
 

Instructions for use

Title Effective neural network training with adaptive learning rate based on training loss

Author(s) Takase, Tomoumi; Oyama, Satoshi; Kurihara, Masahito

Citation NEURAL NETWORKS, 101, 68-78
https://doi.org/10.1016/j.neunet.2018.01.016

Issue Date 2018-05

Doc URL http://hdl.handle.net/2115/77798

Rights ©2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

Rights(URL) https://creativecommons.org/licenses/by-nc-nd/4.0/

Type article (author version)

File Information NEUNET_takase.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Effective Neural Network Training with Adaptive Learning 

Rate based on Training Loss 

 

 

 

 

Tomoumi Takase* 

Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9 Kita-

ku, Sapporo, Japan 

takase_t@complex.ist.hokudai.ac.jp 

 

Satoshi Oyama 

Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9 Kita-

ku, Sapporo, Japan 

oyama@ist.hokudai.ac.jp 

 

Masahito Kurihara 

Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9 Kita-

ku, Sapporo, Japan 

kurihara@ist.hokudai.ac.jp 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

  A method that uses an adaptive learning rate is presented for training neural networks. Unlike most 

conventional updating methods in which the learning rate gradually decreases during training, the 

proposed method increases or decreases the learning rate adaptively so that the training loss (the sum 

of cross-entropy losses for all training samples) decreases as much as possible. It thus provides a wider 

search range for solutions and thus a lower test error rate. The experiments with some well-known 

datasets to train a multilayer perceptron show that the proposed method is effective for obtaining a 

better test accuracy under certain conditions. 

 

1. Introduction 

  Deep learning has recently demonstrated excellent performance for various image classification 

(Krizhevsky, Sutskever, & Hinton, 2012; Wu & Gu, 2015; Shi, Ye, & Wu, 2016) and speech 

recognition tasks (Hinton et al., 2012; Sainath et al., 2015; Fayek, Lech, & Cavedon, 2017). This 

success is mainly due to the development of improved parameter updating methods. AdaGrad (Duchi, 

Hazen, & Singer, 2011), RMSprop (Tieleman & Hinton, 2012), AdaDelta (Zeiler, 2012), and Adam 

(Kingma & Ba, 2015), which are updating methods based on stochastic gradient descent (SGD), are 

now widely used, and selection of a suitable updating method for each task can lead to a better 

performance. 

  Users of these updating methods need to define the initial parameters, including the initial learning 

rate. Defining this rate is especially important because an inappropriate learning rate can lead to poor 

local solutions where the value of the loss function is no better than other local solutions. Thus we 

should say that a major disadvantage of these methods is that they have sensitive hyper parameters 

which are difficult to tune appropriately. 

  One method without any sensitive hyper parameters is the step-size control method of Daniel et al. 

(Daniel, Taylor, & Nowozin, 2016), in which the step-size for the learning rate is automatically 

controlled by reinforcement learning (Sutton & Barto, 1998) independent of its initial setting. Another 

such method is the LOG-BP algorithm of Kanada (Kanada, 2016), which exponentially reduces the 

learning rate by combining back propagation with the genetic algorithm. 

  A straightforward approach to adjusting the learning rate is to multiply it by a certain constant, such 

as 0.1, every fixed number of training epochs, such as 100 epochs. This approach is widely used to 

improve test accuracy. However, this approach is inflexible in the sense that the learning rate must be 

fixed to a single value until the next setting time. 

  In this paper, we present a more flexible method for automatically adjusting the learning rate during 

training by either increasing or decreasing its value adaptively based on a tree search for minimizing 

the training loss. Unlike the straightforward approach, our method performs the trainings 

independently in parallel with several learning rates during each epoch, choosing as the actual learning 



rate the one that has resulted in the smallest training loss (the sum of cross-entropy losses for all 

training samples). This is regarded as an optimization process. However, we find dynamic 

programming and reinforcement learning inappropriate for our task because 1) the training is one-way, 

2) the training loss cannot be analytically calculated, and 3) the training for each epoch takes much 

time. To overcome this problem, we have developed an efficient search algorithm based on breadth-

first beam search. In the sequel, our method will be referred as ALR technique (Adaptable Learning 

Rate Tree algorithm). 

  In Section 2, we analyze the behavior of the learning rate for various parameter updating methods. 

In Section 3, we describe ALR technique. In Section 4, we report the experimental results for both the 

proposed and conventional methods. In Sections 5 and 6, we discuss the effects of three main 

parameters. In Section 7, we summarize our work and discuss some future works.  

 

2. Learning Rate 

  Since SGD is the base of many updating methods, we first describe an updating method based on 

SGD. Many studies related to SGD have been conducted (Neyshabur, Salakhutdinov, & Srebro, 2015; 

Breuel, 2015; Mandt, Hoffman, & Blei, 2016; Hardt, Recht, & Singer, 2015). 

  In SGD, parameter updating is performed for each sample or for each mini batch: 

where 𝜃 are the weights (and biases), which are the neural network parameters, 𝑥(𝑖) is input with 

training sample 𝑖, 𝑦(𝑖) is the label, 𝐸 is the loss function, and 𝜂 is the learning rate. 

  Increasing 𝜂 can widen a range of search, but too large 𝜂 makes the convergence to a solution 

difficult. An effective way to avoid this problem is to reduce the learning rate during training. For 

example, AdaGrad replaces 𝜂 in Eq. (1) with 𝜂𝑡 defined as follows. 

where ∘ in Eq. (2) means the Hadamard (element-wise) product, and 𝜀 in Eq. (3) is a small constant 

used for stability. Since 𝑟𝑡 is increasing, 𝜂𝑡 is decreasing. 

