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Abstract

Robust Principal Component Analysis (RPCA) is a powerful tool in machine learning

and data mining problems. However, in many real-world applications, RPCA is unable

to well encode the intrinsic geometric structure of data, thereby failing to obtain the

lowest rank representation from the corrupted data. To cope with this problem, most

existing methods impose the smooth manifold, which is artificially constructed by the

original data. This reduces the flexibility of algorithms. Moreover, the graph, which is

artificially constructed by the corrupted data, is inexact and does not characterize the

true intrinsic structure of real data. To tackle this problem, we propose an adaptive

RPCA (ARPCA) to recover the clean data from the high-dimensional corrupted data.

Our proposed model is advantageous due to: 1) The graph is adaptively constructed

upon the clean data such that the system is more flexible. 2) Our model simultaneously

learns both clean data and similarity matrix that determines the construction of graph.

3) The clean data has the lowest-rank structure that enforces to correct the corruptions.

Extensive experiments on several datasets illustrate the effectiveness of our model for

clustering and low-rank recovery tasks.

Keywords: RPCA, Flexibility, Adaptively

1. Introduction

Principal Component Analysis (PCA) is the most widely used tool for linear di-

mensionality reduction, image denoising and clustering. It aims to recover efficien-
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t representation with low-rank structure which is the best reconstruction in the least

squared sense. However, in many machine learning and data mining problems, one5

often encounters high-dimensional samples with severe noise caused by corruptions or

outliers, in which case the performance of PCA degenerates dramatically [1, 2, 3, 4, 5].

Thus, how to find an effective representation from the high-dimensional corrupted data

has become an active topic in machine learning and information processing.

ℓ1-norm PCA, ℓ21-norm PCA and nuclear norm PCA are three of the most repre-10

sentative techniques to improve the robustness of PCA to outliers or noises. ℓ1-norm

PCA and ℓ21-norm PCA aim to seek a robust projection matrix by solving the ℓ1-norm

and ℓ21-norm optimization problems for different data types [1, 3, 6], where ℓ1-normal

and ℓ21-normal are respectively employed as the distance metrics to characterize the

variation among data in the criterion function. While they can well extract the ro-15

bust low-dimensional representation for subsequent analysis such as classification and

clustering, these methods are neither rotation invariant [1, 6] nor reconstruction error

considered [3, 7].

Nuclear norm based PCA attempts to recover clean data with low-rank structure

from the corrupted data so that the robustness of the PCA series mentioned above can20

be enhanced. Due to its great potential for being used in the real-life applications such

as image denosing [8, 9],video surveillance [10] and image clustering [11, 12], this

research has attracted a lot of attention from both academia and industry. Candes et

al. [8] demonstrated that PCA can be made robust against outliers by exactly recover-

ing the low-rank representation even from grossly corrupted data via solving a simple25

convex problem, named Robust PCA (RPCA). Vaswani et al. [13] and Bouwmans et

al. [14] applied RPCA to background/foreground separation in video-surveillance. As

some RPCA based methods suffer from large memory requirement and high compu-

tational complexity, some online algorithms [15, 16] and real-time algorithms [17, 18]

are recently proposed to improve the efficiency. In addition, when the size of the input30

data grows and due to the lack of sparsity constraints, some RPCA based methods can-

not cope with the real-time challenges and always show a weak performance in video

processing task. In order to address the above mentioned issues, Javedet al. [19] pro-

posed an efficient and reliable low-rank component using matrix decomposition with
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max-norm of super pixels.35

In order to effectively deal with color images or high-order images, RPCA was

extended to tensor RPCA [20]. In [21], Oh et al. noticed that the performance of RPCA

drops considerably when the number of data is small. To solve this problem, they

proposed a method named PSSV to minimize partial sum of singular values of data.

