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Abstract

Multiple instance learning (MIL) is a variation of traditional supervised learn-
ing problems where data (referred to as bags) are composed of sub-elements
(referred to as instances) and only bag labels are available. MIL has a vari-
ety of applications such as content-based image retrieval, text categorization,
and medical diagnosis. Most of the previous work for MIL assume that train-
ing bags are fully labeled. However, it is often difficult to obtain an enough
number of labeled bags in practical situations, while many unlabeled bags
are available. A learning framework called PU classification (positive and
unlabeled classification) can address this problem. In this paper, we propose
a convex PU classification method to solve an MIL problem. We experi-
mentally show that the proposed method achieves better performance with
significantly lower computation costs than an existing method for PU-MIL.

Keywords: multiple instance learning, positive-unlabeled classification,
weakly-supervised classification

1. Introduction

Multiple instance learning (MIL) [I] is a learning problem with bags and
instances. Instances are the same as ordinary feature vectors, while bags are
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sets of instances. The numbers of instances in different bags varies. Bag
labels are defined as follows.

e If a bag contains at least one positive instance, then its label is positive.
e If a bag contains no positive instances, then its label is negative.

This is the basic setup of MIL. The goal of MIL is to predict labels of test
bags. MIL is more difficult than ordinary classification problems because
instance labels are unavailable.

MIL was originated from molecule/graph data [I], where ray-based rep-
resentation is used to describe molecule shapes. Later, MIL has been con-
sidered as a graph-based learning problem [2, [, 4], B, [6]. In fact, MIL is
applicable to a wide range of real-world problems such as molecule behavior
prediction [7], drug activity prediction [I], domain theory [§], content-based
image retrieval [9] 10} [11], visual tracking [12], object detection [I3] [14], text
categorization [I5], and medical diagnosis [16, [17].

So far, a lot of approaches for MIL have been developed [I}, 18|, 19] 15|
20, 21], which are classified into two groups in general.

1. Methods in the first group are based on generative modeling, including
the diverse density [18] and its extension, the expectation-maximization
diverse density (EM-DD) [19]. These methods find out an instance close
to instances in training positive bags and far from instances in training
negative bags, which is referred to as a concept point. This process
is carried out by gradient-based search from every training instance,
which is computationally inefficient.

2. Methods in the second group are based on discriminative modeling.
The multiple-instance support vector machine (MI-SVM) [15] is an
approach based on SVMs. Empirical evaluation shows that MI-SVM
performs well, but its optimization problem is non-convex and find-
ing a solution is computationally expensive. The key-instance support
vector machine (KI-SVM) [22] reformulates the optimization problem
of MI-SVM as mixed-integer programming, which is still hard to opti-
mize. Gértner et al. [20] introduced set kernels (a.k.a. multiple instance
kernels), which are extensions of the standard kernel functions to MIL.
The set kernels can be used to construct a standard SVM classifier,
which performs well in experiments. The optimization problem in this



training procedure is convex and the global solution can be obtained
efficiently.

In this work, we propose a novel method to construct multiple instance
classifiers only from positive and unlabeled bags, while the above standard
approaches to MIL assume that training bags are fully labeled. This prob-
lem is called PU-MIL. For example, PU-MIL is applicable to the following
situations.

e The situation where it is difficult to obtain an enough amount of labeled
data due to the significant labeling costs, such as outlier detection based
on supervised classification, where it is often difficult to label all outlier
samples. On the other hand, in PU-MIL, we need to label only some
of outlier samples and the rest can be regarded as unlabeled.

e The situation where the true negative labels are essentially unavailable,
such as bioinformatics and cheminformatics. MIL setting commonly
appears in these natural science fields [I]. In natural science, experi-
ments are often designed to observe some phenomena (detect positives),
not designed to deny the existence of the phenomena. Thus even if we
did not observe the phenomenon, it might not be appropriate to say
“the phenomenon did not occur.” In other words, there might be false
negatives. PU setting plays an important role in this kind of situations.

Our contribution in this paper is to propose a novel PU-MIL method
based on empirical risk minimization [23]. The proposed method formulates
an optimization problem as a convex optimization problem together with a
linear-in-parameter model, and the global optimal solution can be computed
efficiently. To the best of our knowledge, this is the first convex PU-MIL
method (see Table . Through experiments, we demonstrate that the pro-
posed method combined with the minimax kernel [I5] compares favorably
with an existing method.

The rest of this paper is structured as follows. In Sect. 2] we review
existing methods for PU classification 28] 23] and MIL [20], on which our
proposed method is based. In Sect. [3] we explain the formulation and op-
timization algorithm of our proposed method, called the positive and unla-
beled set kernel classifier (PU-SKC). In Sect. [5| we experimentally compare
the performance of the proposed method (PU-SKC) with an existing method
(puMIL) [27]. Finally, we conclude this work in Sect. [6]



Table 1: Comparison of existing and proposed discriminative methods for MIL.

