
EXTRACTING BOOLEAN AND PROBABILISTIC RULES FROM
TRAINED NEURAL NETWORKS

Pengyu Liu
Bioinformatics Center, Institute for Chemical Research

Kyoto University
Gokasho, Uji, Kyoto, Japan 611-0011
liupengyu@kuicr.kyoto-u.ac.jp

Avraham A. Melkman
Department of Computer Science

Ben-Gurion University of the Negev
Beer-Sheva, Israel 84105
melkman@cs.bgu.ac.il

Tatsuya Akutsu
Bioinformatics Center, Institute for Chemical Research

Kyoto University
Gokasho, Uji, Kyoto, Japan 611-0011
takutsu@kuicr.kyoto-u.ac.jp

December 3, 2020

ABSTRACT

This paper presents two approaches to extracting rules from a trained neural network consisting
of linear threshold functions. The first one leads to an algorithm that extracts rules in the form of
Boolean functions. Compared with an existing one, this algorithm outputs much more concise rules
if the threshold functions correspond to 1-decision lists, majority functions, or certain combinations
of these. The second one extracts probabilistic rules representing relations between some of the
input variables and the output using a dynamic programming algorithm. The algorithm runs in
pseudo-polynomial time if each hidden layer has a constant number of neurons. We demonstrate the
effectiveness of these two approaches by computational experiments.

Keywords neural networks boolean functions rule extraction dynamic programming

1 Introduction

Recent developments in deep learning technologies have demonstrated the power of artificial neural networks in mak-
ing predictions in various areas. It is therefore of great interest to develop a methodology for interpreting how a
trained neural network arrives at its predictions: better understanding makes for greater trust. There are two major
approaches to the interpretation of trained networks: mechanism explanation and behavior explanation. The former
sees the network as a white box and aims to explain its inner workings. The latter settles for explaining what outputs
will be obtained from the different inputs, viewing the network as if it were a black box. Many studies adopt the latter
approach because it is easier and useful.

Different methodologies can be broadly divided as follows:

• Boolean function extraction: Extract a Boolean function from a trained neural network (Tsukimoto, 2000).
• Activation maximization: Create an input to maximize the network output and show a representative example

of a specific category (Le, 2013).
• Sensitivity analysis: Examine the sensitivity of the network against changes of each input (Smilkov et al.,

2017).
• Deconvolution: Trace the path from the output to the input and analyze attributes learned by a convolutional

neural network (Springenberg et al., 2014).
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• LIME: Explain the predictions by approximation with an interpretable model (Ribeiro et al., 2016).

We focus here on Boolean function extraction. Most such extraction algorithms fall into of two categories: decompo-
sitional or pedagogical algorithms.

Decompositional algorithms such as (Tsukimoto, 2000) extract a Boolean function for each individual neuron, and
merge these rules into a set of rules describing the behavior of the neural network . Such algorithms generate their
results in terms of the structure of the network so that we can understand how each neuron works.

Pedagogical algorithms, such as (Augusta and Kathirvalavakumar, 2012) and (Saad and Wunsch II, 2007), view rule
extraction as the task of learning a Boolean function from data samples. Although these methods generate accurate
results, the results may not reflect the function of each neuron.

This paper is motivated by Tsukimoto’s work (Tsukimoto, 2000). His algorithm extracts Boolean functions in disjunc-
tive normal form from each of the neurons independently and then combines these functions. It works in polynomial
time if the size of each term is bounded by a constant. In this paper we explore several extensions and modifications
of this pioneering work, motivated by the following considerations.

First, Tsukimoto’s algorithm requires the specification of the maximum size of a term; if that size is too small the
algorithm may fail to extract a Boolean function, and if it is large, the running time may be too long. Second, for a
neural network with hidden layers the size of the Boolean function may be large.