  Most updating methods, such as Adam, are based on AdaGrad, and their updating equations were 

designed so that the learning rate decreases during training. The search range for a solution gradually 

narrows, and search for a better solution becomes difficult. In contrast, if the learning rate is increased 

during training so that the search range remains wide, poor local solutions can be easily avoided, but 

convergence becomes difficult. A combination of reducing and increasing the learning rate should thus 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ∙ 𝛻𝜃𝑡𝐸(𝜃𝑡; 𝑥
(𝑖); 𝑦(𝑖)) , 

 

(1) 

𝑟𝑡+1 = 𝑟𝑡 + 𝛻𝜃𝑡𝐸 ∘ 𝛻𝜃𝑡𝐸 

 

𝜂𝑡+1 =
𝜂0

√𝑟𝑡+1 + 𝜀
 , 

 

(2) 

(3) 



be an effective way to improve training. 

  In ALR technique, the learning rate is increased or decreased so that the training loss is minimized, 

meaning that 𝜂 in Eq. (1) is changed for each epoch on the basis of the loss function: 

Unlike AdaGrad, ALR computes 𝜂𝑡 common to all weights for efficiency reasons. 

  ALR modifies the learning rate on the basis of training loss, but generally, a decrease in training 

loss can lead to over-fitting to training data. However, the over-fitting can be restrained by using a 

technique such as weight upper limit (Srebro & Shraibman, 2005) or dropout (Srivastava et al., 2014). 

 

3. ALR technique 

3.1 State Transition 

  In this section, we describe ALR technique, which adjusts the learning rate on the basis of the loss 

function. As mentioned in Introduction, training is independently performed with several learning rates 

during each training epoch, and the rate that resulted in the smallest training loss is used as the actual 

learning rate at each epoch. Because the training loss is the value of the loss function, ALR technique 

indirectly uses the shape of the loss function. While a method for theoretically finding the minimum 

of a loss function without using its shape has been proposed (Song et al., 2016), the range of 

application is limited because it depends on a specific loss function. Our method does not depend on 

a specific loss function. 

  We use a tree structure to represent state transition during training. The state transition from epoch 

𝑡 to epoch 𝑡 + 1 is illustrated in Fig. 1. Each node represents the state (the learning rate) at an epoch 

in the training. The parent node at epoch 𝑡 has 𝑁 branches, and one of the different scale factors 

𝑟1,…,𝑟𝑁 (fixed a priori, common to every node) is assigned to each branch. The learning rate at epoch 

𝑡 + 1 is obtained by multiplying the learning rate at epoch 𝑡 by the scale factor 𝑟𝑛, if the 𝑛-th child 

node was chosen at epoch 𝑡. By 𝑟𝑛𝑡
, we denote the scale factor chosen in the transition from epoch 𝑡 

to 𝑡 + 1, where 𝑛𝑡 ∈ {1,2,∙∙∙, 𝑁}. The relationship between 𝜂𝑡 and 𝜂𝑡+1 is given by 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡 ∙ 𝛻𝜃𝑡𝐸(𝜃𝑡; 𝑥
(𝑖); 𝑦(𝑖)) . 

 

(4) 

𝑟1 𝑟𝑁

・・・

epoch: 𝑡

𝜂𝑡 

epoch: 𝑡 + 1 ・・・

𝑟𝑛 

𝜂𝑡+1

Fig. 1. State transition from epoch 𝑡 to epoch 𝑡 + 1. 𝑁: number of branches; 𝑟𝑛: scale factor for each branch; 

𝜂𝑡: learning rate at epoch 𝑡． 



 

The repeated use of Eq. (5) leads to the learning rate at an arbitrary epoch 𝑠 as follows: 

where 𝜂0 is the initial learning rate. 

  Actually, ALR combines multiple state transitions, as shown in Fig. 2. A search is performed using 

the tree structure. To perform it efficiently, ALR uses a breadth-first beam search, as described in 

Sections 3.2 and 3.3. 

 

3.2 Parameters 

  ALR has three main parameters: the number of branches, the set of scale factors, and the beam size. 

The number of branches is 𝑁 for each node, and the set of scale factors for each node is represented 

as {𝑟1,…,𝑟𝑁}. The beam size 𝑀 represents the bounded breadth of the breadth-first search. If the 

number of nodes 𝑘 at the same epoch exceeds 𝑀, the (𝑘 −𝑀) worst nodes (in terms of training loss) 

are eliminated. 

  The user must fix these parameters (common to all nodes and epochs) before training. Here, the 

number of branches and the scale factor are common to all nodes, and the beam size is common to 

each epoch. The effects of these main parameters and a minor parameter 𝜂0  will be discussed in 

Section 5 and 4.4, respectively. 

 

3.3 Procedure 

  We explain the state transition procedure, using the example tree structure shown in Fig. 2, where 

the number of branches is 𝑁 = 3, the scale factors are {2.0, 1.0, 0.5}, and the beam size is 𝑀 = 4. 

The number inside each node represents the ranking of the training loss at each epoch (the smaller the 

training loss is, the smaller the number is). The state transitions at each epoch are as follows. 

 

epoch 1→2: In node A, one-epoch trainings are independently performed for the three scale factors. 

The branch that produces the smallest training loss is chosen, and the state changes to node B. The 

two nodes other than node B are stored for the next step. 

epoch 2→3: Generated as candidates for the next transition are 9 nodes, for each of which one-epoch 

training is independently performed. As many as 𝑀(= 4) nodes are stored in the ascending order of 

training loss, and the other 5 nodes are eliminated. The state changes to node C, which produces the 

smallest training loss. 

epoch 3→4: Trainings are performed as in the previous epoch. The state changes to the best node D, 

𝜂𝑡+1 = 𝜂𝑡 ∙ 𝑟𝑛𝑡 . 

 

(5) 

𝜂𝑠 = 𝜂0∏𝑟𝑛𝑡

𝑠−1

𝑡=1

 , 

 

(6) 



although not directly connected to node C. This transition is possible because the nodes other than the 

best node have been stored. 

