algorithm. NLA is a repeated non-linear QAM algorithm, once for each disease.
Each flag qubit from |q11〉 to |q14〉 is devoted to one disease.

4 Simulations results and discussion

To design the linear part of the QAMDiagnos, we take into account the four following facts:

1. The arbitrary value that regulates the width distribution around the chosen centre is a = 0.4999 ;

2. The centre of the query is |0000〉 because we assume that there is no indication about disease;

3. The difference between the number of iterations Λ and the nearest integer must be less than 0.1;

4. Not more than six signs and symptoms can be chosen.

We give in the next Tabs. 3 and 4 the average probabilities of correct recognition (Pc). We take the average
due to the convention we chose to label signs and symptoms, and diseases. Therefore, sensibility is the conditional
probability to have a correct recognition if the disease is present. So, as we can obtain from our QAM probabilities
of good recognition, we can see that they look like sensibilities.

• For single infection

We obtain sensibilities according to the definition.

Number of signs and symptoms

Disease 1 2 3 4 5 6 q11 q12 q13 q14

Malaria 93.8911 94.5059 97.5402 96.4843 99.9043 96.5960 Without 1 0 0 0
Typhoid fever 93.8911 94.5059 97.5402 96.4843 99.9043 96.5960 other 0 1 0 0
Yellow fever 93.8911 94.5059 97.5402 96.4843 99.9043 96.5960 0 0 1 0
Dengue 93.8904 94.5052 97.5397 96.4837 99.9041 96.5954 signs and symptoms 0 0 0 1
Malaria 47.4418 65.0912 72.4296 79.9350 80.5407 - With 1 1 0 0 0
Typhoid fever 47.4418 65.0912 72.4296 79.9350 80.5407 - other 0 1 0 0
Yellow fever 47.4418 65.0912 72.4296 79.9350 80.5407 - 0 0 1 0
Dengue 47.4411 65.0905 72.4289 79.9346 80.5400 - sign or symptom 0 0 0 1
Malaria 32.6307 48.3689 59.9605 64.4826 - - With 2 1 0 0 0
Typhoid fever 32.6307 48.3689 59.9605 64.4826 - - other 0 1 0 0
Yellow fever 32.6307 48.3689 59.9605 64.4826 - - 0 0 1 0
Dengue 32.6302 48.3683 59.9600 64.4819 - - signs and symptoms 0 0 0 1
Malaria 24.3022 39.9808 48.4219 - - - With 3 1 0 0 0
Typhoid fever 24.3022 39.9808 48.4219 - - - other 0 1 0 0
Yellow fever 24.3022 39.9808 48.4219 - - - 0 0 1 0
Dengue 24.3018 39.9803 48.4213 - - - signs and symptoms 0 0 0 1

Table 3: Average probabilities Pc according to the number of signs and symptoms related to a disease in case of
a single infection for the linear part of the QAM. For the non-linear part, each corresponding flag qubit has its
value equal to 1. Here “other signs and symptoms” are fever, headache and abdominal pain.
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• For polyinfection

We also obtain sensibilities according to the definition.

Number of symptom of malaria

Disease 0 1 2 3

Malaria 0.1577 24.2913 39.9633 48.4079 With 1 sign
Typhoid fever 32.6167 24.2913 19.9844 16.2842 or symptom
Malaria + Typhoid f. 65.0886 48.3653 39.9685 32.3538 of Typhoid f.
Malaria 0.2283 19.9844 32.3460 - With 2 signs
Typhoid fever 48.3543 39.9633 32.3460 - and symptoms
Malaria + Typhoid f. 48.3653 39.9685 32.3538 - of Typhoid f.
Malaria 0.0055 16.2842 - - With 3 signs
Typhoid fever 59.9422 48.4079 - - and symptoms
Malaria + Typhoid f. 39.9685 32.3538 - - of Typhoid f.
Malaria 0.2224 - - - With 4 signs
Typhoid fever 64.4697 - - - and symptoms
Malaria + Typhoid f. 32.3538 - - - of Typhoid f.

q11 0 1 1 1
q12 1 1 1 1
q13 0 0 0 0
q14 0 0 0 0

Table 4: Probabilities Pc according to the number of signs and symptoms related to diseases in case of a polyin-
fection for the linear part of the QAM. For the non-linear part, each corresponding flag qubit has its value equal
to 1. Here “common sign or symptom“ is the one that is common to the two diseases. Here we have chosen two
common signs and symptoms.