To begin addressing these issues we propose two algorithms; admittedly, further refinements will be needed to make
them practical for large-scale neural networks. The first one extracts Boolean functions in the form of nested canalyz-
ing functions (equivalent to 1-decision lists), majority functions, or certain combinations of the two. This algorithm is
useful if each neuron indeed has such a form. Otherwise, as for Tsukimoto’s algorithm, the algorithm may output large
Boolean functions. This phenomenon is inevitable if exact prediction rules are to be extracted in the form of Boolean
functions. The second algorithm extracts rules in the form of conditional probabilities. Each conditional probability
represents a relation between an input attribute, or a combination of input attributes, and an output. Although the
prediction rules obtained by this approach are usually not exact they can be concise. The potential usefulness of these
two algorithms are demonstrated by means of computational experiments.

2 Preliminaries

2.1 Neural Networks

In this paper a neuron is a linear threshold function (O’Donnell, 2014), with the exception of Section 5.2, in which we
consider also neurons that are sigmoid functions.
Definition 1. Given θ, w1, · · · , wn ∈ R, a linear threshold function is a Boolean-valued function f : {0, 1}n → {0, 1}
defined by

f(x) = H(w1x1 + · · ·+ wnxn − θ)

where H(z) is the Heaviside function

H(z) =

{
1 z ≥ 0,

0 z < 0.

We will assume that all weights and threshold values are integers. This is a reasonable assumption in practice inasmuch
as a computer handles only rational numbers, and a threshold function with rational weights can be transformed into
an equivalent threshold function with integer weights.

A sigmoid function is in general characterised by its “S"-shaped curve, but here we limit it to the logistic function:
Definition 2. The one-dimensional sigmoid function is

S(x) =
1

1 + e−x
.

More generally, given θ, w1, · · · , wn ∈ R, the n-dimensional sigmoid function is S(w1x1 + · · ·+ wnxn − θ).

Definition 3. In this paper, a neural network is a directed acyclic graph with neurons situated at the vertices. The
neurons with zero indegree are input neurons, which receive signals only from the outside world, and those with zero
outdegree are output neurons.
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Figure 1: Example of a neural network.

Fig. 1 shows an example of a neural network in which x1, x2, x3, x4 are the input neurons and z is the output neuron.
Since the input values are 0 or 1 the output value is determined by a Boolean function of the input values. The problem
we address is the extraction of this Boolean function in a simple form from a given neural network.

2.2 Majority and Nested Canalyzing Functions

For Boolean variables x and y, x̄, x ∧ y, x ∨ y denote the negation of x, conjunction of x and y, and disjunction of
x and y, respectively. A literal is either a Boolean variable or its negation. A term is a conjunction of literals, and a
conjunction of k literals is called a k-term.
Definition 4. Given n literals `1, . . . , `n and k ∈ {1, . . . , n}, the k-out-of-n majority function Majk(`1, . . . , `n) is the
Boolean function that is the disjunction of all conjunctions of exactly k out of the n literals. Thus its output is 1 when
k or more literals are 1, and 0 otherwise.
Definition 5. A Boolean function f(x) is nested canalyzing if it can be represented as

f(x) = `1 ∨ · · · ∨ `k1−1 ∨ (`k1 ∧ · · · ∧ `k2−1 ∧ (`k2 ∨ · · · ∨ `k3−1 ∨ (· · · )))
where `i ∈ {x1, x̄1, · · · , xn, x̄n} and 1 ≤ k1 < k2 < · · · . It can be assumed that each xi appears at most once in
f(x) either positively or negatively.

It has been reported that many biologically relevant functions are nested canalyzing ones (Harris et al., 2002; Jarrah
et al., 2007). Therefore, extracting rules in the form of nested canalyzing functions is meaningful. Next we define the
decision list (Anthony, 2010):
Definition 6. Let M be a set of Boolean functions on {0, 1}n. The decision list f on M is a finite sequence:

f = 〈(f1, c1), (f2, c2), · · · , (fr, cr)〉,
such that fi ∈ M and ci ∈ {0, 1} for i = 1, . . . , r. The value of f is defined by f(y) = cj where j = min{i|fi(y) =
1}, or 0 if there is no i such that fi(y) = 1.

