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Abstract

In this paper, we present an effective deep prediction framework based on ro-

bust recurrent neural networks (RNNs) to predict the likely therapeutic classes

of medications a patient is taking, given a sequence of diagnostic billing codes

in their record. Accurately capturing the list of medications currently taken by

a given patient is extremely challenging due to undefined errors and omissions.

We present a general robust framework that explicitly models the possible con-

tamination through overtime decay mechanism on the input billing codes and

noise injection into the recurrent hidden states, respectively. By doing this,

billing codes are reformulated into its temporal patterns with decay rates on

each medical variable, and the hidden states of RNNs are regularised by ran-

dom noises which serve as dropout to improved RNNs robustness towards data

variability in terms of missing values and multiple errors. The proposed method

is extensively evaluated on real health care data to demonstrate its effectiveness

in suggesting medication orders from contaminated values.
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1. Introduction

There has been growing interest in exploiting the large amounts of data

existed in electronic medical records for both clinical events and secondary re-

search. While leveraging large historical data in electronic health records (EHR)

holds great promise, its potential is weakened by multiple errors and omissions

in those records. Some studies show that over 50% of electronic medication

lists contain omissions [1], and even 25% of all medications taken by patents are

not recorded. To ensure the corrections of medication lists, great efforts have

been dedicated to improve the communications between patients and providers

[2], however, manually maintaining these lists would be extremely human-labor

intensive. Thus, it demands a generic yet robust predictive model that is able

to suggest medication consultation to the patients next visit in the context of

medication documentation contaminations.

Recently, Recurrent Neural Networks (RNNs), such as Long Short-Term

Memory (LSTM) [3], and Gated Recurrent Unit (GRU) [4] have been explored

for modeling diseases and patient diagnosis in health care modality [5, 6, 7, 8].

For instance, a temporal model based on RNNs, namely Doctor AI, is developed

to predict future physician diagnosis and medication orders. This intelligent

system demonstrates that historical EHR data can be leveraged to forecast the

patient status at the next visit and present medication to a physician would

like to refer at the moment. However, little efforts are put into systematically

modelling the EHR with missing values [9] since it is difficult to capture the

missing patterns in medical billing codes. Simple solutions such as omitting

the missing data and to perform analysis only on the observed data, or filling

in the missing values through smoothing/interpolation [10], spectral analysis

[11, 12, 13, 14, 15], and multiple imputations [16] offer plausible ways to the

missing values in data series. However, these solutions often result in suboptimal

analysis and poor predictions because the imputations are disparate from the

prediction models and missing patterns are not properly described [17].

A recent finding demonstrates that missing values in time series data are
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usually informative missing, that is, the missing values and patterns are related

to the target labels in supervised learning tasks. For example, Che et al.[9] show

that the missing rates in time series health care data are usually highly corre-

lated with the labels of interests such as mortality and ICD-9 diagnoses. Hence,

it demands an appropriate strategy to describe the decaying on diagnostic mea-

surements over time. Moreover, the diagnostic billing codes are characterized

of more than missing values in patient records, whereas in most cases they are

combined with multiple errors and omissions. Thus, we use the terminology

noise to generally refer to all potential incorrectness of medication lists.

1.1. Our Approach

Inspired by the noise-based regularizer of RNNs, a.k.a dropout [18, 19], we

impose a multiplicative noise into the hidden states to ensure the robustness of

recurrence and also preserve the underlying RNN in the context of noise injec-

tion. Hence, in this paper we develop a robust RNN model, an effective new way

to deal with incomplete billing codes in medical domain whilst being capable

of predicting the future medication orders given the missing codes in sequence.

The key idea is to not only model the input codes by explicitly encoding the

missing patterns over time, but also inject random noise into the transition

function of recurrence. Intuitively, the explicit noise injection into the hidden

states of RNNs can serve as regulariser to drop the observation difference that

will be potentially added into the hidden states. Thus, the RNNs are trained to

fit its parameters to maximize the corresponding marginal likelihood of obser-

vations in the context of high variability. The proposed model is experimentally

evaluated on real EHR datasets to demonstrate its effectiveness in identifying

missing actual information in relation to therapeutic classes.

