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Abstract

Neural networks have enabled great advances in recent times due mainly
to improved parallel computing capabilities in accordance to Moore’s Law,
which allowed reducing the time needed for the parameter learning of complex,
multi-layered neural architectures. However, with silicon technology reaching
its physical limits, new types of computing paradigms are needed to increase
the power efficiency of learning algorithms, especially for dealing with deep
spatio-temporal knowledge on embedded applications. With the goal of
mimicking the brain’s power efficiency, new hardware architectures such
as the SpiNNaker board have been built. Furthermore, recent works have
shown that networks using spiking neurons as learning units can match
classical neural networks in supervised tasks. In this paper, we show that
the implementation of state-of-the-art models on both the MNIST and the
event-based NMNIST digit recognition datasets is possible on neuromorphic
hardware. We use two approaches, by directly converting a classical neural
network to its spiking version and by training a spiking network from scratch.
For both cases, software simulations and implementations into a SpiNNaker
103 machine were performed. Numerical results approaching the state of the
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art on digit recognition are presented, and a new method to decrease the spike
rate needed for the task is proposed, which allows a significant reduction of
the spikes (up to 34 times for a fully connected architecture) while preserving
the accuracy of the system. With this method, we provide new insights on
the capabilities offered by networks of spiking neurons to efficiently encode
spatio-temporal information.

Keywords:
Neuromorphic Hardware, Artificial Neural Networks, Spiking Neural
Networks, MNIST, SpiNNaker, Event Processing

1. Introduction

In the last few years, progress in the field of Artificial Neural Networks
(ANNs) has led it to take a central role in solving Artificial Intelligence
problems, outperforming other machine learning approaches such as kernel
machines in highly complex tasks of computer vision, speech recognition,
natural language processing, among others [1]. Even though ANNs have been
studied for decades, their widespread use and development was restricted
by their high computational cost. Their late success came on a par with
the sustained exponential growth in computing capacity as predicted by
Moore [2]. This allowed the cornerstone learning algorithm of ANNs, back-
propagation [3], to solve the weight assignment problem across multiple
computational stages, or layers, giving rise to Deep Learning. The success of
Deep ANNs lies in their ability to discover increasingly optimal representations
of data, encoded in hierarchical structures, with no need for humans to specify
all the knowledge needed by the system [4].

Many commercial, medical and scientific applications of deep ANNs can
be found nowadays. One clear example is the face, fingerprint and voice
recognition performed by smart-phones through the inference of deep ANN
models, generally trained on external servers. However, with the upcoming
end of Moore’s Law, and to push the capabilities of deep learning forward,
more power-efficient ways to train and deploy deep ANNs need to be achieved.
Currently, training relies on massively parallel computing. The number of
connections, power consumption and the required memory and computation
time have limited the use of resource-intensive deep learning algorithms
directly in embedded systems [5]. With this in mind, new ways to learn
with more efficiency are being discussed and new paradigms of computation
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such as quantum and neuromorphic computing have emerged.
Neuromorphic computing is a novel technology that seeks to emulate the

wiring and processes of the human brain in hardware. It has been boosted
by two major projects: the Human Brain Project (Europe) [6], which uses
the SpiNNaker [7] and the BrainScaleS [24] neuromorphic chips, and the
BRAIN initiative (USA) [8]. Likewise, major hardware companies conduct
active research on neuromorphic chips, with IBM (TrueNorth) [9] and Intel
(Loihi) [10] standing out. One trend is to emulate cortical cell structures as
accurately as possible and expect for emergent properties of intelligence to
arise. Other more straightforward approach is to seek a convergence between
neuromorphic and deep learning technologies. Both views agree on the use of
Spiking Neurons, models for neural simulations that capture a fundamental
property of biological neurons missing in ANNs: the use of spikes, or binary
events, which enable an efficient way of modeling spatio-temporal data [11].