RPCA, PSSV, and TRPCA, however, do not take the local structure into account. To40

tackle this problem, Jiang et al. [22] proposed Graph Laplacian PCA (GLPCA) which

integrates the graph regularization of principal components into the criterion function

of PCA. They also developed a robust version of GLPCA (RGLPCA). But both of

them suffer from non-convexity and the resulting alternating direction method can get

stuck in local minima. Zhang and Zhao [23] proposed manifold regularized matrix45

factorization (MMF) which imposes the orthonormality constraint on the projection

directions and integrates the graph regularization of low-dimensional representation to

learn a low-rank representation. The extension works of MMF were proposed by Tao

et al. [24] and Jin et al. [25]. However, they are not robust to data corruptions and

suffer from non-convexity [9]. To handle it, recently, Shahid et al. [9] proposed Graph-50

RPCA which integrates graph regularization of clean data with low-rank structure into

the objective function of RPCA.

In general, smoothness manifold regularization in the aforementioned methods

heavily depends on the graph, which is artificially constructed on the corruption data.

This reduces the flexibility of algorithm due to the complex and unknown distribution55

of data. Furthermore, the corrupted data do not seem to characterize the true geometric

structure of real data well. Therefore, the graph, which is constructed on the corrupt-

ed data, is inexact and may make algorithm degenerate obviously in real applications.

Finally, all of the aforementioned robust PCA methods based on nuclear norm cannot

obtain the lowest-rank representation of the entire data jointly [26]. Thus, they cannot60

well characterize the global and local geometric structure of data.

To tackle the aforementioned problem, in this paper, we propose an adaptive RPCA

to recover the clean data which improves the stability of RPCA in clustering and image

denoising. Our method adaptively constructs graph on the clean data in the sense that

the weight attached to each edge on the graph is learned from the data, rather than an65
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empirical value used in the existing algorithm. Doing so, on the one hand, will defi-

nitely improve the graph quality and eventually lead to better algorithm performance.

On the other hand, learning weights, instead of assigning them manually, will make the

system more flexible, especially when changing the application. Moreover, our model

simultaneously learns both clean data with low-rank structure and similarity matrix.70

This enables to capture the global geometric structure, and meanwhile, preserve the

local intrinsic structure. Extensive experimental results for image denoising, cluster-

ing and extraction background demonstrate that our proposed model is more robust to

outliers and missing values, as compared to the state-of-the-art methods.

2. Related Works75

In this section, we briefly review some works closely related to our experiments

and proposed model.

2.1. Background Extraction and Hyperspectral Image Processing

In the recent years, RPCA based approaches such as Dynamic Super Pixel Structured-

Sparse (DSPSS) [27] and Motion Aware Graph regulerized RPCA (MAG-RPCA) [28]80

have gained some popularity due to their computational simplicity and effectiveness in

background extraction. However, these models ignore the spatial distribution of out-

liers. Shape and Confidence Mapbased RPCA (SCM-RPCA) [29] was proposed to

improve the background extraction in maritime scenes, where the sparse component is

constrained by shape and confidence maps both extracted from spatial saliency map-85

s. For hyperspectral image processing, Cheng et al. [30] proposed a novel method

that combines PCA and LDA method to maximizes the representation and classifi-

cation effects on the extracted new feature bands. Xu et al. [31] proposed a novel

tensor RPCA method to decompose the original hyperspectral image into background

and anomaly parts by Mahalanobis distance regularization. In [32], authors gave an90

hyperspectral image mixed-noise removal method by simultaneously exploiting the lo-

cal low-rank structure and the global spatial-spectral piecewise smoothness. Recently,

NonLRMA [32] was proposed to decompose the degraded hyperspectral image into a

low rank component and a sparse term with a more robust and less biased formulation.
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2.2. Robust Principal Component Analysis (RPCA)95

Robust principal component analysis (RPCA) [8], which is one of the most popular

robust methods, aims to recover a low-rank matrix D ∈ Rm×n from corrupted obser-

vations X = D+E, where E ∈ Rm×n represents errors with arbitrary magnitude and

distribution. The rank minimization approach assumes E is sparse and formulates the

problem as

min
D,E

rank (D) + λ∥E∥0 s.t. X = D+E (1)

where rank (D) is the rank of matrix D. The ∥·∥0 is the pseudo-norm, i.e., the number

of nonzero elements in the matrix. λ is a positive penalty parameter for trading off

between the low rank term and sparse term. This optimization model is a NP-hard

problem, which is usually transformed into the model (2) in real applications [8, 33].

min
D,E

∥D∥∗ + λ∥E∥1 s.t. X = D+E (2)

where ∥D∥∗ =
∑

i σi is nuclear norm of D, σi denotes the ith singular value of D

(sorted in decreasing order).