 

  A sketch of the algorithm used in ALR technique is given in Algorithm 1. A characteristic point is 

that several learning rates and weights are stored in ascending order of training loss. Training continues 

until it converges, but in practice, stopping at an earlier epoch might result in a better result. 

  Compared to the conventional method, ALR is time-consuming when higher number of branches 

and beam size are used. For example, if the number of branches is 3 and the beam size is 20, this 

method will train ~60 times more models than the conventional method. However, in most cases, the 

computation time of ALR is not a big problem for multilayer perceptron (MLP) because it has a 

relatively small structure. 

  Clearly, we can expect that parallel computation for trainings at each epoch will effectively reduce 

computation time as in (Huang et al., 2013), where Huang et al. used parallel computation to reduce 

the computational cost of a recurrent neural network. 

 

3.4 Breadth-first beam search 

  As discussed in the previous section, at the epoch 3→4, the breadth-first beam search enabled state 

transition to node D, which does have a direct connection to node C. A suitable diagram to explain this 

transition is shown in Fig. 3. As shown in the figure, we can interpret this transition as a transition via 

1

Training starts Parameter 1:

Number of branches
Parameter 2:

Scale factor

×2.0 ×0.5

Parameter 3:

Beam size

×1.0

epoch: 1

epoch: 2

epoch: 3

epoch: 4

A

B

C

D

1 2 3

12 3 4

123 4

Fig. 2. Example state transition from epoch 1 to epoch 4. Parameter 1: the number of branches is 3. Parameter 2: the 

scale factors are 2.0, 1.0, or 0.5. Parameter 3: the beam size is 4. The numbers labeled on the nodes represent the 

ranking of training loss at each epoch. In the breadth-first beam search, the state moves to the child node labeled 1. 



the route C→B→A→…→D. This is especially important in terms of searching for solutions. 

  Because the weights are updated so that the training loss tends to decrease, a poor local solution 

tends to be obtained, especially at the beginning of the training. The breadth-first beam search enables 

a poor local solution to be avoided and a better solution to be obtained. We will discuss the effect of 

beam size in Section 5.3. 

 

4. Main Experiments 

4.1 Experimental Conditions 

  We performed experiments using the MNIST dataset (LeCun, Cortes, & Burges) and compared the 

repeat

Initialize: beam size: M;

number of branches: N;

scale factors: {𝑟𝑛}𝑛=1
𝑁 ;

for m = 1, 2,  , M do

for n = 1, 2,  , N do

end for

end for

until converged

𝐸 ,𝑛←𝐸(𝜃 ,𝑛;𝑥
( );𝑦( ))

where  𝑡, 𝑛𝑡← 𝑟  𝑖𝑛{𝐸}

𝜂 ,𝑛←𝜂  𝑟𝑛

𝑡←𝑡 + 1

𝑡← 

𝜃 ,𝑛←𝜃 ,𝑛 − 𝜂 ,𝑛  𝛻𝜃𝐸 ,𝑛

for b = 1, 2,  , B do

end for

𝜃←𝜃 𝑡,𝑛𝑡 

𝜃 ,𝑛←𝜃 

Save the first M pairs as (𝜂1 ,𝜃1),  , (𝜂 , 𝜃 ).

Sort {(𝜂 ,𝑛, 𝜃 ,𝑛) | 1    𝑀, 1  𝑛  𝑁} in ascending order of {𝐸 ,𝑛} and

 ,𝑛

Input:

learning rate: {𝜂 } =1
 ;

weights and biases: 𝜃, {𝜃 } =1
 ;

number of batches for each epoch: B;

training data: {𝑥 ( )} =1
 , {𝑦( )} =1

 ;

Algorithm 1  ALR technique 



result by ALR technique and that by the standard SGD (the conventional method) as a baseline. The 

MNIST dataset consists of hand-written digital images and contains 60,000 training data and 10,000 

test data. The image size is 28×28 pixels, and the input values are the intensity, from 0 to 255. Images 

are divided into 10 classes, from 0 to 9. 

  We trained a MLP in this experiment. Because MLP is the base of other neural networks, improving 

its performance would be an important achievement, as evidenced by the many MLP studies that have 

been conducted (Petersen et al., 1998; Tang, Deng, & Huang, 2016; Park & Jo, 2016). The structure 

of the MLP used is given in Table 1. An MLP with only one hidden layer was used as a model. A 

rectified linear unit (ReLU) (Glorot, Bordes, & Bengio, 2011) was used as the activation function of 

the hidden layer, and the softmax function was used as the activation function of the output layer. The 

parameters used are listed in Table 2. 

  When the initial learning rate is 𝜂0 and the scale factor is 𝑟, the learning rate at the epoch 𝑡 + 1 

epoch: 1

epoch: 2

epoch: 3

epoch: 4

A

B

C

D

1

1

1

1

2

3

Fig. 3. A diagram to explain an interpretation for a transition in breadth-first beam search. 

Table 1 Structure of MLP with one hidden layer. 

ReLU was used for the hidden layer and the 

softmax function was used for the output layer. 

Table 2 Parameters for the experiments in 

Section 4.1. The same initial learning rate, 

batch size, and number of epochs were used for 

both the proposed and conventional methods. 

Layer type Units 

input 28×28 

hidden ReLU 1000 

output softmax 10 

 

Parameter Value 

Initial learning rate  .5 

Batch size 1   

Number of epochs 3   

Number of branches 3 

Scale factors {2. ,  1. ,   .5} 

Beam size 2  

 



is described by 𝜂0 ∙ 𝑟
𝑡. If each element of scale factors is described by the format of  𝑘( , 𝑘 ∈ ℝ), 

where the exponent 𝑘 can allow a bigger learning rate space than the base  , the possible learning 

rates are limited to specific values, 𝜂0 ∙  
𝑛(𝑛 ∈ ℝ). This is convenient for a comparative experiment 

with the conventional method as performed in the next section. By setting   to 2.0 and the number of 

branches to 3, we used {2.0, 1.0, 0.5} for the set of scale factors and 0.5 for the initial learning rate, 

when the possible learning rates are given by  .5 ∙ 2𝑛. 