Spiking Neural Networks (SNNs) are being studied with the hope to
get energy-efficient representations of the world, inspired in the brain’s high
memory capacity, noise robustness, and task complexity on low power con-
sumption. Methods for training Deep Spiking Neural Networks (DSNNs)
have appeared as a natural bridge between neuromorphic computing and
deep learning, and several algorithms have been proposed for implementing
spiking versions of Fully Connected and Convolutional Neural Networks (CNNs)
[12] [13], Restricted Boltzmann Machines [14], Deep Belief Networks [15]
[16] and Recurrent Neural Networks [17]. Focusing on the most widely
used learning algorithm of Deep Learning, backpropagation, it has been
successfully applied to train spiking CNNs, with approximations such as
SpikeProp [18], ReSuMe [19], SLAYER [20] and Spatio-Temporal Backprop-
agation (STBP) [21]. Furthermore, methods for direct conversion from pre-
trained non-spiking CNNs to SNNs have been proposed [22] [13], with results
matching the state of the art in supervised classification on benchmark
datasets.

Most authors of the aforementioned frameworks for training or converting
DSNNs hinted on the convenience and feasibility to deploy their networks in
neuromorphic hardware. Stromatias [16], Cao [12], Rueckauer [13] and Wu
[21] let the deployment of their proposed frameworks as future work. Shrestha
[20] pointed out the difficulty of performing the training phase of SNNs on
current neuromorphic chips, leaving only room for just performing inference
of their method. Cao advocates for demonstrating the power efficiency of
neuromorphic implementations of DSNNs. The implicit consensus is that
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the current state of development of neuromorphic chips would only allow the
implementation of DSNN systems with two separate stages: one for offline
training/conversion and other for online neuromorphic inference.

Among the works proposing implementations of DSNNs on neuromorphic
chips, Esser [23] implemented a sparsely connected neural network on the
TrueNorth chip achieving a maximum 99.42% classification accuracy on the
MNIST dataset, being the best reported score in this and any neuromorphic
platform. This work also reported a tradeoff between energy efficiency and
classification accuracy. Schmitt [24] Implemented a DSNN on the BrainScales
system, reaching a maximum accuracy of 95% on the MNIST. Regarding the
SpiNNaker platform, in an early attempt, Jin [25] deployed a non-spiking
Multilayer Perceptron Network, without testing on benchmark datasets. Serra-
no-Gotarredona [26] implemented a CNN for symbol recognition, with events
as inputs, achieving 80% accuracy. Stromatias [16] deployed a spiking Deep
Belief Network, reaching 95% on the MNIST dataset, and Liu [27] deployed
an energy efficient non-spiking Deep Neural Network with online training,
achieving 96% on the MNIST.

In this work, we show a SpiNNaker implementation of the popular LeNet
architecture, including approximated pooling layers and Relu activations,
by the method of direct conversion as suggested by [13]. This network
reaches 98.20% on the MNIST dataset, beating the best reported accuracy
on the SpiNNaker platform. Additionally, we show the first neuromorphic
implementation of an event-based digit classifier, by deploying a network
trained with the STBP algorithm for the N-MNIST dataset, reaching 97.92%
accuracy. Both networks were simulated using PyNN, a neural simulation
platform, and a comparison between ANN implementation, SNN simulation
and final hardware deploying is provided. Finally, we propose a modification
of the cost function of the STBP algorithm in order to reduce the average
spike rate necessary for classification, achieving a 19 times reduction on the
LeNet architecture and a 34 times reduction for a densely connected SNN
with drops in the classification accuracy of less than 2% and 1%, respectively.
The reduction on the number of spikes needed to perform the classification
task is important to achieve more energy-efficient inference, as is shown by
a further experiment on the SpiNNaker were the inference time per input
sample is reduced by up to 6%.