It can be seen in the model (2), RPCA only imposes the low-rank constraint on

clean data but ignores the relationship among columns of matrix X which characterizes

the geometric structure of data. To well characterize the geometric structure of data,

motivated by the fact that the performance of RPCA can be significantly improved by

smoothness manifold regularization, many enhanced methods have been developed,

among which RPCAG [9] is one of the representative method. Its objective function is

min
D,E

∥D∥∗ + λ∥E∥1 + γtr(DΦDT ) s.t. X=D+E (3)

where parameters λ and γ control the amount of sparsity of E and smoothness of D on

the graph Φ respectively.

In the model (3), graph is usually artificially constructed based on the corrupted100

data. This results in the following limitations: First, it reduces the flexibility of al-

gorithm due to the complex and unknown distribution of data. Second, the corrupted

data do not characterize the true geometric structure of real data. So, the graph, which

is constructed on the corrupted data, is inexact and may make algorithm degenerate
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dramatically in real applications. Third, constructing graph is independent of the clean105

data, thus making RPCAG impossible to obtain lowest-rank structure which character-

izes the global structure of data.

2.3. Low-rank Representation (LRR)

Assume that we have data matrix X = [x1,x2, · · · ,xN ] ∈ Rd×N , which are drawn

from a union of k subspace. LRR [26] aims to seek the lowest-rank representation

of data X with respect to given dictionary B. This formulates the following convex

optimization problem.

min
Z

∥Z∥∗ s.t.X = BZ (4)

The optimal solution Z of the problem (4) is called the lowest-rank representations

of data matrix X. In order to well characterize the intrinsic structure of each subspace,

the data itself X is used as the dictionary in LRR. In this case, the problem (4) becomes

min
Z

∥Z∥∗ s.t. X = XZ (5)

In real applications, the observed data X are often noisy or even grossly corrupted.

To handle the noise or model errors, a more reasonable objective might be:

min
Z,E

∥Z∥∗ + λ∥E∥2,1 s.t. X = XZ+E (6)

where the parameter λ > 0 is used to balance the effects of the two parts, which could

be tuned empirically.110

Different from RPCA, LRR represents each data vector as a linear combination of

the other data vectors. Thus, LRR obtains the lowest-rank representation Z which well

characterizes local intrinsic geometric structure. According to the matrix theory, we

get XZ also the lowest-rank structure, which well captures global geometric structure.

However, a critical shortcoming of LRR is that, when the clean data is insufficient, it115

cannot obtain the good low-rank representation which captures the geometric structure

of data.
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3. Adaptive Robust Principal Component Analysis (ARPCA)

3.1. Objective function

We aim to recover clean data D from the corruption data X such that D has the120

lowest-rank structure and simultaneously captures global and local geometric struc-

tures of data. According to the aforementioned analysis, RPCA cannot obtain clean

data D with the lowest-rank structure due to the fact that it does not take the member-

ship of the samples into account. Moreover, motivated by LRR, if we represent each

column vector in D, which is clean data, as a linear combination of the other column125

vectors in D, i.e, D = DS, then S can well reveal the membership of the column

vectors of D with the nuclear norm minimization. In real applications, the constraint

D = DS is very strict, which may result in over-fitting. Thus, we relax the constraint

for D ≈ DS. Inspired by the fact that ℓ1-norm helps improve the robustness, we use

∥D−DS∥1, which constructs a graph as in manifold learning [34], to measure the130

representation error.

The proposed model is

min
D,E,S

∥D∥∗ + λ1∥E∥1 + λ2 (λ3∥D−DS∥1 + ∥S∥∗)

s.t. X = D+E
(7)

Our approach has three advantages. (1) The proposed model adaptively constructs

graph on the clean data. This improves the flexibility of our model. (2) The proposed

model simultaneously learns both clean data with low-rank structure and similarity

matrix that determines the construction of graph. (3) The proposed model represents135

each data vector of clean data as a linear combination of clean data. This helps obtain

a lowest-rank representation to correct corruptions and to capture the global geometric

structure.