A 1-decision list is a decision list in which each fi is a literal.

The decision list f is like a sequence of “if then else” commands:

if f1(y) = 1 then f(y) = c1
else if f2(y) = 1 then f(y) = c2
.
.
else if fr(y) = 1 then f(y) = cr
end if
Proposition 7 (Theorem 2.8 of (Jarrah et al., 2007).). The class of 1-decision lists is equivalent to the class of nested
canalyzing functions.
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Proposition 8. The number of nested canalyzing functions on n variables is bounded above by n! · 5n.

Proof. There are n! possible orderings of variables. Consider a particular order, say x1, x2, x3, · · · , xn. The number
of functions with this order, can be bounded recursively from the following five possibilities for f(x1, · · · , xn):

• x1 ∧ g(x2, · · · , xn),

• x̄1 ∧ g(x2, · · · , xn),

• x1 ∨ g(x2, · · · , xn),

• x̄1 ∨ g(x2, · · · , xn),

• x1 is not used.

Therefore, there are at most n! · 5n possibilities in total. �

A more precise but more complicated bound is given in (Jarrah et al., 2007). Since every nested canalyzing function
can be represented as a linear threshold function (Anthony, 2001), and the number of linear threshold functions on the
Boolean domain is at least 2n(n−1)/2 (Anthony, 2001), what these bounds show is that the class of nested canalyzing
functions is a proper subset of the class of linear threshold functions.

3 Extraction of Boolean Functions

3.1 Extraction of a Nested Canalyzing Function or a Majority Function

In this subsection, we consider first the extraction of a rule having the form of a nested canalyzing function, and then
the extraction of a rule in the form of a nested majority function.

When analyzing the running times of algorithms we will use O∗(f(N)) to represent O(f(N)poly(N)), where N is
the total size of input data. We assume that the size of each parameter is polynomially bounded with respect to n,
where n denotes the number of input variables. Recall that addition, subtraction, and multiplication can be done in
time polynomial in the total size of the terms involved.

But first let us present a simple but very useful Lemma.

Lemma 9. For the purpose of rule extraction from a linear threshold function it can be assumed without loss of
generality that the threshold function has the form H(w1x1 + · · ·+ wnxn − θ) with w1 ≥ · · · ≥ wn > 0.

Proof. Repeat the following step until no negative weights remain: if wi < 0 for some i, replace θ by θ − wi, wi by
−wi, and xi by x̄i. These two threshold functions are clearly equivalent.

Next, reorder the resulting linear threshold function so that the terms wixi appear in descending order of wi.

Finally, for convenience, replace each xi by xi. After extraction of the rule this replacement can be reversed. �

To illustrate the procedure described in the proof, consider the linear threshold function:

3x1 − 5x2 + 6x3 ≥ 5.

Dealing with the negative weight and reordering of the terms yields

6x3 + 5x̄2 + 3x1 ≥ 10.

Summarizing, we assume w.l.o.g. that the input to the rule-extracting algorithms is a canonical linear threshold
function

Definition 10. A linear threshold function t(x) = H(w1x1 + · · · + wnxn − θ) is in canonical form if w1 ≥ w2 ≥
· · · ≥ wn > 0.