Furthermore, this work presents the first implementation on neuromorphic
hardware of a SNN trained with the widely used PyTorch [31] framework,
with a performance comparison between software and hardware implementa-
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tions, broadening the scope of the deep SNN architectures that can be tested
on the SpiNNaker platform.

2. Matherials and Methods

2.1. SNN model and simulation

The spiking neuron model used in this work is an instance of the commonly
used Leaky Integrate-and-Fire (LIF), suitable for very efficient implementa-
tions. The dynamics of the membrane potential u(t) of a single neuron is
given by:

du(t)

dt
=
urest − u(t)

τm
+
I(t)

cm
(1)

where urest is the resting potential, τm is the membrane’s time constant, cm
is the membrane capacitance and I(t) is the neuron’s input current.

By injecting a small input current pulse of duration ∆t, starting at t=0,
with initial membrane potential at rest state equal to zero, u(0) = urest = 0,
the neuron’s membrane is ’charged’ during the stimulus and ’discharged’
when it ends. For discrete simulation purposes, this ∆t is taken as the
sampling period of the discrete time. The response of the neuron to a small
pulse or spike in the time k corresponds to the discharge of the neuron,
yielding the discrete update equation of the membrane potential:

u[k + 1] = u[k]e−
∆t
τm (2)

In the case of multiple pre-synaptic connections to the neuron, its input
current is computed as the cumulative effect of pre-synaptic spikes:

I[k] =
M∑
j=1

wjθj[k] + Ibias (3)

where M is the number of pre-synaptic neurons (with membrane potentials
uj), wj is the synaptic strength from the j-th pre-synaptic neuron (positive if
the synapse is excitatory and negative if inhibitory), Ibias is an offset current
and θj[k] denotes the occurrence of a spike on the j-th pre-synaptic neuron in
the current timestep k. Each neuron fires whenever the membrane potential
surpasses a threshold uth. The spike is computed by all post-synaptic neurons
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in the next time-step, and its membrane potential is reset to ureset. The spike
function is thus given by:

θj[k] =

{
1 uj[k − 1] ≥ uth

0 otherwise
(4)

One important metric of a spiking neuron’s state used in this work is
its firing rate. By definition, the firing rate r[k] of a given neuron whose
simulation started at time k = 0 is:

r[k] =

∑
t θ[k]

k
(5)

For running experiments with the spiking neural model used in this
work, we used PyNN [28], a high level spiking neuron interface supporting
experiments across multiple simulators (e.g: BRIAN, NEST, NEURON)
making their scripts highly portable. Most importantly, PyNN can be used
as an interface between high level modeling and hardware implementation
into the SpiNNaker platform. More details on the PC-based and SpiNNaker-
based PyNN implementations are given in subsection 2.5.

Figure 1: Scheme of the different stages of the neuromorphic digit classification systems
proposed in this work. The upper part depicts the conversion system and the lower part
the STBP-trained system.
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2.2. ANN to SNN conversion

Given a fully connected ANN with L layers, each with M l neurons or units
let W l, l ∈ {1, ..., L} denote the weight matrix connecting units between layer
l− 1 and layer l. The ReLU activation ai

l for each i unit of layer l with bias
bi

l is given by:

ai
l = max(

{
0, zli

}
) (6)

zi
l =

M l−1∑
j=1

W l
ija

l−1
j + bli (7)

The main objective of the ANN to SNN conversion is to take a pre-trained
ANN and create an analogous SNN with the same connectivity (i.e one-to-
one correspondence among ANN and SNN units) where the firing rate rli of
every spiking neuron is proportional to the value of the activation ali of the
corresponding artificial neuron. This is performed by exploiting the fact that
ReLU activations in ANNs, such as spiking rates in SNNs, are always positive.
The conversion is performed by computing a scaled version of W l and taking
it as the synaptic weight matrix of the corresponding layers of the SNN. The
scaling is needed to ensure that for every layer of the ANN, two conditions
are satisfied: 1) if zi

l < 0 , the effect of presynaptic spikes to the membrane
potential of neuron i doesn’t make it fire, and 2) max(

{
al1, , , , a

l
M l

}
) do not

surpass the maximum firing rate of the spiking neuron simulation, set to 1
kHz.