1.2. Contributions

The contributions of this paper can be summarized as follows.

• We present a robust RNN based medication prediction framework to effec-

tively cope with sequential billing codes that are contaminated by missing
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values and multiple errors.

• The proposed approach is designed to predict the complete set of medi-

cations a patient is actively taking at a given moment from a sequence of

diagnostic billing coeds in the context of non-trivial billing record noise.

This is, to our best knowledge, the first effort to explicitly model both the

medication care data and delving the RNNs into the medical domain.

• Insightful analysis to our approach are provided in this paper. Extensive

experiments on health care datasets are conducted to demonstrate the su-

periority of our method over state-of-the-art by achieving the performance

gain on AUC by 13% and 7% on the Physio-net challenge dataset [20] and

MIMIC-III [21], respectively.

The rest of this paper is organized as follows. Section 2 reviews some re-

lated works. We detail the proposed predictive model in Section 4 with some

background described in Section 3 in advance. Section 5 reports extensive ex-

periments over the real-valued medical datasets, and the paper is concluded in

Section 6.

2. Related Work

2.1. Modeling medical event sequences

Common approaches to modeling medical event sequences include continuous-

time Markov chain based models [22] and their extension using Baysian networks

[23] as well as intensity function methodologies such as Hawkes processes [24]. It

is known that continuous-time Markov chain methods are computationally ex-

pensive because modeling multi-labelled point processes would expand rapidly

their state-space. On the other hand, Hawkes processes with intensity functions

depend linearly with respect to the past observations, while they are limited in

capturing temporal dynamics. Moreover, there is no study on these models to

deal with missing values or incorrect data. In this paper, we address these chal-

lenges by designing a robust recurrent neural network which has shown to be
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effective in learning complex yet potentially missing data in sequential patterns

regarding health-care systems.

2.2. Deep learning models for EHR

It has witnessed some attempts to apply neural network models a.k.a deep

learning methods to study EHR since deep learning models are capable of learn-

ing complex data patterns. The earlier work is the use of an LSTM model that

produced reasonable accuracy (micro-AUC 0.86) in a 128-dim multi-label pre-

diction of diagnoses from regularly sampled, continuously real-valued physiologic

variables in an Intensive Care Unit (ICU) setting [5]. One successful framework

is Doctor AI [6] which is a predictive temporal model using RNNs to predict the

diagnosis and medication codes for a subsequent visit of patients. They used a

GRU model in a multi-label context to predict the medications, billing codes,

and time of the next patient visit from a sequence of that same information for

previous visits. It can achieve an improvement over a single-hidden-layer MLP

(reach a recall@30 of 70.5 by a 20 margin). This is a successful showcase of

using the strength of recurrence,i.e., to predict the next element in a sequence.

However, aforementioned deep learning paradigms are not able to effectively

cope with EHR with errors and omissions.

Prior efforts have been dedicated into modeling missing data in sequences

with RNNs in clinical time series [25, 9, 17]. A very recent work yet contempo-

rary with our work, namely GRU-Decay [9], used a GRU model with imputation

on missing data by a decay term to predict the mortality/ICD-9 diagnosis cat-

egories from medication orders and billing codes. Our method contrasts with

GRU-Decay [9] in the way of managing the RNN to tackle the missing values.

Instead of using the same decay mechanism on both input sequence and the

hidden state as the GRU-Decay performed, we propose to dealing with the raw

inputs and hidden states in different strategies wherein the input billing codes

are multiplied by decay rate on each variable (the same as GRU-Decay [9]), and

the hidden states are injected into noises in the multiplicative form.

5



3. Background

3.1. Medical billing codes

In our experiments, codes are from the International Classification of Dis-

ease, Ninth Revision (ICD-9). The ICD-9 hierarchy consists of 21 chapters

roughly corresponding to a single organ system or pathologic class. Leaf-level

codes in the tree represent single diseases or disease subtypes. For each time

a patient has billable contact with the health-care system through which the

time stamped billing codes are associated with the patient record, indicating

the medical conditions that are related to the reasoning for the visit. However,

these billing codes are more often unreliable or incomplete, and thus making

the electronic medical records unable to track the set of medications that the

patient is actively taking. The code range and descriptions are shown in Table

1.