4
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Algorithm 1 ExtractNC - Extracts a Nested Canalyzing Function, if possible

Input: A canonical threshold function t ≡ wixi + · · ·+ wnxn ≥ θ, 1 ≤ i ≤ n.
Output: An NC-function equivalent to t if there is one, else NONE.
ExtractNC(wixi + · · ·+ wnxn ≥ θ):
if θ ≤ 0 then

return 1;
else if

∑n
j=i wj < θ then

return 0;
end if/* 0 < θ ≤

∑n
j=i wj */

if i = n then
return xn;

end if; /* i < n and 0 < θ ≤
∑n

j=i wj */
if wi ≥ θ then
g(xi+1, . . . , xn)← ExtractNC(wi+1xi+1 + · · ·+ wnxn ≥ θ);
return xi ∨ g(xi+1, · · · , xn);

else if
∑n

j=i+1 wj < θ then
g(xi+1, . . . , xn)← ExtractNC(wi+1xi+1 + · · ·+ wnxn ≥ θ − wi);
return xi ∧ g(xi+1, · · · , xn);

else
return NONE;

end if

Note that 1, 0 and NONE satisfy 1 ∨ g(· · · ) = 1, 1 ∧ g(· · · ) = g(· · · ), 0 ∧ g(· · · ) = 0, 0 ∨ g(· · · ) = g(· · · ),
NONE ∧ g(· · · ) = NONE, and NONE ∨ g(· · · ) = NONE.
Theorem 11. ExtractNC takes polynomial time to extract a nested canalyzing function from a given canonical
threshold function if possible, outputting NONE if there is no such function.

Proof. It is straightforward to see that ExtractNC works in polynomial time. We prove the correctness of
ExtractNC by induction on the number of variables.

Clearly ExtractNC returns a correct nested canalyzing function when the threshold function consists of a single
variable. For the induction step suppose i is given and that ExtractNC returns a correct solution (possibly NONE)
given any canonical threshold function of the form w′i+1xi+1 + · · · + w′nxn ≥ θ. We will show that then a correct
solution is returned for any canonical threshold function wixi + · · ·+ wnxn ≥ θ.

When wi ≥ θ, the threshold function has value 1 on an assignment (ai, . . . , an) to (x1, . . . , xn), i.e. wiai + · · · +
wnan ≥ θ, if and only if either ai = 1 or both ai = 0 andwi+1ai+1+· · ·+wnan ≥ θ. Therefore,wixi+· · ·+wnxn ≥
θ corresponds to a nested canalyzing function iff wi+1xi+1 + · · · + wnxn ≥ θ corresponds to a nested canalyzing
function g(xi+1, . . . , xn), and if so it corresponds to xi ∨ g(xi+1, . . . , xn).

In case
∑n

j=i+1 wj < θ the threshold function has value 1 on an assignment (ai, . . . , an) if and only if ai = 1 and
wi+1ai+1 + · · ·+wnan ≥ θ−wi. Thus xi ∧ g(xi+1, . . . , xn) is the nested canalyzing function corresponding to the
threshold function, where g(xi+1, . . . , xn) corresponds to wi+1xi+1 + · · ·+ wnxn ≥ θ − wi.

To prove that the the algorithm is correct also when it returns NONE, we prove that if there is a nested canalyzing
function f that is equivalent to the canonical threshold function t(x) ≡ wixi + · · · + wnxn ≥ θ) then either wi ≥ θ
or
∑n

j=i+1 wj < θ. As stated in the algorithm we can assume that i < n and

0 < θ <

n∑
j=i

wj . (1)

Suppose first that f has the form f(xi, . . . , xn) = `k ∨ g(xi, . . . , xn), for some i ≤ k ≤ n, and g not a function of xk.
Although `k could in general be xk or xk, here `k = xk is impossible: otherwise f(0) = 1, whereas t(0) = 0 since
0 < θ.

Thus f = 1 whenever xk = 1. Consider the assignment a with values ak = 1, and aj = 0 for j 6= k. Then from
t(a) = 1 it follows that wk ≥ θ.