In [29], authors proposed a method to convert ANNs into SNNs for
image classification, and released a toolbox supporting the conversion from
ANN models defined in different platforms such as Keras, Lasagne and
Caffe, returning the synaptic weights to be used on SNN simulators such
as PyNN. It supports a number of commonly used features of ANNs, such
as Convolutional and Batch-Normalization layers, and ReLU, Softmax and
binary activations, among others. A summary of the main features of the
conversion toolbox is provided by the authors in the website 1 and presented
in Table 1.

This toolbox has been used here to convert a modified LeNet CNN for
digit recognition into a its corresponding SNN to evaluate its performance

1http://snntoolbox.readthedocs.io/en/latest/guide/intro.html
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Figure 2: Responses to pre-synaptic spikes for both kind of neurons considered in this
work. Dashed horizontal lines represent the thresholds. Note that both neurons emit a
spike between 6 and 7 ms.

in PC simulation and hardware implementation by running the equivalent
PyNN codes into the SpiNNaker platform. Numerical results are presented
in section 3.

Supported features Keras [K]
Lasagne [L]
Caffe [C]
(input)

Brian2 [B] pyNN
[P] MegaSim [M]
INIsim [I] (output)

Fully connected All All
Convolutional All All
Max-Pooling All I
Average-Pooling All All
Batch-Normalization All All
Dropout All All
Flatten All All
Merge/Concatenate (Inception modules) K, L I
Linear activation All Replaced by ReLU
ReLU activation All All
Softmax activation All I
Binary activation {-1, 1} or {0, 1} L I
Binary weights {-1, 1} L All
Non-zero biases All I

Table 1: Summary of the main features of the toolbox.

The MNIST dataset [30] for digit recognition was used to test the ANN
to SNN conversion approach, consisting of 60000 training and 10000 test
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images of handwritten digits. This dataset is a standard benchmark to test
the performance of machine learning algorithms, and it has also been used
for classification tasks on neuromorphic chips. See table 4 for a survey of the
neuromorphic chip implementations of SNNs for the MNIST dataset.

In this work, the ANN to SNN conversion process was made by taking
a pre-trained LeNet CNN for MNIST and converting it to a Convolutional
SNN. The architecture of the LeNet network consists of one input layer, three
convolutional layers and two fully connected layers (including the output
layer), with pooling operations in between. A scheme of the architecture is
shown in figure 3. The converted equivalent SNN network was simulated in
PyNN and implemented on the SpiNNaker chip following the process shown
in figure 1.

Figure 3: LeNet CNN Architecture used for direct conversion into Deep Convolutional
SNN.

2.3. SNN Training with Spatio Temporal Back Propagation

Conversion methods such as the one discussed above force the SNN model
to focus its attention to the spatial domain information. Spiking neuron
parameters of the simulator for the standard conversion method as proposed
by [29], neglect the temporal or ”memory” effect of the membrane by setting
a high value on its time constant τm (refer to table 2). In contrast, the method
proposed by [21], denominated Spatio Temporal Back Propagation (STBP)
allows a more complete treatment of the temporal domain by training the
SNN with a time-dependent generalization of the ANN’s backpropagation
algorithm. Here, as in the conversion method, the neuron’s activity is deter-
mined by its firing rate. The algorithm uses a loss function ` across S training
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Parameter Conversion STBP Training
ureset (mV) 0.0 0.0
urest (mV) 0.0 0.0
uth (mV) 1.0 0.3
τm (ms) 1000 0.8325
cm (nF) 0.09 0.001
∆t (ms) 1.0 1.0

Table 2: Simulation parameters for the converted and STBP trained SNN model.

samples and a time window T :

` =
1

S

S∑
s=1

∥∥∥∥∥ys − 1

T

T∑
t=1

θs,L

∥∥∥∥∥
2

2

(8)

where ys and θs,L are the label vector of the s-th training sample and its
corresponding spike activity vector in the output layer (last layer L) after
forward propagation, respectively.