3.2. Algorithm

In this section, we propose an efficient iterative algorithm to solve the problem (7).

By simple algebra, an ADMM (Alternating Direction Method of Multipliers) [35] is

7



used to rewrite Problem (7) as

min
D1,E,E1,
S1,D,S

∥D1∥∗ + λ1∥E∥1 + λ2 (λ3∥E1∥1 + ∥S1∥∗)

s.t. X = D+E, D = D1, E1 = D−DS, S = S1

(8)

Thus, the augmented Lagrangian and iterative scheme are140

L (D1,E,E1,S1,D,S)

= argmin
D,E,S,
D1,E1,S

∥D1∥∗ + λ1∥E∥1 + λ2 (λ3∥E1∥1 + ∥S1∥∗)

+tr
(
Y1

T (X−D−E)
)
+ tr

(
Y2

T (D−D1)
)

+tr
(
Y3

T (D−DS−E1)
)

+ tr
(
Y4

T (S− S1)
)

+µ
2

(
∥X−D−E∥2F + ∥D−D1∥2F

)
+µ

2

(
∥D−DS−E1∥2F + ∥S− S1∥2F

)
(9)

where Y1, Y2, ,Y3, and Y4 are lagrange multipliers, and µ > 0 is a penalty parameter.

Step 1: [Update D1]. In this case, the other variables are fixed. Thus, the problem

Eq (9) becomes

D1
∗ = argmin

D1

∥D1∥∗ + tr
(
Y2

T (D−D1)
)
+ µ

2 ∥D−D1∥2F

=argmin
D1

1
2µ∥D1∥∗ +

1
2 ∥D1 − Γ∥2F

=Ω1/(2µ) (Γ)

(10)

where Γ = D+Y2/µ, Ω1/(2µ) (Γ) = UR1/(2µ) [
∑

]V is the singular value shrinkage

operator [36], U
∑

V is the SVD of Γ, and Rε [x] = sgn(x)max(|x| − ε, 0) is the

scalar shrinkage operator.

Step 2: [Update E ]. In this case, the problem Eq (9) becomes

E∗ = argmin
E

λ1∥E∥1 + tr
(
Y1

T (X−D−E)
)
+ µ

2 ∥X−D−E∥2F

= argmin
E

λ1

µ ∥E∥1 +
1
2 ∥E−Π∥2F

=Rλ1/µ [Π]

(11)

where Π = X−D+ Y1

µ .145
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Step 3: [Update E1]. The problem Eq (9) becomes

E1
∗ = argmin

E1

λ2λ3∥E1∥1 + tr
(
Y3

T (D−DS−E1)
)
+ µ

2 ∥D−DS−E1∥2F

= argmin
E1

λ2λ3

µ ∥E1∥1 +
1
2 ∥E1 − Z∥2F

=Rλ2λ3/µ (Z)

(12)

where Z = D−DS+ Y3

µ .

Step 4: [Update S1]. In this case, the problem Eq (9) becomes

S1
∗ = argmin

S1

λ2∥S1∥∗ + tr
(
Y4

T (S− S1)
)
+ µ

2 ∥S− S1∥2F

= argmin
S1

λ2

µ ∥S1∥∗ +
1
2 ∥S1 −Ψ∥2F

=Ωλ2/µ [Ψ]

(13)

where Ψ = S+ Y4

µ .

Step 5: [Update D ]. The problem Eq (9) becomes

D∗ = argmin
D

tr(Y1
T (X−D−E)) + µ

2 ∥D−D1∥2F

+tr(Y2
T (D−D1)) +

µ
2 ∥D−DS−E1∥2F

+tr(Y3
T (D−DS−E1)) +

µ
2 ∥X−D−E∥2F

(14)

Taking the derivative of Eq. (14) with respective to D and setting it to zero, we

have

D∗ = K
(
3I− S− ST + SST

)−1 (15)

where K = X+D1 +E1 −E−E1S
T + Y1−Y2−Y3+Y3S

T

µ . I is the identity matrix.