. Convexity Convex Non-convex
Learning from
set kernels [20] MI-SVM [15]
sMIL [24] MissSVM [26]
Positive and Negative KI-SVM [22] soft-bag SVM [10]
miGraph [25] dMIL [11]
Positive and Unlabeled PU-SKC (Sect. puMIL [27]

2. Problem Formulation and Related Work

In this section, we formulate the problems we discuss in this paper (see
Fig. [1)) and review related work.

2.1. Ordinary Binary Classification

Let £ € R? be a d-dimensional feature vector and y € {+1,—1} be its
corresponding class label. In the ordinary binary classification problem, we
construct a binary classifier

f(x) =sign(g(x)) € {+1, -1},
g:RY = R, (1)

from an i.i.d. training dataset D = {(=;,v;)},, where N is the number of
training samples. Here we use a linear-in-parameter model for g:

g9(x) = a' ¢(x) + 5,

where T denotes the transpose, a € R™ is an m-dimensional parameter
vector, B € R is a bias parameter, and ¢ : R? — R™ is a vector of basis func-
tions. The support vector machine (SVM) [29] is one of the most standard
methods for training a binary classifier. The optimization problem of SVM
is given as follows:

N
min lHaHQ—l—CZmax{O,l—yi (o' @(i) +8)}, (2)
=1

acR™ BeR 2

where C' > 0 is a penalty parameter. This problem can be reformulated as a
quadratic program (QP), which can be solved efficiently.
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Figure 1: A schematic of problems. In this work, we consider (d) multiple instance learning
from positive and unlabeled bags (PU-MIL).

2.2. Multiple Instance Learning
We formulate the problem of multiple instance learning (MIL) and review
an existing method.

2.2.1. Formulation

Hereafter P(A) denotes the power sefl| of A. Let X = {z,;|z; € R}, €
P(RY) \ 0 be a bag containing n instances whose dimensions are d, and
Y € {+1,—1} be a bag label corresponding to X. The problem is to construct
a binary classifier:

f(X) =sign(g(X)) € {+1, -1},
9:PRH\D =R, (3)

from an i.i.d. fully-labeled training dataset D = {(Xj, Y3)}i,, where N de-
notes the number of bags in D.

2.2.2. Multiple Instance Kernels
Gértner et al. [20] proposed set kernels (multiple instance kernels), which
map bags (sets of instances) to a feature space. A type of the set kernels,

L The power set of A is a set of all subsets of A, including () and A itself. In the MIL
setting, bags belong to P(R?), i.e., bags are composed of some elements in R<.



called the statistic kernel E, is defined as follows:

E(X, X') = k(s(X), s(X")),
where £ is an arbitrary kernel function such as the Gaussian kernel, and s is
called a statistic. For example, the following minimax statistics is a typical

choice:
-

Sminimax(X ) := |min O minz@, maxa®W, ..., maxz@| | (4)
xreX xreX xzeX xeX

where () is the i-th element of an instance x in the bag X. Girtner et
al. [20] experimentally demonstrated that the statistic kernel with the mini-
max statistics for s and the polynomial kernel for k& shows good perfor-
mance:

EminimaX(Xa X/) = (Sminimax(X)Tsminimax(X,) + 1)p7 (5)

where p is a positive integer. The statistic kernel is referred to as the
minimax kernel. We can then construct the following set kernel classifier g:

9(X) =a'¢(X) + B, (6)
Eminimax (X; Ol)
d(X) = N : ,

kminimax (X, CM)

where C,...,C)s are kernel centers and M is the number of kernel centers.
We can obtain the MIL classifier by using SVM to train the classifier @

2.3. Learning from Positive and Unlabeled Data
We formulate a binary classification problem from positive and unlabeled
instances and review existing methods.

2.3.1. Formulation
We assume that positive samples {z} ¥, and unlabeled samples {z"} Y
are generated as follows:

{xl}0 X py (@) = p(aly = +1),
{&V YN0 R p(a) = mp(zly = +1) + (1 — m)plaly = —1)
= 1py () + (1 — )p_(z), (7)

where 7 := p(y = +1) is called the class prior. Our objective is to construct
the binary classifier only from positive and unlabeled samples.
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2.3.2. Learning Instance-Level Classifiers from Positive and Unlabeled Data

du Plessis et al. [28] 23] proposed methods based on empirical risk mini-
mization to learn only from positive and unlabeled samples. In the ordinary
binary classification setting, an optimal classifier ¢g* minimizes the following
misclassification rate:

Ro-1(g) = 7Ep [lo-1(9(x))] + (1 — m)Ex [lo-1(—g(x))] , (8)

where Ep [-] and Ey [-] denote the expectations over p, (&) and p_ () respec-
tively and ¢y-; denotes the zero-one loss:

0 if z>0,
60_1(Z> = { -

1 otherwise.