3.2. Recurrent neural networks

An recurrent neural network (RNN) considers a sequence of observations,

X1:T = (x1, . . . ,xT ), and to handle the sequential time-series the RNN intro-

duces the hidden state ht at time step t, as a parametric function fW (ht−1,xt−1)

of the previous state ht−1 and the previous observation xt−1. The parameter

W is shared across all steps which would greatly reduce the total number of

parameters we need to learn. The function fW is the transition function of the

RNN, which defines a recurrence relation for the hidden states and renders ht

a function of all the past observations x1:t−1.

The particular form of fW determines the variants of RNN including Long-

Short Term Memory (LSTM) [3] and Gated Recurrent Units (GRU) [4]. In this

paper, we will study GRU which has shown very similar performance to LSTM

but employs a simper architecture. First, we would reiterate the mathematical
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Code range Description

001-139 Infectious and parasitic diseases

140-239 Neoplasms

240-279 Endocrine, nutritional and metabolic diseases, immunity disorders

280-289 Blood diseases and blood-forming organs

290-319 Mental disorders

320-359 Nervous system diseases

360-389 Sense system diseases

390-459 Circulatory system diseases

460-519 Respiratory system diseases

520-579 Digestive system diseases

580-629 Genitourinary system diseases

630-679 Complications of pregnancy, childbirth, and the puerperium

680-709 Skin and subcutaneous tissue

710-739 Musculoskeletal system and connective tissue

740-759 Congenital anomalies

760-779 Conditions originating in the perinatal period

780-799 Symptoms, signs and ill-defined conditions

800-999 Injury and poisoning

Table 1: The top level classes for ICD-9 chapters.

7



formulation of GRU as follows

zt = σ(Wzxt + Uzht−1), rt = σ(Wrxt + Urht−1),

ĥt = tanh(Whxt + Uh(rt � ht−1)),

ht = (1− zt)� ht−1 + zt � ĥt,

(1)

where � is an element-wise multiplication. zt is an update gate that determines

the degree to which the unit updates its activation. rt is a reset gate, and σ

is the sigmoid function. The candidate activation ĥt is computed similarly to

that of traditional recurrent unit. When rt is close to zero, the reset gate make

the unit act as reading the first symbol of an input sequence and forgets the

previously computed state.

4. Robust Recurrent Neural Networks for Medication Predictions

In this section, we develop a new framework for clinical medication pre-

dictions in the context of missing information and multiple errors. We first

formulate the prediction problem setting, and then detail the architecture with

explicit noise injection into the recurrent hidden states. Finally, we present the

training procedure on the proposed model.

4.1. Problem setting

For each patient, the temporal observations are represented by multivariate

time series withD variables of length T as X1:T ∈ RT×D, where xt ∈ RD denotes

the t-th observations, namely measurements of all variables and xdt denotes

the d-th variable of xt. In the medication records, the variables correspond

to multiple medication codes, such as the codes 493 (asthma) and 428 (heat

failure) from ICD-9. For each time stamp, we may extract high-level codes

for prediction purpose and denote it by yt. Generic Product Identifier (GPI)

medication codes are extracted from the medication orders. This is because

the input ICD-9 codes are represented sequentially while the medications are

represented as a list that changes over time. Also, many of the GPI medication
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codes are very granular, for example, the pulmonary tuberculosis (ICD-9 code

011) can be divided into 70 subcategories (011.01, 011.01,...,011.95, 011.96).

In this paper, we are interested in learning an effective vector representation

for each patient from his billing codes over time with multiple missing values

at each time stamp t = 1, . . . , T , and predicting diagnosis and medication cat-

egories in the next visit yT+1. We investigate the use of RNN to learn such

billing code representations, treating the hidden layers as the representation for

the patient status and use them for the prediction tasks. To account for the

situation of missing/incorrect values in EHR, we propose robust RNN archi-

tecture, which effectively models the missing patterns from time series onwards

through the temporal decay mechanism [26, 27, 9] and injects noises into the

hidden states of RNN at each time step.