We used an implementation of this algorithm provided by the authors.
The neural network model is described in PyTorch [31], an open source deep
learning platform. After training any deep SNN model, the platform allows
the extraction of the final weights and biases. These are used for reproducing
the results from PyTorch with PyNN and the subsequent implementation on
SpiNNaker, provided the connectivity, i.e. populations and projections in
PyNN are equivalent to the PyTorch tensor operations pertaining the whole
model. This way, the extracted weights are used as synaptic weights in
PyNN, and the extracted biases are used as offsets for the threshold uth,
with exact same values. A comparison of the neuron parameters for the
PyNN implementations of both methods, conversion and training, is given
in table 2. As seen in figure 2, the decay of the membrane potential in the
model used by the STBP method is more realistic than that used by the
conversion method.

The N-MNIST dataset [32] is an event-based version of the MNIST dataset,
where each sample was displayed in a monitor and recorded with a Dynamic
Vision Sensor (DVS) mounted in a motorized pan-tilt unit performing a
saccade movement. The sensor records a spike whenever a change of illumi-
nation is detected. The spatial dimension is the same as that of the MNIST
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dataset, 28x28 pixels. According to the work by [21], for every sample we
take both, positive and negative change of illumination, as two different
channels and feed them to a 400-400-10 fully connected SNN trained with
the STBP algorithm. Afterward, the trained weights are used for a simulation
of the SNN on PyNN and implementation on SpiNNaker. Results for both
experiments are presented in section 3.

2.4. SNN Training with Spike Regularization

One of the premises that has boosted research on SNNs is the hope to
make computations more energy-efficient when implemented on event-driven
neuromorphic hardware in comparison with their frame-based counterparts.
This would be possible due to the characteristics of neuromorphic devices,
which allow to keep and update the state of every neuron independently,
without the need for a general clock, i.e, computing spikes asynchronously. It
is known that the conditional multiply-accumulate operation in each synapse
is the driver of neural computations in neuromorphic hardware [33]. This
means that the spike rates and the number of active synapses can be used to
estimate the energy consumption of such devices. By taking this into account,
Cao [12] conducted an analysis of power consumption for its spiking CNN
module, assuming a direct relation between the spike count and the consumed
power. In this work, we adopt this approach and propose a modification of
the cost function of the STBP algorithm to decrease the number of spikes.
This modification acts as an spike activity regularization, analog to the
weight regularization that’s commonly used when training classical neural
networks. With the goal of not only to achieve better generalization in the
classification task, but a reduced spike activity, we introduce the new loss
function:

` =
1

S

S∑
s=1

(

∥∥∥∥∥ys − 1

T

T∑
t=1

θs,L

∥∥∥∥∥
2

2

+
λsr
NT

T∑
t=1

L−1∑
l=1

θs,l) (9)

This cost function computes for every sample the amount of spikes elicited
in a time window T of all the neurons, except those in the output layer. The
scaling factor N, equal to the total number of hidden units, is used to ensure
both terms in the equation are in the same scale. The spike regularization
factor λsr ε [0, 1] is added for control. λ can be interpreted as a compromise
between network’s accuracy and spike economy.
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We conduct experiments with six different values of spike regularization
on both the fully connected and the convolutional network and report the
results in section 3.2.

2.5. Spiking Neural Network Architecture (SpiNNaker)

SpiNNaker is a massively parallel multicore computing system designed
for modeling very large spiking neural networks in real time. Both the system
architecture and the design of the SpiNNaker chip were developed by the
Advanced Processor Technologies Research Group (APT) at the University
of Manchester. Each SpiNNaker chip consists of 18 fully programmable ARM
cores.