In practice, the misclassification rate is difficult to optimize because the
subgradient of ¢(-; is always 0 except at z = 0. For this reason, we usually
use a surrogate loss functionﬂ. Then the risk function R with the surrogate
loss function ¢ is written as

R(g) = mEp [((g())] + (1 — m)Ex [((—g(x))]. (9)

Since negative samples are not available in the PU classification setup, let
us consider expressing the risk (9) without Ey []. By the definition of the
unlabeled sample distribution , the following equation holds:

(1 = m)Ex [((=g(2))] = Ey [((=g(z))] — 7Ep [((—g(z))].
Substituting this into the risk @D, we obtain
R(g) = nEp [((g(x)) — L(—g(2))] + Eu [((—g(z))] (10)

where Ey [-] denotes the expectation over p(x). If the surrogate loss function
¢ satisfies

Uz) —l(—2) = —2z, (11)

2 For example, the hinge loss fy(2) = max(—z,0) and the ramp loss lr(z) =
2 max(0, min(2, 1 — z)) are commonly used [30].



the risk can be written as

R(g) = mEp [=g(z)] + Ey [((—g())]- (12)

The risk is convex if the surrogate loss function ¢ is convex. Convex loss
functions such as the squared loss /g, the logistic loss frr, and the double
hinge loss /py satisfy the condition ([11)):

l(2) = i(z )

lrL(z) = log(1 4 exp(—2)),

for(z) = max (—z, max <o, ! 3 Z)) . (13)

We use the risk to obtain a convex formulation of PU-MIL in Sect.

3. Positive and Unlabeled Set Kernel Classifier

In this section, we propose a convex method for PU-MIL, named the
PU-SKC (positive and unlabeled set kernel classifier).

3.1. Multiple Instance Learning from Positive and Unlabeled Bags

We formulate the problem of multiple instance learning from positive and
unlabeled bags (PU-MIL). The purpose of PU-MIL is to construct the bag-
level classifier (3]) from a positively labeled training dataset Dp = {(X}, Y, =
+1)}® and an unlabeled training dataset Dy = {XY})Y | where Np and
Ny denote the number of positive bags in Dp and the number of unlabeled

iid.

bags in Dy, respectively. We assume that X7,..., X5 "~ p(X|Y = +1)

and XY, ... Xy, £ p(X).

3.2. Formulation

As we mentioned in Sect. [2.3] du Plessis et al. [28, 23] formulated the PU
classification problem in the empirical risk minimization framework. If we
use a loss function I(2) such that I(z) — I[(—z) = —z, we have the following
objective function:

J(9) = mEp [—g(X)] + Eu [((—g(X))]. (14)



Here we use a linear-in-parameter model with the set kernel function as a
classifier:

9(X) = a'¢(X) + 5, (15)

where ¢ is a vector of basis functions:

Eminimax (X7 XF) ]

kminimax (XJ XJP\)IP )
kminimax (Xa XlU)

(16)

L Eminimax (Xa XEU) _

As with the standard binary classification, we predict a given bag as positive
if g(X) > 0, and as negative if g(X) < 0.
The risk together with the bag-level classifier and the [, regu-

larizer induces the following objective function to be minimized:

1 o
Hah)=m- =3 (~a'o(X}) - 5)
1 - A
T U T
i b;eDH (—a'o(X;) - )+ Sa'a, (17)

where A > 0 is the regularization parameter. Here we use the double hinge
loss {py because du Plessis et al. [23] reported that it achieved the best
performance in the ordinary PU classification setting. Note that 7 is the
bag-level class prior, i.e., 7 = p(Y = +1), which must be estimated from the
training data. We explain how to estimate it in Sect. [3.3]

The problem of minimizing can be rewritten in the form of a quadratic
program by using slack variables & as

s 1 A
in —-—1"Ppa — —1'¢+Za’ 1
min N pQ Wﬁ—irNU €+2a a (18)
st. £€>0,
1 1 1
> -1+ =51
5_2 +2 Ua+2ﬁa
£2¢Ua+ﬁ17



where > for vectors denotes the element-wise inequality, and 0, 1 denote the
all-zero and all-one vectors, respectively. Matrices ®p and ®y are defined as

follows:
¢ (X7) " (XY)
(I)P = 5 (I)U =
o7 (XE,) o7 (XY,)

Note that our proposed method is independent of kernel choices. Other
set kernels, such as the conformal kernels [31] and affinity propagation clustering-
based feature representation [32], can also be used instead of the polynomial
minimax kernel, depending on domain-specific knowledge.