4.2. Robust RNNs with noise injection

To effectively learn representations from missing or incorrect values in billing

codes, we propose to incorporate different strategies in regards to the input

billing codes and the hidden states, respectively. For the missing values in

billing codes of EHR, we employ the decay mechanism which has been designed

for modeling the influence of missing values in health care domain [27]. This

is based on the property that the values of missing variables tend to be close

to some default value if its last measurement is observed a long time ago. This

property should be considered as critical for disease diagnosis and treatment.

Also, the influence of the input dimensions will fade away over time if some

dimension is found missing for a while. On the other hand, the hidden states

of RNNs should be injected with random noises which is more advantageous by

preventing the dimensions of hidden states from co-adapting and it can force

the individual units to capture useful features [28].

Specifically, we inject a decay rate into each variable of the billing code series.

In this way, the decay rate differs from variable to variable and indicative to

unknown possible missing patterns. To this end, the vector of a decay rate is
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formulated as

γt = exp{−max(0,Wγδt + bγ)}, (2)

where Wγ and bγ are trainable parameters jointly with the LSTM. exp{·} is the

exponential negative rectifier to keep each decay rate monotonically decreasing

ranged between 0 and 1. δdt is the time interval for each variable d since its last

observation, which can be defined as

δdt =

 st − st−1 + δdt−1, t > 1

0, t = 1
(3)

In Eq.(3), st denotes the time stamp when the t-th observation is obtained and

we assume that the first observation is made at time t = 0 (s1 = 0). Hence,

for a missing variable code, we adopt the decay vector γt to decay it overtime

but towards an empirical mean instead of using its last observation. And the

decaying measurement billing code vector can be formulated by applying the

decay scheme into:

xdt ← γdxt
xdt′ + (1− γdxt

)x̂d, (4)

where xdt′ is the last observation of the d-th variable (t′ < t) and x̂d is the

empirical mean of the d-th variable. We remark that when the input billing

code is decaying, the parameter Wγx should be constrained to be diagonal so

as to ensure the decay rates of variables are not affecting each other.

To augment the RNN’s capability of coping with multiple errors in sequential

EHR billing codes, we explicitly redefine the hidden states by injecting noises.

This strategy is able to effectively fit the parameters of RNN by maximizing the

likelihood of data observations because the next predicted output from RNN is

determined as p(xt|x1:t−1) = p(xt|ht) 1. Thus, we define the GRU with noise

as follows

ε1:T ∼ {0, (1− δ)}d;

ht = fW (xt−1,ht−1, εt) = (1− zt)� ht−1 � εt + zt � ĥt � εt.
(5)

1The likelihood p(xt|ht) can be in the form of the exponential family.
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In Eq.(5), the noise component ε1:T is an independent drawn from a scaled

Bernoulli (1-δ) random variable. In this paper, it is used to create the dropout

noise via the element-wise product (·) of each time hidden state ht1 . In other

words, dropout noise corresponds to setting h to 0 with probability δ, and

to h/(1 − δ) else. Intuitively, this multiplicative form of noise injection can

induce the robustness of RNN to how future data may be different from the

observations. Also, this can be regarded as a regularization on RNN to normalize

the hidden states, which is similar to noise-based regularizer for neural networks,

namely dropout [18, 19]. This explicit regularization is equivalent to fitting the

RNN loss to maximize the likelihood of the data observations, while being with

a penalty function of its parameters. This type of regularization that involves

noise variables can help the RNNs learn long-term dependencies in sequential

data even in the context of high variability because dropout-based regularization

can only drop differences that are added to network’s hidden state at each time-

step. And thus this dropout scheme allows up to use per-step sampling while

still being able to capture the long-term dependencies [29].