Step 6: [Update S ]. The problem Eq (9) becomes

S∗ = argmin
S

tr(Y3
T (D−DS−E1)) +

µ
2 ∥D−DS−E1∥2F

+ tr
(
Y4

T (S− S1)
)
+ µ

2 ∥S− S1∥2F
(16)

Taking the derivative of Eq. (16) with respective to S and setting it to zero, we have

S∗ =
(
DTD+ I

)−1
P (17)

where P = DTD+ S1 −DTE1 +
DTY3−Y4

µ . Algorithm 1 lists the pseudo code for

solving our model (9).150
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Algorithm 1 Algorithm to solve the model (9)
Input: Data matrix X, parameter λ1, λ2, λ3.

Initialize D = S = E = 0, Y1 = Y2 = Y3 = Y4 = 0, µ = 0.1, µmax = 106,

ρ = 1.1, ε = 10−6.

while not converge do

1. Update D1, E, E1, S1, D, S using Eq. (10), Eq. (11), Eq. (12), Eq. (13), Eq.

(15) and Eq. (17) respectively.

2. Update Y1,Y2,Y3,Y4 and µ:

Y1 = Y1 + µ (X−D−E)

Y2 = Y2 + µ (D−D1)

Y3 = Y3 + µ (D−DS−E1)

Y4 = Y4 + µ (S− S1)

µ = min (ρ ∗ µ, µmax)

3. Check the convergence conditions:

∥X−D−E∥∞ < ε, ∥D−D1∥∞ < ε,

∥D−DS−E1∥∞ < ε, and ∥S− S1∥∞ < ε.

end while

Output: D,E,S

4. Experiments

In this section, we validate our proposed method on Scene Background Initializa-

tion (SBI) database [37, 38], the Airborne Visible/Infrared Imaging Spectrometer (i.e.

AVIRIS) Indian Pines image [39], and ORL database [40], and compare with three

representative methods, i.e., RPCA [8], RPCAG [9], PSSV [21] PCPS [41], IMBS-155

MT [42], LaBGen [43] and BEWIS [44].

4.1. Low-Rank Background Extraction from Videos

Scene Background Initialization (SBI) database is used to extract background. In

the experiment, we use CAVIAR1 and HighwayI image sequences as sub-dataset.
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CAVIAR1 contains 610 frames with a resolution of 384 × 256. HighwayI contains160

410 frames with a resolution of 320 × 240. For CAVIAR1, we randomly select 14,

21, 42, 63 frames as training data, and then resize each frame to 96 × 64 pixels. In

the experiments, parameters are set as follows: λ1 = 4.1/
√
max (m,N), λ2 = 1 and

λ3 = 10/
√

max (m,N). For HighwayI, we randomly select 5, 10, 20, 30 frames and

resize each frame to 80 × 60 pixels. Parameters are set as λ1 = 3.5/
√
max (m,N),165

λ2 = 1.5 and λ3 = 3/
√
max (m,N). Results of CAVIAR1 and HighwayI image

sequences are respectively shown in Figure 1 and Figure 2.

As can be seen in Figure 1 and Figure 2, we have following results: First, RPCAG

is overall superior to RPCA. This is due to the fact that RPCAG takes the relationship

of samples into account. Secondly, our method and PSSV are obviously superior to the170

other two methods RPCA and RPCAG when the number of training data is insufficient.

This is probably due to that RPCA and RPCAG do not fully utilize a priori target rank

information. In Figure 2, RPCAG and RPCA have almost the same result. The reason

may be that the graph artificially constructed on the original data does not well capture

the intrinsic structure. Third, our model is superior to RPCA and RPCAG, because175

our method adaptively constructs the graph which well reveals the intrinsic geometric

structure. Moreover, our model obtains the low-rest-rank representation that enforces

to exactly extract background. Fourth, our method has almost the same results with

PSSV. It illustrates that our method obtains the lowest-rank clean data because the

target rank is set 1 in PSSV.180

4.2. Hyperspectral Image Denoising

The AVIRIS Indian Pines [39] was collected by the AVIRIS sensor on the Indi-

an Pines region, Northwest Indiana, USA, in 1992. The scene was acquired over a

mixed forest/agricultural area, with a size of 145 × 145 × 224. There exist 224 band-

s across the spectral range from 0.2 to 2.5um, nominal spectral resolution of 10nm.185

The image has a spatial resolution of 20 m per pixel and 16-bit radiometric resolution.