3.3. Bag-Level Class Prior Estimation

A bag-level class prior estimation algorithm can be obtained by a simple

extension of the instance-level version explained in The dif-

ference is basis functions used for estimating the class prior. We use the
polynomial minimax kernel to obtain the bag-level basis functions .
Then the bag-level class prior 7 can be estimated similarly:

- [ohTG R -RTG G R]

where

o1 Xk Ny P
H:EZ d(XD)T, Z (X)), G=H+nl,
b=1 /=1

and 1 > 0 is another regularization parameter. The detailed derivation is

described in [Appendix A]

3.4. Remarks: Instance-Level PU-MIL

PU-SKC is a bag-level method, namely, classifying bags directly (Eq. )
instead of aggregating instance-level classification results. On the other hand,
we can also consider an instance-level method to solve PU-MIL.

Assume that instances in negative bags are drawn from the instance-level
negative conditional distribution, i.e.,

ii

x "X plxly = —1) for every & € XV, (19)
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and instances in positive bags are drawn from the instance-level marginal
distribution, i.e.,

z K p(x) = Op(x|ly = +1) + (1 — O)p(x|ly = —1) for every & € X*, (20)
where 0 := p(y = +1) is the instance-level class prior. Since we assume the
bag-level class prior p(Y = +1) = 7, instances in unlabeled bags are drawn
from the following distribution, i.e.,

iid.
w () =mp(x) + (1 —mp(xly = 1)
= m0p(x|y = +1) + (1 — 70)p(z|ly = —1) for every = € XY.
(21)

From the instance-level perspective, both positive and unlabeled bags are
unlabeled datasets, but the class proportions are different (6 for Eq. (20)
and 76 for Eq. (21))). In fact, an (instance-level) binary classifier can be
obtained from two distinct datasets with different class proportions [33].

Assume that the test class priors are equal ¢(y = +1) = q(y = —1) = 1/2
and the test conditional density ¢(x|y) is equal to p(x|y). We begin with the
difference of the class posteriors:

oy = +12) — qly = —1|a) = q(zly=+q(y=+1) q(zly=—-1)q(y=-1)

q(x) q(x)
_plaly=+1);  plaly=-1)]
q(x) q(x)
— L (p(@ly = +1) - plaly = -1)).

2q(x)

Since 2¢(x) is always positive, the classification criterion on the test distri-
bution becomes

d(z) = signp(zly = +1) — p(zly = —1)].
On the other hand,

p(x) —p'(x) = (0 — wO)p(xly = +1) — (1 = 0) — (1 — 70))p(z|y = —1)
= 0(1 —m)[p(xly = +1) — p(zfy = —1)].

11



Since §(1 — ) > 0, the classification criterion becomes
d() = sign[p(x) — p'(x)]. (22)

The point is, in order to obtain an instance-level classifier, all we have to do is
to estimate the density difference p(x) — p'(x). To this end, a method called
least-squares density difference (LSDD) estimation has been proposed [34].
A more advanced method to estimate the sign of the density difference
sign[p(x) — p/(x)] directly has also been proposed [33], which is called di-
rect sign density difference (DSDD) estimation. These estimators are also
compared as baselines in experiments.

The instance-level approach is useful when our goal is to determine all
instance-level labels. Otherwise, the bag-level approach is suitable because
it is a direct approach to determine only bag-level labels, which is referred
to as Vapnik’s principle [35]:

When solving a problem of interest, one should not solve a more
general problem as an intermediate step.

Here, knowing instance-level labels allows us to identify bag-level labels, but
not vice versa. In this sense, obtaining an instance-level classifier is regarded
as solving an intermediate/general problem when our goal is to predict labels
for bags.

4. Analysis of Generalization Error Bounds

In this section, we show an upper bound of the generalization error (eval-
uated on a fixed classifier) for our proposed method. Let 2™ := P(R%)\ 0 be
the bag-level domain set and

6= {s00) = a0 | ol < Ca s 000 < €} (29

be a given function class, where ¢ is a vector of basis functions defined in
Eq. . Note that G includes the classifier as a special Casdﬂ Through-
out this section, let £ : R — R, be the double hinge loss , which is used

3 In the original paper [33], an unknown constant C' = 41 is multiplied in the right-
hand side. On the other hand, in our current setting, we know that the class priors are 6
and 76 and this allows us to determine the sign of C.

et & == [a BT and ¢(X) := [¢(X) 1]T then it is included in G.
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in our experiments. We denote the expected risk of a bag-level classifier
g: Z — R with respect to ¢ as

R(9) = Epx ) [U(Y g(X))]
= T Ep(xy=11)[=9(X)] + Ep) [l(=9(X))],

and the corresponding empirical risk as

where 7 := p(Y = +1) is the true class prior of the positive class.