In this work, a SpiNNaker 103 machine (figure 4) was used. This board
comprises 48 SpiNNaker chips, totaling 864 ARM processor cores deployed
as 48 monitor processors, 768 application cores and 48 spare cores. Each
application core has two types of RAM: a 32kB ITCM (instruction tightly
coupled memory) for storing instructions and a 64kB DTCM (data tightly
coupled memory) for storing neuron states and parameters. Additionally,
each SpiNNaker chip contains a 128 MB SDRAM shared by the 18 cores
for storing the synaptic weights. The communication between cores is done
through a multicast packet-routing mechanism that mimics the high connecti-
vity found in biological brains [34]. A 100Mbps Ethernet connection is used
for controlling an I/O interface between the computer and the SpiNNaker
board. The neurons and synapses are modeled with sPyNNaker [35], a
software package for simulating PyNN-defined spiking neural networks on
the SpiNNaker platform. Two SpiNNaker implementations were performed
for each proposed approach, as shown in the diagram of figure 1.

3. Results

3.1. SpiNNaker implementation

We have implemented two Deep SNNs on the SpiNNaker Neuromorphic
platform for a handwritten digit classification task. The first is previously
trained on Keras as a classical CNN (LeNet) with a static dataset (MNIST),
then converted into Deep SNN with the snntoolbox. The second is trained as
a Deep SNN on PyTorch using the novel STBP algorithm. The input of the
second network is an event-based equivalent of the MNIST dataset, recorded
with a DVS camera. For measuring the performance of the implementation,
the whole test set (10000 samples) was propagated in both software and
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Figure 4: SpiNNaker 103 machine.

hardware, measuring the classification accuracy as the percentage of correctly
detected digits. In the case of the SpiNNaker implementation, 15 ms of
activity were recorded. An additional neural simulation on the PyNN (Nest)
software was performed for both SNNs, using 1000 samples. The real-
time implementation takes approximately 0.4 seconds per sample in the
neuromorphic hardware and 10 seconds per sample in the neural simulation
software.

An example of the activity during inference of the STBP trained network,
both in software (PyTorch, PyNN) and hardware (SpiNNaker) is shown in
figure 5. The figure shows the spike times of all neurons in the network for ten
presented samples. An image is considered to have been classified correctly
if the neuron associated with the input digit displays the highest activity of
all the output layer neurons.

Numerical results are shown in table 3. A comparison with other neuro-
morphic MNIST(Table 4) implementations on neuromorphic hardware shows
that ours achieve the second overall result, with 98.2% correct classification,
and the best on the SpiNNaker platform. Furthermore, to the best of our
knowledge, this work presents the first neuromorphic hardware implementa-
tion of the event-based NMNIST benchmark, with 97.92% correct classifica-
tion.
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MNIST/Conversion NMNIST/STBP
Keras/Pytorch 98.96 98.50
PyNN (Nest) 97.98 97.04
SpiNNaker 98.2 97.92

Table 3: Comparison of classification accuracy for the proposed methods and datasets.

Model Hardware Network Arch. S T Acc
Merolla (2011) [33] Custom core Spiking RBM Yes No 94.00
Neil (2014) [36] FPGA Spiking DBN Yes No 92.00
Garbin (2014) [37] OxRAM device DSNN (ConvNet) Yes No 94.00
Stromatias (2015) [16] SpiNNaker Spiking DBN Yes No 95.00
Esser (2015) [23] TrueNorth DSNN (Sparse) Yes No 99.42
Schmitt (2017) [24] BrainScales DSNN (Dense) Yes Yes 95.00
Liu (2018) [27] SpiNNaker Deep Rewiring No Yes 96.00
Ours SpiNNaker DSNN (ConvNet) Yes No 98.20

Table 4: Summary of spiking deep learning models implemented on neuromorphic
hardware and their accuracy on MNIST. The column T is true if the hardware performs
online training. The column S is true if the model uses spikes internally.