4.3. The architecture of the prediction model

As shown in Fig.1, the proposed robust neural network architecture receives

input at each time stamp t corresponding to patient visits in sequences. The

billing codes xt are in the form of multi-label categories. The input sequential

billing codes are modelled with the decay of missing values, and then fed into

the stacked multiple layers of GRU to project the inputs into lower dimensional

space, and also learn the status of the patients at each time stamp as real-valued

vectors. For predicting the diagnosis codes and the medication codes at each

time stamp t, a softmax layer is stacked on top of the GRU, using the hidden

state ht as the input, that is, yt+1 = softmax(WT
codeht+bcode). Thus, the ob-

jective of our model is to learn the weights W[z,r,h,code,γ],U[z,r,h],b[z,r,h,code,γ].

In particular, the values of all W and U are initialized to orthogonal matri-

ces using singular value decomposition of matrices from the normal distribution

[30]. All values of b are initialized to be zeros. Therefore, for each patient we
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Figure 1: The overview of our framework with robust RNN to solve the problem of

forecasting the medication codes assigned to a patient for his next visit. (a) A conven-

tional RNN model. (b) The proposed model. The input sequential data in regards to

a patient (X = {x1, . . . ,xt}) are embedded with decay mechanism (γx) to model the

potential missing pattern, and the stacked recurrent layers with multiplicative noise

regularization (εt) learn the status of the patient at each time stamp. Given the learnt

status (ht), the framework is to generate the codes observed in the next time stamp.

employ the cross entropy as the loss function for the code prediction, which is

defined as

L(W,U,b) =

n−1∑
t=1

(ÿt+1 log(yt+1) + (1− ÿt+1) log(1− yt+1)) , (6)

where ÿ is the ground truth medication category.

5. Experiments

In this section, we demonstrate the performance of our model on two real-

world health-care datasets, and compare it to several strong machine learning

and deep learning competitors in the classification tasks.

5.1. Data preparation and experimental setting

We conduct experiments on two health-care datasets: Physio-net challenge

dataset [20] and MIMIC-III [21].
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Data: Input billing codes in sequence x1:T , initial hidden state h0, noise

distribution ϕ(· : 1, σ).

Result: Set of learned parameters of GRU:

W[z,r,h,code,γ],U[z,r,h],b[z,r,h,code,γ].

Initialize the set of parameters ;

while stopping criterion not met do

for t from 1 to T do

Sample noise from εt ∼ ϕ(εt : 1, σ) ;

Compute the decayed inputs xdt ← γdxt
xdt′ + (1− γdxt

)x̂d ;

Compute state ht = (1− zt)� ht−1 � εt + zt � ĥt � εt ;

end

Compute loss as in Eq. (6) ;

Update the network parameters ;

end

Algorithm 1: The proposed robust RNN framework for medication predic-

tion from billing codes.

• Physio-net challenge 2012 dataset (Physio-Net): This PhysioNet Chal-

lenge dataset [20] is a publicly available collection of multivariate clinical

time series from 8,000 intensive care unit (ICU) records. Each record is

a multivariate time series of roughly 48 hours and contains 33 variables

such as albumin, heart-rate, glucose etc. We use the training subset A in

our experiments since ground truth outcomes are only publicly available

on this subset. We conduct the prediction of 4 tasks on this dataset: in-

hospital mortality, length-of-stay less than 3 days, had a cardia condition

or not, and whether the patient was recovering from surgery. This can be

treated as a multi-task classification problem.

• MIMIC-III: This is a publicly available dataset collect at Beth Israel Dea-

coness Medical Center from 2001 to 2012 [21]. It contains over 58,000

hospital admission records, and we extract 99 time series features from

19,714 admission records for 4 modalities which are very useful for mon-
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itoring ICU patients [9]. These modalities include input-events (fluids to

patients, e.g., insulin), output-events (fluids out of the patient, e.g., urine),

lab-events (lab test results, e.g., pH values), and prescription-events (ac-

tive drugs prescribed by doctors, e.g., aspirin). We use the fist 48 hours

data after admission from each time series, and conduct the predictive

ICD-9 code task: predict ICD-9 diagnostic categories (e.g., respiratory

system diagnosis) for each admission, which can be treated as a multi-

label problem.