Theorem 1. For a fizred g € G, and for any § € (0,1), with probability at
least 1 — 9,

Rig) ~ Rlg) < Cos (% ; %) , (24)

where Cg s > 0 is a constant depending jointly on G and 9.

The proof is in [Appendix C| This theorem shows that the generalization
error decreases with order 1/4/Np and 1/4/Ny. Thus, increasing the number

of positive bags and the number of unlabeled bags both contributes to re-
ducing the error. Note that this order is optimal in a parametric setup [30].
Furthermore, we can see from Eq. that the true class prior 7* and Np
are related in the generalization error bound, while 7* and Ny are not. We
will further investigate this issue through experiments in Section [f

5. Experiments

In this section, we experimentally compare the proposed methodﬂ with

the baselines (Sect. , and an existing method (see [Appendix BJ) and give

answers to the following research questions.

Q1: Does the proposed method outperform the baseline and existing methods
regardless of the true class prior?
Q2: Is the proposed method computationally efficient?

® Implementation is published at https://github.com/levelfour/pumil.
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Table 2: Details of datasets: The last two rows indicate the numbers of instances per bag,
which are the average with standard deviation.

Number of Muskl1 Musk2 Elephant Fox Tiger
features 166 166 230 230 230
positive bags 47 39 100 100 100
negative bags 45 63 100 100 100
positive instances || 2.3 (2.6) | 10.0 (26.1) | 3.8 (4.2) | 3.2 (3.6) | 2.7 (3.1)
negative instances || 2.9 (6.9) | 54.7 (176.0) | 3.2 (3.6) | 3.4 (3.8) | 3.4 (3.8)

5.1. Datasets

We used standard MIL datasets: Musk and Corelfl The details of these
benchmark datasets are shown in Table 2

Since these datasets are too small to evaluate PU methods, we augmented
them to increase the number of bags. Specifically, bags chosen randomly
from the original datasets were duplicated and then Gaussian noise with
mean zero and variance 0.01 was added to each dimension. In this way, we
increased the number of samples in the Musk datasets (Muskl and Musk2)
10 times and the Corel datasets (Elephant, Fox, and Tiger) 5 times. After
this augmentation process, we generated a training set (including labeled
positive bags and unlabeled bags) and a test set. This generation process is
described in Algorithm [1| (we set L = 20, U = 180, and 7' = 200).

Remark: This dataset processing is needed. The reasons are as follows.

1. We assume that the training distribution and test distribution are same,
which means that the class priors are same, too. Thus Algorithm [1] is
needed to maintain the class priors to be same among both (unlabeled)
training and test datasets.

2. If Algorithm [I]is applied, it is hard to obtain an enough number of neg-
ative bag samples under extremely low class priors, while maintaining
the class priors to be same. Thus the augmentation process is needed.

5.2. Methods
We compared the following methods:

Shttp://www.cs.columbia.edu/~andrews/mil/datasets.html

14


http://www.cs.columbia.edu/~andrews/mil/datasets.html

Algorithm 1 Generation of Training / Test Sets for Benchmark MIL
Datasets

Input: Dp: original positive bags, Dy: original negative bags, m: true bag-

level class prior, L: #{labeled positive bags}, U: #{unlabeled bags}, T"
#{test bags}

Dr, C Dp > |DL| =L
Dp = Dp \ DL

N§ ~ B(U +T,7)

NN:=U+T—NE

Dy = Djp(C Dp) UD(C D) > |Dp| = NG, |Dy| = N
D}, € Dy > [Dy| =T
Dy := Dy \ Dy

Output: D;, U Dy: training set, Dy;: test set

e Positive-Unlabeled Set Kernel Classifier (PU-SKC, the pro-

posed method): Hyperparameters (the degree parameter p in the
polynomial kernel and the regularization parameter A in the ob-
jective function (17))) were selected via 5-fold cross-validation from
p € [1,2,3] and A € [10°,1073,107%]. Values minimizing the PU
risk with the zero-one loss were chosen to be optimal.

e Least-Squares Density Difference (LSDD): Estimate the density

difference p(x)—p'(x) to obtain using the least-squares method [34].
The bag classifier can be obtained as g(X) = maxgex d(x). Hyper-
parameters (the width of the Gaussian kernel s and the regulariza-

tion parameter \) were selected via 5-fold cross-validation from s €
[1072,107%,107%] and X € [10°,1073,107°].

e Direct Sign of Density Difference (DSDD): Estimate the sign

of the density difference directly [33]. The bag classifier can be
obtained in the same way as LSDD. Hyperparameters (the width of
the Gaussian kernel s and the regularization parameter \) were se-
lected via 5-fold cross-validation from s € [1072,107*,107%] and \ €
[10°,1073,1079].

e puMIL: An SVM-based approach [27]. The detail is described in

pondix 1)
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5.53. Results

Here we show the experimental results and give answers to the research
questions.