  In actual use, the scale factor need not be limited to these values; the only requirement is that the 

set of values contains both a value larger than 1.0 and a value smaller than 1.0 so that the learning rate 

can increase and decrease. A recommendation for setting the scale factor is described in Section 5.2. 

  The beam size was set to 20. A Glorot's uniform distribution (LeCun, Bottou, Orr, & Muller, 1998; 

Glorot & Bengio, 2010) was used to initialize the weights in the neural network. Because the results 

are affected by the initialization, we performed several trials with the initialization done using different 

random seeds. The test error rate was calculated for each epoch. 

  We did not use validation data because there is not enough data in the MNIST dataset to provide 

validation data, so using validation data would degrade test accuracy. In actual use, validation data 

should be used to find better parameters. 

 

4.2 Experimental Results 

  As shown in Figs. 4(a) and (b), respectively, ALR had a lower test error rate and a much smaller 

training loss than the conventional method. The small training loss is the result of choosing an update 

with the smallest loss among several updates using different learning rates. 

  The transition in the learning rate during training (obtained for one trial) is plotted in Fig. 5. The rate 

increased as training proceeded. At epoch 73, it reached 65,536, which is a very high value. It began 
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conventional
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Fig. 4. Results of experiments using MNIST dataset. Mean values for several trials with different initial weights 

are shown. Error bars represent standard error. 

(a) Transition in test error rate (b) Transition in training loss 



decreasing at epoch 96, when the test error rate was the lowest. To stop the training when the test error 

rate is the lowest, the training should be performed using the transition of the learning rate as well as 

using the validation error. 

  Note that the learning rate was automatically adjusted so that it achieved a very high value and that 

the lowest test error rate was obtained at the point where the rate reached the highest value. To 

investigate this finding in detail, we performed an experiment using the conventional method with a 

very high initial learning rate. The learning rate changed from 0.5 to 65536 in ALR, so in this 

experiment we performed each training by setting all learning rates in the training with ALR to the 

initial learning rate in the conventional method. 

  As shown in Table 3, the error rates were the lowest when the learning rate was 0.5 or 1.0, but they 

Training epoch

L
ea

rn
in

g
 r

at
e

Fig. 5. Transition in learning rate during training for one trial with initial learning rate of 0.5. Highest learning 

rate achieved was 65536. 

 

Table 3 Comparison of lowest test error rates.  

（Left: using ALR，Right: using conventional method） 

Learning 

rate 

Lowest error rate 

(%) 

Fig. 5 1.454 

 

Learning 

rate 

Lowest error rate 

(%) 

Learning 

rate 

Lowest error rate 

(%) 

0.5 1.573 256 90.20 

1.0 1.573 512 90.20 

2.0 3.810 1024 90.20 

4.0 78.85 2048 90.20 

8.0 88.65 4096 90.20 

16 90.42 8192 90.20 

32 90.42 16384 90.20 

64 90.20 32768 90.20 

128 90.20 65536 90.20 

 



were worse than with ALR. When the learning rate exceeded 4.0, the error rate was very large and 

saturated at around 90. Thus, training with a high initial learning rate is impossible. 

  We speculate that, with ALR, when the learning rate was the highest and the test error was the lowest, 

the shape of the loss function was almost flat. Therefore, a better solution was efficiently searched for 

by using an initially high learning rate and then reducing the rate as a solution was approached. 

 

4.3 Comparison with Other Updating Methods 

  We experimentally compared ALR using only SGD with the conventional updating method using 

SGD, AdaGrad, RMSprop, AdaDelta, and Adam updating methods. These methods have several 

parameters respectively, but the main parameter corresponding to the initial learning rate has the 

greatest effect on the performance. In this experiment, the parameter was set to 0.01 in SGD, 0.01 in 

AdaGrad, 0.001 in RMSprop, 1.0 in AdaDelta, and 0.001 in Adam. Other experimental conditions 

were the same as described in Section 4.1. 

  As shown in Fig. 6, ALR had the lowest and most stable test error rate. While the lowest rate in 

Adam was almost the same as that in ALR, the transitions in Adam were unstable, so stopping the 

training when the error rate is the lowest is difficult, even if early-stopping is done using validation 

data. Thus, ALR had the best performance. 

 

4.4 Effects of Initial Learning Rate 

  The initial learning rate has a smaller effect in ALR than in the conventional methods because the 

learning rate is modified during training. In the conventional methods, parameter tuning takes much 

time because the program must be repeatedly run with various values to find an appropriate initial 

learning rate. In contrast, ALR does not require as much parameter tuning because it uses an adaptive 

learning rate. 
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Fig. 6. Comparison with other updating methods. Mean values for several trials with 

different initial weights are shown. 

 



  To demonstrate this, we experimentally compared ALR with the conventional method, using SGD 

with the same initial learning rate. Other experimental conditions were the same as described in 

Section 4.1. 

  As shown in Table 4, the test error rate with ALR was lower than that with the conventional method 

for each initial learning rate. (The training failed for both methods when the rate was 10.0). The effect 

of the initial learning rate for ALR was smaller than that for the conventional method because the 

range of the test error rates with the various initial learning rates was smaller. The difference between 

these methods was especially large when the initial learning rate 2.0. These results demonstrate that 

the initial learning rate in ALR can be more freely defined thanks to the adjustable learning rate. 

However, in practice, we had better choose values commonly used in the default SGD, about 0.01 to 

1.0. Among them, we recommend choosing an initial value between 0.1 and 1.0 because ALR needs 

to move the parameter largely for avoiding poor local solutions. 