For the training on all the models, we use 85% of the patients as the train-

ing set, and 15% as the testing set. All the RNN models are trained with 50

epoches i.e., 50 iterations over the entire training data, and then evaluate the

performance against the testing set. To avoid over-fitting, we apply the dropout

between the GRU layer and the final prediction layer, and also between the mul-

tiple stacked GRU layers. The dropout rate is 0.3 and the norm-2 regularization

is applied into the weight matrix of Wcode. The dimensionality of the hidden

states h of the GRU is set to be 2048 to ensure the expressive power. We

train the models using truncated back-propagation through time with average

stochastic gradient descent [31]. To avoid the problem of exploding gradients,

we clip the gradients to a maximum norm of 0.25.

5.2. Evaluation metrics

For the evaluation on the task in a multi-label context, the performance of

all methods is evaluated against two metrics: the micro-averaged area under

the ROC curve (AUC) and the top-k recall. The measure of AUC treats each

instance with equal weight, regardless of the nature of the positive labels for

that instance [32], which would not give a score advantage to instances with very

prevalent or very rare labels. The micro-averaged AUC considers each of the

multiple label predictions as either true or false, and then computes the binary

AUC if they all belong to the same 2-class problem, Thus, the micro-average
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AUC Aµ can be defined as

Aµ =
|(x,x′, l, l′) : f(x, l) > f(x′, l′), (x, l) ∈ S, (x′, l′) ∈ S̄|

|S||S ′| (7)

where S = {x, l} : l ∈ Y is the set of [instance, label] pairs with a positive label,

and Y = {yd : yd = 1, . . . , D} is the set of positive labels for the input x.

The top-k recall mimics the behavior of doctors examining differential diag-

nosis which suggest the doctor is listing most probable diagnoses and treat the

patients accordingly to identity the patients status. The top-k recall is defined

as

top− k recall =
#TP in the top k predictions

#TP
, (8)

where #TP denotes the number of true positives. Thus, a machine with high

top-k recall translates to a doctor with effective diagnostic skills. In this end,

it turns out to make top-k recall a suitable measure for the performance of

prediction models on medications.

5.3. Baselines

We consider baselines in two categories: (1) RNN based methods: Doctor-

AI [6], GRU-Decay [9], LSTM-ICU [5]; MiME [7]; SRL-RNN [8]; (2) Non-RNN

based methods: Logistic Regression (LR), Support Vector Machine (SVM), and

Random Forest (RF).

• Doctor-AI [6]: Doctor AI is a temporal model using RNN to assess the

history of patients to make multi-label predictions on physician diagnosis

and the next medication order list.

• GRU-Decay [9]: To tackle the missing values in EHR data, GRU-Decay

is based on Gated Recurrent Units and exploits the missing patterns for

effective imputation and improves the prediction performance.

• LSTM-ICU [5]: It is a study to empirically evaluate the ability of LSTMs

to recognize patterns in multivariate time series of clinical measurements.

They consider multi-label classification of diagnoses by training a model
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to classify 128 diagnoses given frequently but irregularly sampled clinical

measurements.

• MiME [7] A Multilevel Medical Embedding (MiME) approach to learn the

multilevel embedding of EHR data that only relys on this inherent EHR

structure without the need for external labels.

• SRL-RNN [8] A Supervised Reinforcement Learning with Recurrent Neu-

ral Network (SRL-RNN), which fuses them into a synergistic learning

framework.

• Logistic Regression (LR): Logistic regression is a common method to

predict the codes in the next visit xt using the past xt−1. Following

[6], we use the data from L time lags before and aggregate the data

xt−1 +xt−2+,+xt−L for some duration L to create the feature for predic-

tion on xt.

• Support Vector Machine (SVM): A multi-label SVM is trained to obtain

multiple classifiers to each diagnostic code and each medication category.

• Random Forest (RF): The random forest is not easily constructed to work

on sequences, and we represented the input data as bag-of-code vector

b ∈ RD. As RF cannot be operated on large-size dataset, we break down

it into an ensemble of ten independent forests while each one trained on

one tenth of the training data, and their averaged score is used for test

prediction.