5.3.1. Classification Performances

Table [3| shows averages with standard deviations of the classification ac-
curacy over 20 trials under each class prior. Bold faces represent the best
methods under each class prior. This was tested by the one-sided t-test with
5% significance level (first the best method was chosen, then other methods
were checked whether they are comparable or not by the one-sided t-test).
As it can be seen from Table 3 PU-SKC outperforms the existing method
puMIL [27] under various class priors. Note that the true class prior in Table
means the predefined value for dataset generation (see Algorithm (1)), not
an estimated class prior during the learning process (see Sect. .

Overall, the performance of the proposed method decreases as the true
class prior becomes higher. This can be confirmed from Eq. : since
27* /+/Np dominates the upper bound given sufficiently large Ny, more posi-
tive bags are needed to achieve accurate classification performance compared
with a small class prior case. In practice, we could address this issue by col-
lecting more positive bags. Figure [2| shows classification performances under
different number of positive bags. Classification performances are improved
as the number of positive bags increases.

A1l: The proposed method tends to outperform the baseline and
existing methods under various class priors.

5.3.2. Computation Time

Next, we compared the execution time between the proposed method and
the baseline and existing methods. The result is shown in Figure This
result shows that PU-SKC is much more computationally efficient than the
baseline and existing methods. Note that the execution time in other class
prior values (7 = 0.2,0.3,...,0.7) is almost the same as the one shown in
Figure [3| because both the class prior estimation algorithm shown in Sec
and the PU-SKC optimization problem are non-iterative methods and
their computation complexities do not depend on the value of 7 or its esti-
mated value.
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Table 3: Each result is the average with standard deviation of the classification accuracy
over 20 trials. Bold faces represent the best methods under each setting (tested by the

one-sided 5% t-test).

dataset T PU-SKC LSDD [34] DSDD [33] puMIL [27]
Muskl 0.1 | 0.865 (0.046) 0.928 (0.029) 0.931 (0.026)  0.757 (0.065)
0.2 0.844 (0.038)  0.707 (0.289) 0.876 (0.037)  0.733 (0.070)
0.3 | 0.818 (0.041) 0.622 (0.208) 0.778 (0.045) 0.717 (0.063)
0.4 | 0.776 (0.057)  0.618 (0.148)  0.708 (0.041)  0.699 (0.050)
0.5 | 0.763 (0.050)  0.553 (0.072)  0.597 (0.047)  0.665 (0.081)
0.6 | 0.735 (0.055)  0.522 (0.068)  0.505 (0.051)  0.649 (0.069)
0.7 0.737 (0.044)  0.538 (0.161)  0.392 (0.061)  0.606 (0.075)
Musk2  0.1| 0.810 (0.060) _ 0.702 (0.303) 0.840 (0.040)  0.683 (0.098)
0.2 | 0.802 (0.053)  0.691 (0.239) 0.789 (0.036)  0.730 (0.063)
0.3 0.801 (0.051)  0.621 (0.173)  0.720 (0.050)  0.732 (0.073)
0.4|0.724 (0.063) 0590 (0.111)  0.621 (0.048) 0.704 (0.068)
0.5 | 0.742 (0.050) 0.522 (0.054) 0.537 (0.055) 0.654 (0.092)
0.6 | 0.706 (0.059)  0.499 (0.086)  0.466 (0.053)  0.637 (0.086)
0.7 0.726 (0.055)  0.508 (0.159)  0.364 (0.063)  0.599 (0.072)
Elephant 0.1 | 0.845 (0.044)  0.734 (0.153)  0.747 (0.041)  0.722 (0.084)
0.2 | 0.783 (0.062)  0.671 (0.166)  0.715 (0.039)  0.686 (0.075)
0.3 | 0.746 (0.062)  0.652 (0.092)  0.685 (0.038)  0.698 (0.072)
0.4 | 0.701 (0.050)  0.573 (0.088)  0.608 (0.039)  0.642 (0.051)
0.5| 0.607 (0.058)  0.552 (0.052)  0.575 (0.050) 0.667 (0.070)
0.6 0528 (0.087)  0.520 (0.062)  0.503 (0.031) 0.614 (0.063)
0.7 0421 (0.059) 0.602 (0.141)  0.453 (0.037) 0.597 (0.066)
Fox 0.1 0.840 (0.053)  0.634 (0.181) _ 0.717 (0.037) _ 0.561 (0.062)
0.2 0.754 (0.048)  0.689 (0.042)  0.669 (0.041)  0.575 (0.058)
0.3 | 0.689 (0.054) 0.576 (0.130) 0.615 (0.045) 0.544 (0.045)
0.4 | 0.613 (0.061)  0.542 (0.097) 0.588 (0.041)  0.552 (0.053)
0.5 | 0.538 (0.042) 0.527 (0.046) 0.545 (0.042) 0.547 (0.074)
0.6| 0.468 (0.057) 0.538 (0.071)  0.464 (0.053) 0.550 (0.055)
0.7 0.430 (0.055) 0.559 (0.151)  0.430 (0.046) 0.536 (0.075)
Tiger 0.1 0.839 (0.044)  0.689 (0.136) _ 0.730 (0.047) _ 0.706 (0.073)
0.2 | 0.783 (0.035)  0.695 (0.032)  0.707 (0.031)  0.680 (0.070)
0.3 | 0.729 (0.043)  0.636 (0.047)  0.651 (0.052)  0.659 (0.056)
0.4 0.672 (0.043)  0.596 (0.042)  0.606 (0.036) 0.668 (0.048)
0.5 0.584 (0.043)  0.566 (0.044)  0.540 (0.046) 0.609 (0.070)
0.6| 0.508 (0.048)  0.530 (0.066)  0.523 (0.032) 0.608 (0.080)
0.7 | 0.410 (0.059)  0.490 (0.080)  0.463 (0.034) 0.585 (0.086)