It includes 16 classes, most of which are different types of crops (e.g., corns, soy-

beans, and wheats). For the preconditioning of the data, the gray values of each band

of the HSI are normalized between [0, 1]. In the experiments, we randomly placed

11



Figure 1: The recovered background from CAVIAR1. From the first row to the fourth row are the results of

the 14, 21, 42, and 63 frames, respectively. From left to right are the original frame, reference background,

recovered background by RPCA [8], RPCAG [9], PSSV [21] and ARPCA, respectively.

Figure 2: The recovered background from HighwayI. From the first row to the fourth row are the results of

the 5, 10, 20, and 30, respectively. From left to right are the original frame, reference background, recovered

background by RPCA [8], RPCAG [9], PSSV [21] and ARPCA, respectively.

10%, 20%, 30% ,40% noise which is the type of salt and pepper, and set parameters as190

λ1 = 1.5/
√

max (m,N), λ2 = 1, and λ3 = 0.8/
√

max (m,N).

We use peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) index to

assess the performance of each method for image denoising. For HSI, we compute the

value of the aforementioned two indices on different spectral bands, and then calculate

the mean values of these bands, which is denoted by Mean-PSNR and Mean-SSIM,

respectively. The higher value of PSNR and SSIM means the better performance of

12



Figure 3: Denoised images of Indian Pines in band 1. From the first row to the fourth row are 10% noise,

20% noise, 30% noise and 40% noise respectively. From left to right are Original Image, noised image with

different percentage (10%, 20%, 30%, 40%) noise, recovered image by RPCA [8], RPCAG [9], PSSV [21]

and ARPCA, respectively.

method. PSNR and SSIM are defined as follows:

PSNRi = 10 ∗ log10 MN
M∑

x=1

N∑
y=1

[ûi(x,y)−ui(x,y)]
2

Mean− PSNR = 1
B

B∑
i=1

PSNRi

SSIMi =
(2uui

uûi
+C1)(2σui

σûi
+C2)

(uui
2+uûi

2+C1)(σui
2+σûi

2+C2)

Mean− SSIM = 1
B

B∑
i=1

SSIMi

where ui and ûi represent the ith band of the reference image and restored image,

respectively. uui and uûi are the average values of image ui and ûi, while σui and σûi

are variances. M and N are the height and width in the spatial region, respectively.

Moreover, B is the number of bands in spectrum region. C1 and C2 are constants.195

Figure 3 shows the denosing images that is obtained by the aforementioned four

methods. Table 1 and Table 2 list the average PSNR and SSIM of each method. As can

13



Table 1: The Mean-PSNR of seven methods under different noise level on Indian Pines.

Noise level 10% 20% 30% 40%

RPCA [8] 42.4471 37.4339 31.6359 26.5342

RPCAG [9] 54.6857 47.7350 41.2454 34.6076

PSSV [21] 47.2177 45.1279 44.5750 41.2198

IMBS-MT [42] 50.2075 46.2346 40.9631 30.5326

LaBGen [43] 61.6973 53.3651 46.2416 42.7621

BEWIS [44] 67.2333 61.5326 55.2930 46.5012

ARPCA 71.2093 67.6107 64.8939 52.2474

Table 2: The Mean-SSIM(%) of seven methods under different noise level on Indian Pines.