 

4.5 Experiments with Convolutional Neural Network 

  Here we present the experimental results for a convolutional neural network (CNN) with a structure 

as given in Table 5. The softmax function was used as the activation function of the output layer, and 

ReLU was used as the activation function of the other layers. Batch normalization (Ioffe & Szegedy, 

2015), which changed the mean to 0 and the variance to 1, was applied to the output of each layer 

except the output layer. The dropout technique was used in the fully connected CNN layer to avoid 

overfitting, and the probability for selecting units was 0.5. Other experimental conditions were the 

same as described in Section 5.1. 

  Fig. 7(a) shows the transition in the learning rate, and Fig. 7(b) shows that in the test error rate. 

Unlike the case in which an MLP was used, the learning rate did not become large. It basically 

Table 4 Effects of initial learning rate. Mean values of best test error rates for several trials with different initial 

values of weights are shown. Initial values of weights were the same for both methods. 

Initial learning rate Test error rate [%] 

/ ALR 

Test error rate [%] 

/ Conv. method 

0.01 1.54 1.80 

0.05 1.50 1.70 

0.1 1.50 1.69 

0.5 1.43 1.57 

1.0 1.43 1.53 

2.0 1.46 38.78 

10.0 88.65 90.24 

 



decreased, so a poor local solution was obtained, and the test error rate was worse than using the 

conventional method. 

  A cause for the downward trend in the learning rate is due to the instability of the loss function given 

by the dropout technique. When the loss function is cross-entropy, the loss function is given by 

where 𝐶 is mini-batch size, 𝐾 is the number of units in the output layer, 𝑑𝑐𝑘 is the target output of 

unit 𝑘  for example 𝑐 , 𝑦𝑘  is the actual output of unit 𝑘 , 𝑥𝑐  is the input of example 𝑐 , and 𝑤  is 

weights (and biases). Using the dropout technique improves the test accuracy by hiding units with a 

certain probability for each batch. As a result, 𝑤  changes greatly for each batch, so 𝐸(𝑤)  also 

changes. With other loss functions, such as log-likelihood, they are similarly affected by the dropout 

technique. Because ALR assigns the same learning rate to all weights, in such complex and unstable 

loss function, a larger scale of factor tends to increase training loss and is not often selected. 

  To eliminate the effect of an unstable loss function, we performed the same experiment without the 

dropout technique. The other conditions were the same as in the experiment with the dropout. As 

shown in Figs. 8(a) and 8(b), the learning rate increased, but the test error rate unexpectedly jumped 

to a much higher level. 

  CNN had a larger number of weights (1,111,946) than MLP in the experiment, and we thought that 

this might have caused the difference in the results by the two networks. To compare MLP and CNN 

with similar numbers of weights, we increased the number of weights of MLP used in Section 4.1 to 

1,192,510 by increasing the number of units in a hidden layer to 1,500. The transition of the learning 

𝐸(𝑤) = −∑∑𝑑𝑐𝑘 log 𝑦𝑘(𝑥𝑐 ; 𝑤)

𝐾

𝑘=1

𝐶

𝑐=1

 , 

 

(7) 

Layer type Channels/Units 

5×5 conv ReLU 32 

2×2 max pool, str. 2 32 

5×5 conv ReLU 64 

2×2 max pool, str. 2 64 

dropout with p = 0.5 64 

fully connected 1024 

dropout with p = 0.5 1024 

output softmax 10 

 

Table 5 CNN structure used for the experiments in Section 4.5. str. denotes the stride for pooling and p denotes the 

probability for selecting units in the dropout technique. 



rate of the large MLP was similar to that of Fig. 5, that is, ALR worked well. Therefore, a large number 

of weight of CNN was not the cause of the failure of ALR. 

  Another possible reason is that CNN is composed of different types of layers such as convolutional 

layers and fully connected layers, which might make typical ranges of parameters more diverse than 

MLP. If so, the landscape of the loss function has a narrow valley. Since our method uses the same 

learning rate for all weights, the valley can be jumped over if the learning rate is too large for some of 

the weights, which results in increase of the training loss. Actually, in the experiment with CNN, the 

training loss sharply increased as the learning rate increased. 

  When the CIFAR-10 dataset (which is for the general object recognition task and requires a CNN 

structure for the model) was used, the training similarly failed. Thus, we investigate in the future work 

whether ALR works well on networks other than MLP and CNN. 
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5. Effects of Parameters 

5.1 Number of Branches 

  Increasing the number of branches (i.e., the number of scale factors) increases the number of routes 

that can be searched, resulting in a smaller training loss. However, as shown in algorithm 1, increasing 

the number of branches 𝑁  leads to a proportional increase in computational cost and number of 

weight memories. Therefore, this parameter should be defined considering both factors. 

  The computational complexity is calculated on the basis of the number of step for each epoch. If 

the number of branches 𝑁 is not set and therefore an unlimited number of routes are searched, the 

computational complexity cannot be defined. However, by setting the number of branches, the 

computational complexity becomes 𝑂(𝑁𝑇), where 𝑇 is the number of epoch. 

  Here we experimentally investigated the effect of the number of branches. The number of branches 

should be large for a high precision but small for a short computation time. The numbers of branches 

were 1, 2, 3, and 5, and the set of scale factors was some combination of 4.0, 2.0, 1.0, 0.5, and 0.25, 

which are described by the format of  𝑘 and the beam size was 20. In those parameters, when the 
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value is 1, ALR corresponds to the conventional method. The number of trials differed from the 

number given in Section 4.1. Other experimental conditions were the same as described in Section 4.1. 

  As shown in Fig. 9(a), the test error rate was the highest when the number of branches was 1; it was 

lower when the number was 2 or 3. However, the rate when the number of branches was 5 was higher 

than when it was 3. This is because a beam of size 20 is insufficient when the number of branches is 

5. 