A2: The proposed method is much more computationally effi-

cient than the baseline and existing methods.
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Figure 2: Classification performances of each dataset under different number of positive
bags. The number of unlabeled bags are fixed to 180. The true class priors are set to 0.7
among all settings.
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6. Conclusion

In this work, we considered a multiple instance learning problem when
only positive bags and unlabeled bags are available, which does not require
all training bags to be labeled. We proposed a convex method, PU-SKC,
to solve PU multiple instance classification. This method is based on the
convex formulation of PU classification [23] and the set kernel [20]. PU-
SKC performed better than the existing PU multiple instance classification
method [27] on benchmark MIL datasets. Furthermore, we confirmed that
the proposed method was much more computationally efficient than the base-
line and existing methods through the experiment.
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Figure 3: Average execution time: each result is the average execution time of 20 trials
under bag-level class prior 7 = 0.1. PU-SKC is executed on the given hyperparameter.
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Appendix A. Instance-Level Class Prior Estimation

In the research by du Plessis and Sugiyama [30], a class prior estimation
method from positive and unlabeled data by partial matching was proposed.
This method estimates the class prior 7 by minimizing the Pearson (PE)
divergence from positive data distribution 7p(x|y = 1) to unlabeled data
distribution p(x):

7" = arg min PE[mp(x|y = 1)[p(x)]

™

— arg min %/ (w _ 1>2p(m)dm.

x p(x)

It is still possible to estimate p(x|y = 1) from positive samples and p(x) from
unlabeled samples using, e.g., the kernel density estimation, but du Plessis
and Sugiyama [36] empirically showed that such a naive approach often does
not produce a good estimator of m. A better approach is to lower bound the
PE divergence and directly maximize it:

1

where r(x) is an arbitrary function. In practice, a linear-in-parameter model
based on Gaussian kernel basis functions is used to estimate 7:

Our goal is to find the tightest lower bound by maximizing the right-hand
side of (A.1]) at first with respect to r and then minimize it with respect to
7. The former maximization problem with the [ regularizer can be written
as

~ 1
a=argmax |[7ta' h— —a' Ha— 71+ - — ~a' o
a 2 2 2
T L 1 A
= arg max |7T« h—§a Ha— -a'al, (A.2)

2
where H = [ ¢(a)gle) )iz, h= [ sla)plaly = da
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and A > 0 denotes the regularization parameter. In practice, H and h are
estimated by the sample averages:

77 1 = P P\T 7 1 2l U

H = Fp;qb(wl Jo(x;) , h= N_U;¢(w])
Using these estimators, Eq. can be reformulated as follows:
T

o1 -
= arg max |:7T(1Th ——a'Ha— “a a} .
a 2 2

Q)

An analytical solution to the above problem can be obtained as follows:
a=7rG"h, G=H+M,

where I denotes the identity matrix. This leads to the following PE diver-
gence estimator:

. i~ | PSP 1
PE = 2h'G'h — 7r2§hTG‘1HG_1h, — T+ 3

Then the analytical minimizer of PE can be obtained as
S |
F=[2RTGh-hTGHG R

Appendix B. Multiple Instance Learning from Positive and Unla-
beled Bags

Wu et al. [27] proposed an instance-level method for the PU-MIL problem
(called puMIL). As discussed in the previous work [I5], 22], the key instance
(the most positive instance) in each bag is important in MIL. This is also
the case in PU-MIL, but the problem is that we cannot tell the labels of
unlabeled bags. To address this issue, Wu et al. [27] introduced the bag
confidence, which describes how much confident the given unlabeled bag is
negative. Let v, € [0, 1] be the confidence of the b-th bag. Then the learning
problem of an SVM classifier g(X) = w'Z (Z € X) under the given v is
formulated as

1 Np+Ny _
min ~||w|]*+ C max(0, 1 — v Yw ' &), (B.1)
wekd (3,1 2 ;
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where Y} is the estimated bag label (171, = +1 for a positive bag and Y, = —1
for a possibly negative bag coming from the set of unlabeled bags) and ; is
the key instance in the bag X;. v, weighs the contribution of &, according
to its confidence. For positive bags, the confidence is simply set as v, = 1.
The overall training method is summarized as follows.

1. Initialize L distinct bag confidences v, ... v where L is the num-
ber of the bag confidences.

2. Extract Np possibly negative bags from unlabeled bags.

3. Make a positive margin pool (PMP), which consists of the key instances
from positive bags and possibly negative bags.

4. Solve (B.1)) with using the PMP to obtain an SVM classifier, which is
evaluated by the F-measure.

In Step [2| unlabeled bags with the highest confidences are extracted and
regarded as possibly negative. Bag confidences are initialized randomly and
updated via a genetic algorithm (see Step [4 and (B.3)).

In Step [3] first the generative distribution of negative instances is esti-
mated by a weighted kernel density estimator [37]:

aly=-1)=—3 3 k@), (B.2)

N, ~
N b=1 m’EXé\I

where Ny is the number of all instances included in the extracted bags in
Step [2/ and k denotes a kernel function and X} is the b-th possibly negative
bag. Using the estimator , we can obtain a PMP by extracting the key
instances from bags:

X, = arg min p(ap|y = —1).
xpEXy

After building the PMP, an SVM classifier can be obtained in Step 4] We
evaluate the given bag confidences v by calculating the F—measureﬂ. Here we
have L bag confidences, and we update them by a genetic algorithm. First,

7 True bag labels are needed to calculate the F-measure, but those of unlabeled bags
are unavailable. This point was not discussed in Wu et al. [27], so we assume that possibly
negative bags have negative labels and the other bags in the unlabeled set have positive
labels when we calculate the F-measure in our experiments.
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the bag confidence with the highest F-measure (denoted by v) is cloned to
replace the other confidences under the fixed rate ¢ € [0,1]. This process,
called the mutation, is caused by

v, =V + 7”(1 - fl)(’/) — Vl)7 (BS)

where r is drawn from the standard normal distribution, v; is the [-th bag
confidence, and f; is the F-measure obtained from v;. v, is to be replaced for
v, if v; produces a better result. We iterate Steps [2] — [4] until the best bag
confidence ¥ converges or the number of iterations reaches the predefined
limit.

After the above training steps, the best bag confidence v is to be obtained.
We use v for the initial bag confidence and iterate Steps[2]—[4] again to obtain
a classifier for test predictionﬂ However, the process to extract possibly
negative bags from unlabeled bags based on the bag confidences (Step [2)) is
not shown to converge to the optimal solution in the previous work, while
this method experimentally works well.

Appendix C. Proof of Theorem 1
By McDiarmid’s inequality [38], we obtain

P (EP(XlY-H)[_g(X)] - Nip Z(_9<X;P)) 2 6) S exp (_Np(2032¢/NP)2> ’

because | — g(+)| < CoCy by the Cauchy-Schwartz inequality (see the defini-

tion ) This is equivalent to the following inequality with probability at

5.
least 1 — oE

Ne 2 2

1 20202 log 2

Epxiv=+y[—9(X)] - - ) (—9(X})) < ﬁ'
b=1

Similarly, with probability at least 1 — 2,

€202 log 2

b’l

8 In test prediction, test bag confidences are not defined. This point was also not
discussed in Wu et al. [27], so we set all test bag confidences to 1 in our experiments.
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noticing that supy xrc o [{(—g(X)) —£(—=g(X'))| < CaC¢—0 = CoCy (. the
Lipschitz constant of ¢ is 1) when applying McDiarmid’s inequality.
Now let us move on to the generalization error bound.

R(g) — R(9)
=7 {Ep(xy:+1>[—9(X)] - NLP Z(—Q(Xf))}

+ {Epm[ﬁ(—g(X))] .- Zf(—g(Xz?))}

C2C3 log 2 ( 2" 1 )
<1/ + :
2 VN VY

with probability at least 1—4, which concludes Eq. with Cg s = |/ C%C3 log 3/2.
O
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