3.2. Spike Regularization

We report the effect of the proposed spike regularization of the STBP’s
cost function on the fully connected 400-400-10 (labeled Dense400) and the
LeNet convolutional network for six different values of spike regularization
(λsr in equation 9) ranging from λsr = 0 (no regularization) to λsr = 1.
After training both network architectures with PyTorch, the entire test set
was propagated and measurements of the average spike rate per neuron
were recorded. Additionally, the fully connected network was loaded into
the SpiNNaker platform and measurements of the simulation time for 100
samples per experiment were performed. The simulation parameters of STBP
training from table 2 remained unchanged. Numerical results are given in
table 5. Graphical results are shown in figures 6 and 7. It is observed that
as spike regularization increases, the average spike rate per neuron decreases
following a logarithmic rule that gets close to rates observed in biological
neurons as λsr aproaches 1. The amount of elicited spikes is reduced almost
34 times for the fully connected and 19 times for the convolutional network,
with a small drop in the classification accuracy: less than 1% and less than
2% for the Dense400 and LeNet respectively.
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(a) First hidden layer (b) Output layer

Figure 5: Raster plots for the Deep SNN simulation of ten NMNIST samples using
PyTorch (top), PyNN (center) and SpiNNaker (bottom). Each sample was propagated
16 ms, as indicated by the vertical lines. The corresponding labels are, from left to right:
7,2,1,0,4,1,4,9,5,9.

4. Discussion

This paper constitutes an attempt to consistently port deep Spiking
Neural Networks simulations into neuromorphic hardware. Figure 5 shows
that in general the desired spiking activity is preserved in our hardware
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λsr
spike rate [Hz] accuracy

LeNet Dense400 LeNet Dense400
0.00 64.88 266.57 98.4 97.9
0.01 32.70 85.82 98.4 97.8
0.05 15.63 41.89 98.6 98.0
0.10 10.86 29.28 98.7 97.4
0.50 4.92 12.80 98.2 97.4
1.00 3.35 7.86 96.7 97.2

Table 5: Efect of spike regularization in the spike rate and accuracy for both densely
connected and convolutional spiking neural networks.

Figure 6: Effect of spike regularization on both densely connected and convolutional
neural network for the NMNIST digit recognition. Left: Effect on spike rate, with spike
regularization on log scale for better visualization. The green area indicates the spike
rates commonly reported in biological neurons. Right: Effect on classification error and
inference time (dotted line).

implementation even if multiple layers are used. Also, the possibility to
use SNN versions of commonly used techniques of Deep Learning such as
Convolutional layers, Average Pooling, Batch Normalization and Dropout,
added to the aforementioned spiking reliability of the hardware implementa-
tion in SpiNNaker opens the door to deploying complex deep spiking archi-
tectures for image and video classification, natural language processing, robot
navigation, etc. Currently, the main limitation seems to be the number of
simulated neurons, which in the SpiNNaker 103 board is about 200 thousand,
considering 255 neurons per core, the maximum recommended value. For
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Figure 7: Raster plots for the Deep Fully Connected simulation of three NMNIST
examples: 7,2,1; for three increasing values of λsr: 0, 0.1 and 1. Each sample was
propagated for 16 ms, as indicated by the vertical lines. Top plot is for the first hidden
layer. Bottom plot is for the output layer.

reference, the bigger implementation reported here, the converted CNN, used
only 8 thousand neurons.

On the other hand, the use of neuromorphic hardware significantly reduces
the time of simulations of biologically realistic DSNNs. Here we show that
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Figure 8: Weight distribution shift of four layers of the spiking CNN for two extreme
values of λsr. The number of bins for the histogram visualization is fixed to 200.

training DSNN prototypes in e.g PyTorch and deploying on SpiNNaker using
the user-friendly PyNN module is possible in few steps. This can greatly
contribute to research on new training algorithms and architectures for efficient
machine learning systems deployed on brain-like hardware.