  We performed the same experiment for a beam size of 40 and 5 branches. As shown in Fig. 9(b), the 

ordering of the test error rate was the same as when the beam size was 20 and the number of branches 

was 3. Thus, we conclude that there is a lower limit on the test error rate and that it can be achieved 

by using a sufficiently large beam size relative to the number of branches.  

  Briefly speaking, we can identify the following four cases according to relative sizes of the number 

of branches 𝑁 and the beam size 𝑀 to guide how they should be optimally chosen. (1) large 𝑁, 

large 𝑀: then the best performance (in terms of the test error) is obtained, although the computational 

cost is the largest. (2) large 𝑁, small 𝑀: then nodes with relatively high training losses are not stored, 

so avoiding poor local solution becomes difficult, resulting in a bad performance. (3) small 𝑁, large 

𝑀: then ALR can be effectively used, but a lower limit on the test error rate exists as described above, 

so very large 𝑀 is not preferable for the computational cost. (4) small 𝑁, small 𝑀: then it is close to 

SGD, which is the case of 𝑁 = 𝑀 = 1 , and therefore reduces an advantage of ALR, but the 

computational cost is the smallest. 

 

5.2 Scale Factor 

  The scale factor should be defined so that the learning rate changes substantially. If it does not change 

substantially at each state transition, the effect of ALR is negligible; that is, avoiding poor local 

solutions is difficult. Fortunately, the scale factor does not affect the computational cost because it 

changes only the learning rate. 

  In setting this parameter, 1.0 should be included in the set of scale factor, which means including 

the conventional method. In other elements, the difference from 1.0 should not be too large or too 

small. If the difference is too large, each weight moves greatly on training function. Some weights can 

greatly increase the loss, when the overall training loss with all weights will increase. Such scale of 

factor is not often selected. If the difference is too small, weights tend to be captured by local solution, 

which results in a bad generalization performance. The criterion of "large" and "small" is dependent 

on tasks, so parameter tuning is needed. 

  We experimentally investigated the effect of the scale factor, using several sets of the parameter 

described by the format of  𝑘. The number of branches was set to 3 and the beam size was set to 20. 

Other experimental conditions were the same as described in Section 4.1. 

  As shown in Fig. 10, the test error rate was the lowest when the set of scale factors was {2.0, 1.0, 



0.5}. The result was better than that with scale factors {1.25, 1.0, 0.8} because larger differences 

among the scale factors in the set facilitate finding a better solution. The result with scale factors {4.0, 

1.0, 0.25} was worse than that with scale factors {2.0, 1.0, 0.5} because scale factor 4.0 was rarely 

chosen and thus did not lead to a large improvement in the test error rate. 

  We slightly changed scale factors {2.0, 1.0, 0.5} and used scale factors {2.2, 1.0, 0.45}, where 2.2 

is 10% larger than 2.0 and 0.45 is 10% smaller than 0.5. Because the product of 2.2 and 0.45 is 0.99, 

choosing both their values at successive epochs can decrease the learning rate by 1%. It enables a fine 

decreasing tuning for the learning rate during training, which is especially effective when training 

converges. When scale factors {2.2, 1.0, 0.45} was used for an experiment, the lowest test error rate 

was 1.435%, which is not greatly different from 1.410%, the result when scale factors {2.0, 1.0, 0.5} 

was used. On the other hand, when the difference among scale factors were large, the test error rate 

became large, as described in the previous section. Thus, the scale factor has some optimal range in 

which learning becomes successful. 

  The loss function is determined by the network structure and data, and therefore optimal scale 

factors depend on them. A general scale factor selection criterion we found through the experiments 

is that there needed to be sufficient chances to increase the learning rate at the beginning of training. 

Increasing the learning rate is important at the beginning of training so that a better solution can be 

explored without being captured by a poor local solution. If the learning rate hardly increases, ALR 

loses the advantage over the conventional techniques described in Introduction. 

  To demonstrate the appropriateness of the criterion with MNIST dataset, we investigated the 

relationship between the frequency of the increase of the learning rate during the beginning of training 

and the smallest test error rate during training. We defined epochs up to 50 and epochs up to 100 as 

the beginning of training. Changes in the learning rate from the previous epoch are categorized into 

increase, decrease, or no change, and the proportion of increase was calculated. We used several sets 
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Fig. 10. Test error rate in experiments with several scale factors.   denotes a set of scale factors. Mean values for 

several trials with different initial weights are shown. 

 



of scale factors, and trainings were performed for three times with different initial weights, respectively. 

Other experimental conditions were the same as described in Section 4.1. 

  The experimental result given in Fig. 11 shows that when the proportion of increase in the learning 

rate was close to 0 or 1, a good solution could not be found and we consider the scale factors were not 

appropriate. We speculate that when the rate of increase was close to 0, which was for example 

obtained by scale factors {4.0, 1.0, 0.25}, the parameter was captured by a poor local solution, and 

when the rate of increase was close to 1, which was for example obtained by scale factors {1.001, 1.0, 

0.999}, the parameter could not search a sufficiently wide region because the learning rate increased 

very slowly. When the rate of increase was between 0.1 and 0.6, a small test error rate was obtained. 

Scale factors {2.0, 1.0, 0.5} used in the Section 4.1 met this criterion because the mean of the rates of 

increase up to epoch 100 was 0.18. 

 

5.3 Beam size 

  If the beam size 𝑀 is set to 1, nodes with a training loss higher than the lowest loss are removed. 

However, even if a node has higher loss at an epoch, it may have the lowest training loss at a 

subsequent epoch. Therefore, it is important to set this parameter to a large value to avoid poor local 

solutions. Ideally, this parameter should not be limited in order to enable all states to be stored. 

However, as shown in algorithm 1, increasing the beam size leads to a proportional increase in the 

computational cost and the number weight memories. Therefore, this parameter should be defined 

considering both effects. 