5.4. Results and discussions

Prediction performance. In the first experiment, we evaluate all methods on

Physio-Net and MIMIC-III datasets. Table 2 shows the prediction performance

of al the models on the multi-task predictions on real datasets: all 4 tasks on

Physio-Net and 20 ICD-9 code tasks on the MIMIC-III. The proposed method

achieves the best AUC score across all tasks on both the datasets. We notice

that all RNN models perform better than non-RNN methods because the deep
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Method Physio-Net MIMIC-III

R
N
N

Ours 0.90 0.78

Doctor-AI [6] 0.77 0.71

GRU-Decay [9] 0.84 0.76

LSTM-ICU [5] 0.76 0.70

SRL-RNN [8] 0.86 0.74

N
o
n
-R

N
N

Logistic Regression 0.64 0.66

SVM 0.71 0.69

Random Forest 0.71 0.73

Logistic Regression-mean 0.66 0.67

SVM-mean 0.72 0.71

Random Forest-mean 0.72 0.73

Table 2: Comparison results of AUC on the real-valued datasets for multi-task pre-

dictions.

recurrent layers help these models capture the temporal relationship that is

useful in solving prediction tasks. Moreover, explicitly modelling the missing

values in both the input signals and the hidden states, such as GRU-Decay and

our method, can further improve the prediction results due to the capability of

fitting the parameters robust to noisy time-series data.

Table 3 compares the results of the proposed method with different algo-

rithms in three settings: predicting only the diagnosis codes (Dx), predicting

only the medication codes (Rx), and jointly predicting both Dx and Rx codes.

The experimental results show that the proposed method is able to outperform

the baseline algorithms by a noticeable margin. The results also confirm that

RNN based approaches achieve superior performance to non-RNN methods.

This is mainly because RNNs are able to learn succinct feature representations

of patients by accumulating the relevant information from their history visits

and the current set of codes, which outperform the hand-crafted features of

Non-RNN baselines. Moreover, in the case of missing values and incorrectness

in billing codes, our method achieves the best results on all measures in the

merit of explicit modelling on billing code variables and robust improvement on

recurrence.

To further examine the capability of our method in a real-world medical care
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Method Dx Recall @k Rx Recall @k [Dx, Rx] Recall @k

k=10 k=20 k=30 k=10 k=20 k=30 k=10 k=20 k=30
R

N
N

Ours 71.2 77.8 85.1 77.2 86.2 92.0 59.8 73.5 80.2

Doctor-AI [6] 64.3 74.3 79.6 68.2 79.7 85.5 55.0 66.3 72.5

GRU-Decay [9] 67.4 75.9 82.6 73.5 83.7 89.0 57.4 69.0 76.1

LSTM-ICU [5] 63.7 74.3 79.5 68.0 79.1 84.8 54.8 62.9 72.4

MiME [7] - - - - - - - - -

SRL-RNN [8] - - - - - - - - -

N
o
n
-R

N
N

Logistic Regression 43.2 54.0 60.8 45.8 60.0 69.0 36.0 46.3 52.5

SVM 46.2 57.9 65.1 47.8 63.4 69.9 38.0 48.5 56.1

Random Forest 47.8 58.9 67.2 48.6 63.5 69.8 37.8 48.0 55.0

Logistic Regression-mean 44.7 55.1 62.4 46.2 60.8 69.7 37.0 46.5 52.8

SVM-mean 46.8 59.6 66.0 49.2 65.4 71.0 39.8 49.6 57.8

Random Forest-mean 48.2 59.7 67.3 49.0 65.0 71.1 39.0 48.2 55.7

Table 3: Comparison results of accuracy in forecasting future medical activities on the

MIMIC-III dataset.

setting where patients may have varying lengths of their medical records, we con-

duct an experiment to study the affect of billing code history duration on the

prediction performance. To this end, we select 5,800 patients from MIMIC-III

who had more than 100 visits. We consider the RNN based deep models to pre-

dict the diagnosis codes at visit at different times and calculate the mean values

of recall@10 across the selected patient samples. Fig.2 shows the experimental

results of different RNN based models. It can be observed that all methods

are increasing their performance on prediction as they see longer patient visit

records, and certainly our approach achieved the best prediction performance

amongst all RNN-based models. This is mainly because the recurrence is well-

suited to time-series and the prediction is more faithful given longer sequence

inputs. Also, it is inferred that those patients with high visit count are more

likely caught in severely ill, and therefore their future is easier to predict.
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Figure 2: The prediction performance with respect to the duration of patient medical

history.