As we can see on the Tabs. 3 and 4 the QAM can collapse to a state representing single infection or
polyinfection. That is the QAM can distinguish single from polyinfection. That distinction is possible with
the lowest (one) or the highest (six) number of particular signs and symptoms of a disease, but it is better in
the last case. When the “other signs and symptoms” are inserted, the QAM can also do the distinction. As
we observe on the Tab. 5 the “other signs and symptoms” are not related to a particular disease. Therefore,
the non-linear part of the QAM completes or corrects the results of the linear part.

Number of signs and symptoms

Disease 1 2 3

Other diseases 96.38 96.73 98.53

Table 5: Probabilities Pc according to the number of “other signs and symptoms” for linear part of the QAM.
For the non-linear part, each flag qubit has its value equal to 0. The QAM does not associate these signs and
symptoms to one of the four diseases.

We also evaluate the specificity of the QAM. Specificity is the conditional probability to have a correct
recognition if the disease is not present. In other words it is the ability of the memory to distinguish healthy
people from non-healthy ones. For our QAM, to acquire it we use the 448 signs and symptoms without any
relation with the four diseases and take the average of probabilities to obtain “Other diseases” as a result. We
obtain the Tab. 5 and assume that the specificity is 96.38%.

5 QAMDiagnos: desktop and smart-phone GUI

All the simulations and results were made by encoding the algorithms in C++ language. A multi-platform friendly
graphical user interface (GUI) of our QAMDiagnos is designed for the medical staff. (see figures of supplementay
material for more details). It is developed with the open source version of the C++ library Qt5.

To use the software, after observing or discussing with a patient, and according to what he observes and the
answers of the patient, the physician introduces signs and symptoms in the QAMDiagnos (at least one sign or
symptom and a maximum of six signs and symptoms). The result and a proposal of treatment are given in the text
box “Treatment proposal“ for the desktop GUI or in the only one text box for the smart-phone GUI. Although
weight and age can be important for accurate diagnosis, the QAMDiagnos does not use these data because it
can occur that the physician forgets to take them or not. Therefore, in the text box “Treatment proposal“ the
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QAMDiagnos shows a treatment proposal which is not bound to the weight or age. We made the simulations on
a classical computer, so we can obtain each probability (recognition efficiency).

Thus, the physician can also compare the recognition efficiency of the linear part of the QAMDiagnos for
each disease given in the ”Results” area. So, the disease with the greatest recognition efficiency can be viewed
as the corresponding disease of the patient. To achieve this goal, that is to simulate the probabilistic nature of
the quantum theory, we use the qrand() function of Qt5 that allows us to choose arbitrarily one of the diseases
according to its probability. As the linear QAM algorithm is the main algorithm, the disease with the highest
probability is given as result with the associated treatment proposal. Before that, the non-linear QAM algorithm
identifies if a sign or symptom specific to a particular disease is present. The results of the linear QAM algorithm
and the non-linear QAM algorithm are given together to help the physician in his decision.

The complementary of the two algorithms is more highlighted in the case of polyinfection. For example,
if common signs and symptoms to malaria, yellow fever and dengue are inserted and symptom particular to
malaria and another to yellow fever are also inserted, the linear QAM algorithm will identify this combination as
a polyinfection. But, the non-linear QAM algorithm will identify the signs and symptoms of malaria and yellow
fever. This gives to the physician the possibility to focus only on two diseases (malaria and yellow fever) instead
of the three.