  As described in Section 5.1, the computational complexity is 𝑂(𝑁𝑇) when only the number of 

branches is used. When the beam size 𝑀  is used in addition to the number of branches, the 

computational complexity decreases to 𝑂(𝑁𝑀𝑇). Thus, we conclude that the use of both parameters 

greatly reduces computational cost, compared to the case that an unlimited number of routes are 

1.3

1.4

1.5

1.6

1.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T
e
st

 e
rr

o
r 

ra
te

 [
%

]

Proportion of increase

Fig. 11. Relationship between proportion of increase of learning rate and test error rate in MNIST dataset. 



searched. 

  We experimentally investigated the effect of the beam size. Just like number of branches, the beam 

size should be also large for a high precision but small for a short computation time. We set the number 

of branches to 3 and the set of scale factors to {2.0, 1.0, 0.5}. Other experimental conditions were the 

same as described in Section 4.1. 

  As shown in Fig. 12(a), when the beam size was 1, the test error rate was the highest because the 

weights tended to be captured with a poor local solution. When the beam size was 20 or 40, the lowest 

error rate was obtained. The results for these two beam sizes were the same because a beam size of 20 

was sufficient for obtaining the lowest error rate under these conditions. Thus, we conclude that by 

increasing the beam size, a wider range can be searched. This enables a poor local solution to be 

avoided, but there is an upper limit on this effect. 

  As shown in Figs. 12(b) to 12(d), the trend in the transition of the learning rate is affected by the 
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beam size. When the beam size was small, 1 or 2, the size was insufficient under these conditions, so 

the weights tended to be captured with poor local solutions. When the beam size was large, 4 or 5, the 

transition was similar to that with a beam size of 20 (Fig. 5). That is, high learning rates were obtained 

during training. 

 

6. Experiments with Other datasets 

  To confirm the wide applicability of ALR, we performed experiments using other datasets. Car 

Evaluation, Wine, and Letter Recognition datasets, which are datasets for multi-classification included 

in UCI Machine Learning Repository (Lichman, 2013) and can be used with MLP. 

 Car Evaluation dataset contains 1,728 samples and each sample is classified to one of 4 classes for 

overall evaluations. The number of features is 6, consisting of the values such as buying price and 

number of doors. Wine dataset contains 178 samples and each sample is classified to one of three kinds 

of wines. The number of features is 13, consisting of the chemical analysis such as alcohol and malic 

acid. With these datasets, we used 35% of samples as test data. Letter Recognition dataset contains 

20,000 samples, and we used the first 16,000 samples as training data and remaining 4,000 samples 

as test data, which is officially recommended. Each sample is classified to one of 26 classes from A to 

Z in the English alphabet. The number of features is 16, consisting of statistical moments and edge 

counts. 

  We set the number of branches to 3, the set of scale factors to {1.001, 1.000, 0.999}, and the beam 

size to 20. This set of scale factors is based on a general scale factor selection investigated later. By 

using the similar values for the scale factors, the initial learning rate affects the result more largely. 

For each ALR and conventional method, ten trials were performed using different initial learning rates 

(for each 0.1 from 0.1 to 1.0). Among those results, the best results were compared. Test loss with the 

loss function shown in Eq. (7) was used for the evaluation because the test error rate can be rough 

when small datasets are used, that is, the number of test samples is small. Moreover, Adam with the 

default parameter, which is the same as that used in the experiment in Section 4.3, was used for 

Dataset Structure ALR Fixed Adam 

Car 6-10-4 0.076 (lr:0.7) 0.079 (lr:0.6) 0.103 

Wine 13-10-3 0.062 (lr:0.8) 0.094 (lr:0.7) 0.116 

Letter 16-100-26 0.209 (lr:0.3) 0.220 (lr:0.4) 0.258 

 

Table 6 Experimental results using other datasets. The numbers outside parentheses in the columns: ALR and 

Fixed, and the numbers in the column: Adam denote the lowest test loss in ten trials with different initial learning 

rates. The numbers inside parentheses in the columns: ALR and Fixed denote the initial learning rate when the 

test loss was obtained. 



comparing. 

  The experimental results are given in Table 6. The numbers outside parentheses in the columns: 

ALR and Fixed, and the numbers in the column: Adam denote the lowest test loss in ten trials with 

different initial learning rates. The numbers inside parentheses in the columns: ALR and Fixed denote 

the initial learning rate when the test loss was obtained. Moreover, the numbers of units for each layer 

of the neural networks used for these experiments are shown in the column: Structure. In all datasets, 

ALR resulted in the lowest test losses. 

  As is the case with the experiment at the last of Section 5.2, we investigated the relationship between 

the frequency of the increase of the learning rate during the beginning of training and the smallest test 

loss during training. Car Evaluation dataset was used on behalf of the datasets used in this section. The 

experimental result given in Fig. 13 shows that when the proportion of increase of the learning rate 

was close to 0, a good solution could not be found and we consider the scale factors were not 

appropriate. Just like the result with MNIST dataset, increasing the learning rate at the beginning of 

training is important for obtaining a small test loss. Scale factors {1.001, 1.0, 0.999} used in this 

section met the scale factor selection criterion described at Section 5.2 because the mean of the rates 

of increase up to epoch 100 was 0.13. 

  Scale factors {2.0, 1.0, 0.5} worked well in the experiment with MNIST dataset, but in this dataset, 

did not meet the criterion because the mean of the rates of increase up to epoch 100 was 0.03. 0.5 in 

the scale factor was intensively chosen from beginning to end, and therefore we speculate that the 

parameter was captured by a poor local solution. 

 

7. Conclusion 

  Based on a tree search with beam size, our method ALR technique has been designed as a machine 

learning algorithm adaptively increasing and/or decreasing the learning rate to reduce the training loss 
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as much as possible, allowing us to effectively find good solutions, avoiding poor local solutions, 

unlike methods that mainly decrease the learning rate. 

  The experimental results have demonstrated that the method can lower the test error rate in various 

test data sets. Of particular interest is the observation that the learning rate was increased substantially 

and as a result a better solution was found outside the area leading to a poorer local solution. 