More discussions. As the spread σ controls the noise level and determines the

amount of regularisation into RNN, we discuss on the property of different noise

distributions, i.e., Gaussian and Bernoulli, and the impact on the training of

RNN. The experimental results are reported in Table 4. It can be found that

what really matters with different distributions is the variance σ which deter-

mines the degree of regularisation into the RNN. And the RNN regularisation

is not very sensitive to different types of distribution, for example, on both

the health-care datasets the AUC values with Gaussian distribution are very

similar to Bernoulli while for each specific distribution the spread σ affects the

performance.

To further examine the capability of our model in predicting medications

in missing billings, we study a case on a patient with Parkinson’s disease in

which his/her record has at least five years of data consisting of only codes for

Parkinson’s disease whereas the data contains medications for high cholesterol,

hypertension without explicit labels referring to Parkinson’s disease. In fact, the

medication entities listed as true labels are not suggested for paralysis agitans

(Parkinson’s disease), while the patient was surely taking them even though

not documented into the ICD-9 sequence. As shown in Fig.3, in the case of

missing medication items, the model is still able to predict reasonable medica-
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Table 4: The study on different noise distributions. The micro-averaged AUC values

are reported on two datasets.

Distribution σ Physio-Net MIMIC-III

Gaussian

0.53 0.82 0.70

0.92 0.86 0.73

1.10 0.90 0.78

1.50 0.87 0.75

Bernoulli

0.33 0.79 0.71

0.41 0.84 0.72

0.50 0.89 0.75

0.80 0.87 0.72

A B C D G H J L M N P R S V

A14A

C01E

C02C

C09A

C10A

G03B

1.0

0.2

0.4

0.6

0.8

Figure 3: The medication predictions for a patient with only one ICD-9 code. Each

vertical bar represents the prediction for a single medication class and the height

indicates the confidence of the prediction. See the texts for details.

tions for a patient with Parkinson’s disease, such as Dopaminergic agents and

Antiepileptics, which are primary treatment for the disease. The top prediction

probabilities and missing true labels on each treatment regarding a patient are

reported in Table 5. Thus, our model is useful to identifying missing medica-

tions in the clinical scenario, such as reconciling information in a large scale

from a range of electronic and human sources to establish the ground truth of

medications that are taken on a particular day.
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Top predictions Prob.

N04B Dopaminergic agents 98.2%

N03A Antiepileptics 38.4%

N02B Other analgesics and antipyretics 35.7%

N06A Antidepressants 31.2%

N02A Opioids 24.7%

True labels Prob.

C10A Lipid modifying agents, plain 17.4%

C09A Ace inhibitors, plain 13.2%

C01E Other cardiac preparations 7.8%

C02C Antiadrenergic agents, peripherally acting 3.7%

G03B Androgens 3.1%

A14A Anabolic steroids 2.4%

Table 5: A case study: Top prediction and true labels for a patient with Parkinson’s

disease.

6. Conclusions and Future Work

In this paper, we present an effective approach to medicare system, which is

a RNN-based deep learning model that can learn robust patient representation

from a large amount of longitudinal patient billing code records and predict

future medication lists. We demonstrate the effectiveness of our method which

achieved improved recall accuracy values in the real medical practice with ob-

served missing values or incorrect records. In the future work, we would strive

to improve the performance the recurrent networks by including additional in-

put data, such as laboratory test results, demographics, and perhaps vital signs

related to rare diseases. One interesting direction is to figure out a pathway

to convert the medication data into reliably-ordered sequences, so as to fully

exploit the strength of recurrent networks for medication prediction.
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