It’s important to point out that the ultimate goal of neuromorphic systems
for machine learning is to achieve better energy efficiency compared to conven-
tional hardware, rather than perfect accuracy. Following the approach of
[12], we sought to reduce the number of spikes while preserving a high
classification accuracy. The proposed modification of the cost function of the
STBP algorithm achieves this goal, yielding other interesting results worth
further exploration:

• Spike rates similar to biological neurons are achievable with Deep SNNs.
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Figure 9: Animated plots of the firing patterns in both architectures are provided.
Spiking LeNet: https://photos.app.goo.gl/h2DytAutZ2pFK5rd8. Dense400: https:

//photos.app.goo.gl/uMq7dJbA7pmSwYyt9. Fully connected layers are arranged in 2D
for better visualization.

Although exact average spike rates of human brain neurons is still a
matter of discussion, works like [38] and [39] allow an estimate between
0.1 and 10 Hz for hippocampal and cortical neurons. Our work shows
that with enough spike regularization, average spike rates in a DSNN
can go below 10 Hz for a digit classification task, being the lower
reported average 3.35 Hz.

• Forcing the spike regularization factor to yield lower spike rates than
0.1 Hz leads to a significant drop in accuracy, especially for the spiking
CNN. Minimum spike rate achievable for this task is left to future work.

• The best accuracy is achieved with a small spike regularization. By
observing the right-hand plot in figure 6, for both tested architectures
the best accuracy was, surprisingly, with a small regularization factor
λsr, between 0.05 and 0.1. A monotonic increase in the error was
expected. One possible explanation for this behavior is that both
networks learn the best balance between generalization of the data
and expressive power (given by the spike rate) in this range.
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• The spikes in Spiking CNNs are more sparse than in their densely
connected counterparts, hence the observed lower spike regularization
effect on the Spiking LeNet was expected. Nonetheless, the observed
spike reduction on Spiking CNNs is not as uniform as in Fully Connected
networks, but expressed in the fact that fewer feature maps are allowed
to learn. Refer to the provided animations (links in caption of figure
9) to observe this effect.

• In figure 8, the synaptic weight distribution for different layers of
Spiking LeNet is displayed, with and without regularization. As expected,
regularization decreases the weights of excitatory (positive) synapses
and increases those of inhibitory (negative) synapses. Interestingly,
the effect is more visible in the first layer, responsible for processing
lower level, faster spatio-temporal features.

One limiting factor of using the SpiNNaker platform is that it is difficult
to assess its energy consumption. The reported time (seen in figure 6) can
constitute an indication that processing less spikes do indeed require less
energy in this neuromorphic platform, but this time difference is mostly
due to the memory footprint left while recording the spikes and membrane
potentials.

While an energy efficiency analysis was not in the scope of this paper, we
believe that SNNs are naturally more suited for energy-efficient event-based
processing than traditional ANNs. In this regard, we consider that the use in
this work of a DVS recorded dataset such as NMNIST and the introduction
of spike regularization mechanisms in the training phase are steps in the
right direction. Spatial event processing in neuromorphic hardware such
as the performed in this and other recent works form part of a promising
alternative to represent and harness spatio-temporal data: without the need
for a global time axis. Traditional temporal processing relies in recording
and processing snapshots of the data at a given rate. Instead, we advocate
for the use interconnected units that locally react to changes in the stimuli
as they occur and are able to keep track of previous states. This way
knowledge is represented in the connectivity, internal states and firing activity
of such deeply connected units, augmenting the memory capacity and energy
efficiency of the systems as background information is not represented. In
particular, this work presents a way to extract knowledge from spatio-temporal
data with SNNs by penalizing the excessive firing activity observed in previous
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systems. In future work we aim to deploy more complex architectures and
investigate in how to efficiently perform online neuromorphic hardware learning.
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