Some snapshots of the QAMDiagnos allowing better understanding are available as supplementary material
associated to this paper.

6 Conclusion

We have presented in this paper the QAMDiagnos, a Quantum Associative Memory framework that can be helpful
to diagnose four tropical diseases (malaria, typhoid fever, yellow fever and dengue) with several common signs and
symptoms. The framework that has a friendly multi-platform GUI, is a combination of the improved versions of
original quantum linear retrieving algorithm proposed by Ventura and the non-linear quantum search algorithm
of Abrams and Lloyd. While the phase-inversion introduced in the original linear QAM algorithm increases the
capacity of the memory to make a good diagnosis, the non-linear QAM algorithm helps to confirm or to correct
the diagnosis and to make some suggestions to the medical staff for the treatment. In addition, the QAMDiagnos
can distinguish a single infection from a co-infection and needs only few specific signs and symptoms of disease and
common signs and symptoms. Therefore, the QAMDiagnos framework can be a good tool to help inexperienced
medical staff or medical staff without laboratory facilities to rapidly and accurately diagnose malaria, typhoid
fever, yellow fever and dengue, four tropical diseases that are often confused. Due to its highly automated nature,
health centres personnel can be trained to operate the QAMDiagnos in just one day.

For future works, it is planned to build up a device that can help acquire physiological parameters on a patient
and transfer them to the QAMDiagnos.
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A Symptoms of each group of diseases

Malaria Typhoid fever Yellow fever Dengue

Headache Headache Headache Headache
Abdominal pain Abdominal pain Abdominal pain Abdominal pain
Fever Fever Fever Fever

Myalgia Myalgie Myalgia
Renal failure Renal failure Renal failure
Nausea Nausea Nausea
Vomiting Vomiting Vomiting

Shiver or cold sensation Shiver or cold sensation
Hemorrhage Hemorrhage
Iterus Iterus
Oliguria Oliguria

Anorexia Anorexia
Coma Coma
Prostration Prostration

Epistaxis Epistaxis
Myocarditis Myocarditis

Rachiodynia Rachiodynia
Heart failure Heart failure
Hepatic failure Hepatic failure
Conjunctival injection Conjunctival injection
Somnolence Somnolence

Anemia Asthenia Acidosis Accumulation of fluid and
respiratory distress

Shock Bouveret’s ulcer Bradycardia related to tem-
perature

Generalized adenopathy

Generalized or focal convul-
sion

Relative bradycardia Infectious shock Agitation or Lethargy

Multiple convulsion Constipation Terminal coma Arthralgia
Stiffeness Yellowy diarrhea Excessive dryness Asthnie prolonge
Delirium Encephalitis Back pain Elevation of the hematocrit

and fast drop of platelets
Respiratory distress Lenticular exanthem of limbless

man
Limb pain Corrected shock

Diarrhea Rumble in the right iliac cavity Renal pain Uncorrected shock
Hemoglobinuria Digestive hemorrage or digestive

perforation
Epigastric pain Tensor fall

Hepatosplenomegaly Insomnia Fatigue Desquamation of macular
eruption

Hypoglycemia Sabural tongue Foul breath Retro-orbital pain
Malaise Abdominal heavines Hypotension Encephalopathy
Pulmonary edema Peritonitis Lumbago Macular eruption
Palenes Dissociate pulse Prolongation of the PR and

QT intervals on electrocar-
diography

Maculopapular exanthem

Sub-iterus Septicemia Light proteinuria Hepatomegaly (>2cm)
Profuse sweat Splenomegaly Purpura Sudden hypothermia
Conscience trouble Moderate splenomegaly Vomito negro Leukopenia

Typhoid state Obnubilation
Vascular purpura
Benign cutaneous or mucous
bleeding
Severe cutaneous or mucous
bleeding
Persitent vomiting

Table 6: signs and symptoms of the database [24, 25, 26, 27].
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