Noise level 10% 20% 30% 40%

RPCA [8] 99.48 98.49 93.45 82.08

RPCAG [9] 99.95 99.77 99.18 97.26

PSSV [21] 99.65 99.35 99.17 98.34

IMBS-MT [42] 99.55 99.01 96.73 93.03

LaBGen [43] 99.93 99.22 98.91 97.60

BEWIS [44] 99.98 99.86 99.21 98.21

ARPCA 100 99.99 99.99 99.89

be seen in Figure 3, Table 1 and table 2, we have that, RPCA is inferior to the other

three methods. The reason is due to the fact that RPCA does not take the relationship

of samples or utilize a priori target rank information. RPCAG is inferior to PSSV when200

the images contain 40% noise. The reason is probably because that the graph on the

corrupted data does not reveal the true geometric structure of data. Our model achieves
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the best denoising results and has the best PSNR and SSIM. This is due to the fact that

our model simultaneously optimizes clean data and similarity matrix that determines

the graph. Another reason is that our method achieves the lowest-rank clean data and205

well reveals geometric structure of data.

4.3. Data Clustering

The ORL database contains ten different images of each of 40 distinct subjects with

the resolution 112 × 92. For some subjects, the images are taken at different times,

varying the lighting, facial expressions (open/closed eyes, smiling) and facial details210

(glasses). All the images are taken against a dark homogeneous background with the

subjects in an upright, frontal position (with tolerance for some side movement). In

the experiment, each image was normalized to a size of 56 × 46 to construct a new

gallery. In the new gallery, we randomly placed 10%, 20%, and 30% black and white

dots in each image, and set parameters as λ1 = 0.8/
√
max (m,N), λ2 = 3.5, and215

λ3 = 1.5/
√
max (m,N). All of experiments are repeated 3 times. Table 3 lists the

average clustering error.

Table 3: Average clustering error(%) and standard deviation on the ORL dataset.

Noise level RPCA [8] RPCAG [9] PSSV [21] PCPS [41] ARPCA

10% 34.67±1.91 31.42±2.08 32.75±1.75 32.21±2.00 30.83±0.76

20% 35.33±2.50 31.00±0.75 33.17±1.28 30.66±2.00 29.00±1.09

30% 36.92±1.38 34.33±1.38 32.42±1.04 33.29±0.93 30.67±1.66

As can be seen in table 3, RPCA is inferior to the other three methods for clustering.

RPCAG is superior to PSSV in most cases. The reason is probably because that it is

difficult to exactly select the target rank. the performance of RPCAG is not good when220

noise accounts for 30% of data. The reason is due to the fact that graph, which is

artificially constructed on the corrupted data, does not well reveal geometric structure

of data. Our model is superior to the other methods. This is due to the fact that our

15



model achieves the lowest-rank clean data, which enforces to correct noise, and well

reveals geometric structure of data.225

4.4. Complexity and Convergence Analysis

That D1 and S1 update in Step 1 is the most costly step of each iteration in Algo-

rithm 1, which requires computing the SVD of a matrix. For a matrix in ℜm×n, the

exact SVD has a computational complexity of O(min(m2n, n2m)). Thus, for updat-

ing D1, the computational complexity is O(min(m2n, n2m)). Similarly, for updating230

S1, the computational complexity is O(min(n3)). In addition, for ADMM method,

its convergence has also been well studied when the number of blocks is at most t-

wo [45, 46]. However, theoretically ensuring the convergence of ADMM with three

or more blocks is always problematic. Following most existing ADMM algorithms,

we prove the convergence of this method through an experiment. Figure 1 shows this235

method converges within 80 steps for all datasets.

0 20 40 60 80 100 120

Iteration Number

0

1000

2000

3000

4000

5000

6000

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e

CAVIAR1

HighwayI

Indian Pines

ORL

Figure 4: Convergence curve of our method on four datasets.

5. Conclusion

In this paper, we propose a novel method, Adaptive Robust Principal Componen-

t Analysis (ARPCA). Compared with most existing robust PCA methods, our model

16



simultaneously learns both clean data and similarity matrix that determines the con-240

struction of graph. It helps obtain both clean data with the lowest-rank structure and

good graph that characterizes local intrinsic structure. Moreover, we adaptively con-

struct graph on clean data rather than corruption data. This improves the flexibility of

our model. Finally, the lowest-rank representation by our model enforces to correc-

t corruption and reveal global geometric structure. Extensive experiments on several245

datasets illustrate that our model is superior to some related methods for clustering and

low-rank recovery tasks.
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