Furthermore, the method is more robust in the sense that it is less dependent on the initial learning rate. 

  We have investigated the effects of the three main parameters (i.e., the number of branches, the scale 

factor, and the beam size) and shown that the effects are moderate but the first and the last parameters 

should be large enough within appropriate upper limits, considering the computation time and the 

memory capacity. 

  We trained a convolutional neural network with the method but could not necessarily get a desired 

result. To clarify the reason for such a behavior and develop an improved method should be a part of 

our future work. 

  In ALR technique, all weights are updated with the same learning rate. Developing its efficient 

extension for individually controlling the learning rate for each weight as in AdaGrad is also a possible 

future work. 

 

Acknowledgment 

  This research was supported by Global Station for Big Data and CyberSecurity, a project of Global 

Institution for Collaborative Research and Education at Hokkaido University. 

 

References 

Breuel, T. M. (2015). On the Convergence of SGD Training of Neural Networks. ArXiv Preprint 

arXiv:1508.02790. 

 

Daniel, C., Taylor, J., & Nowozin, S. (2016). Learning Step Size Controllers for Robust Neural 

Network Training. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-

16). 

 

Duchi, J., Hazen, E., & Singer, Y., (2011). Adaptive Subgradient Methods for Online Learning and 

Stochastic Optimization. Journal of Machine Learning Research (JMLR), 12, 2121–2159. 

 

Egmont-Petersen M., Talmon, J. L., Hasman, A., & Ambergen, A. W. (1998). Assessing the importance 

of features for multi-layer perceptrons. Neural Networks, 11(4), 623–635. 

 

Fayek, H. M., Lech, M., & Cavedon, L. (2017). Evaluating deep learning architectures for Speech 



Emotion Recognition. Neural Networks, 92, 60–68. 

 

Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural 

networks. In Proceedings of Artificial Intelligence and Statistics Conference (AISTATS), 9, 249–256. 

 

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. In Proceedings 

of Artificial Intelligence and Statistics Conference (AISTATS), 15, 315–323. 

 

Hardt, M., Recht, B., & Singer, Y. (2015). Train faster, generalize better: Stability of stochastic gradient 

descent. ArXiv Preprint arXiv:1509.01240. 

 

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., Senior, A., Vanhoucke, V., 

Nguyen, P., Sainath, T. N., & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in 

speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 

29(6), 82–97. 

 

Huang, Z., Zweig, G., Levit, M., Dumoulin, B., Oguz, B., & Chang, S. (2013). Accelerating recurrent 

neural network training via two stage classes and parallelization. Automatic Speech Recognition and 

Understanding (ASRU), 2013 IEEE Workshop on, IEEE. 

 

Ioffe, S. & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by 

Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine 

Learning (ICML 2015). 

 

Kanada, Y. (2016). Optimizing neural-network learning rate by using a genetic algorithm with per-

epoch mutations. In Proceedings of International Joint Conference on Neural Networks (IJCNN 2016). 

 

Kingma, D. & Ba, J. (2015). Adam: A Method for Stochastic Optimization. In Proceedings of 

International Conference on Learning Representations (ICLR). 

 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep 

Convolutional Neural Networks. In Advances in Neural Information Processing Systems (NIPS). 

 

LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. (1998). Efficient BackProp. Neural networks: Tricks 

of the Trade, 9–48. 

 



LeCun, Y., Cortes, C., & Burges, C. J. C. The MNIST Database of handwritten digits. 

URL: http://yann.lecun.com/exdb/mnist/ 

 

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: 

University of California, School of Information and Computer Science. 

 

Mandt, S., Hoffman, M. D., & Blei, D. M. (2016). A Variational Analysis of Stochastic Gradient 

Algorithms. ArXiv Preprint arXiv:1602.02666. 

 

Neyshabur, B., Salakhutdinov, R., & Srebro N. (2015). Path-SGD: Path-Normalized Optimization in 

Deep Neural Networks. In Advances in Neural Information Processing Systems (NIPS). 

 

Park, J. G. & Jo, S. (2016). Approximate Bayesian MLP regularization for regression in the presence 

of noise. Neural Networks, 83, 75–85. 

 

Sainath, T. N., Kingsbury, B., Saon, G., Soltau, H., Mohamed, A. R., Dahi, G., & Ramabhadran, B. 

(2015). Deep Convolutional Neural Networks for Large-scale Speech Tasks. Neural Networks, 64, 39-

48. 

 

Shi, Z., Ye, Y., & Wu, Y. (2016). Rank-based pooling for deep convolutional neural networks. Neural 

Networks, 83, 21-31. 

 

Song, Y., Schwing A. G, Zemel R. S., & Urtasun R. (2016). Training Deep Neural Networks via Direct 

Loss Minimization. In Proceedings of the 33rd International Conference on Machine Learning (ICML 

2016). 

 

Srebro, N. & Shraibman, A. (2005). Rank, Trace-Norm and Max-Norm. In Proceedings of the 18th 

Annual Conference on Learning Theory (COLT 2005), 545–560. 

 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A 

Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research 

(JMLR), 15(1), 1929–1958. 

 

Sutton, R. & Barto, A. (1998). Reinforcement learning: An introduction. MIT Press Cambridge. 

 

Tang, J., Deng, C., & Huang, G.-B. (2015). Extreme learning machine for multilayer perceptron. IEEE 



Transactions on Neural Networks and Learning Systems, 27(4), 809–821. 

 

Tieleman, T. & Hinton, G. E. (2012). Lecture 6.5 - rmsprop, COURSERA: Neural Networks for 

Machine Learning. 

 

Wu, H. & Gu, X. (2015). Towards dropout training for convolutional neural networks. Neural 

Networks, 71, 1–10. 

 

Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. ArXiv Preprint 

arXiv:1212.5701. 

 

 

 