If f is of the form f(x) = xk ∧ g then f(a) = 0 for any assignment a such that ak = 0. Arguing analogously to the
above it follows that

∑
j 6=k wj < θ.
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Finally, we prove that the index k appearing in the argument above can in fact be taken to be i, because t is in
canonical form. Consider, for example, the case that f has the form xk ∨ g(xi, . . . , xn), with i 6= k and g(xi, . . . , xn)
not dependent on xk. We saw that then wk ≥ θ. From wi ≥ wk it follows that wi + wi+1ai+1 + · · ·+ wnan ≥ θ for
any ai+1, . . . , an, i.e. t(a) = 1, whenever ai = 1. Thus in fact f = xi ∨ xk ∨ g′.
Similarly, if f has the form xk ∧ g(xi, . . . , xn) then

∑
j>i wj ≤

∑
j 6=k wj < θ, so that t(a) = 0 whenever ai = 0.

Consequently f = xi ∧ xk ∧ g′. �

Next we present an algorithm to test whether a canonical threshold function is equivalent to the k-out-of-n majority
function, Majk(x1, . . . , xn). Although several methods have been developed for the simplification of a linear threshold
function into a set of majority functions (Barth, 1993), it is unclear whether any of these methods is directly applicable
to the extraction of a majority function, and our algorithm has the virtue of being very simple.

Algorithm 2 ExtractMF - Extracts a Majority Function if possible

Input: A canonical threshold function t with weights w1 ≥ · · · ≥ wn > 0.
Output: Majk(x1, . . . , xn), k > 1, if it is equivalent to t, else NONE.

ExtractMF(w1x1 + · · ·+ wnxn ≥ θ):
for k = 2 to n do

if wn−k+1 + · · ·+ wn ≥ θ and w1 + · · ·+ wk−1 < θ then
return Majk(x1, . . . , xn);

end if
end for
return NONE;

Proposition 12. ExtractMF returns the correct answer in polynomial time.

Proof. The algorithm clearly takes polynomial time, computing no more than n times two sums of no more than n
terms. To prove correctness assume first that t does correspond to Majk for some k > 1. Since Majk(x1, . . . , xn) is the
disjunction of all conjunctions consisting of k variables it has the value 1 for the assignment a1 = · · · = an−k = 0,
an−k+1 = · · · = an = 1, meaning that wn−k+1 + · · · + wn ≥ θ. But it has the value 0 for the assignment
a1 = · · · = ak−1 = 1, ak = · · · = an = 0, as each conjunction contains at least one 0 multiplicand. Since t(a) = 0
means that w1 + · · ·+ wk−1 < θ, this Majk will be output by ExtractMF.

Conversely, assume that ExtractMF returns Majk, so that wn−k+1 + · · ·+ wn ≥ θ. Because w1 ≥ · · · ≥ wn > 0 this
implies that

∑k
j=1 wij ≥ θ for any 1 ≤ i1 ≤ · · · ≤ ik ≤ n, i.e. that t(a) = 1 for any assignment a that contains at

least k 1’s. Furthermore, w1 +w2 + · · ·+wk−1 < θ also holds for this k, which similarly implies that t(a) = 0 for any
assignment a that contains at most k − 1 1’s. Thus, the input canonical threshold function is equivalent to MFk. �

3.2 Extraction of a general Boolean function

If the given canonical threshold function is equivalent to a nested canalyzing function or a k-out-of-nmajority function
then the algorithms of the previous section are able to construct a concise rule. What to do if the algorithms are
unsuccessful is the question we address in this section. The basic idea is to break the threshold function up into two
threshold functions, using the following equivalence, and to recurse :

w1x1 + · · ·+ wnxn ≥ θ ⇐⇒
(x1 ∧ (w2x2 + · · ·+ wnxn ≥ θ − w1)) ∨ (x̄1 ∧ (w2x2 + · · ·+ wnxn ≥ θ)).

In order to avoid as much as possible the potentially exponential size of the resulting Boolean function, the Algorithm
tries at each stage to extract a concise Boolean function using Algorithm 1 and Algorithm 2.

6
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Algorithm 3 ExtractBF - extracts a Boolean Function

Input: A canonical threshold function.
Output: A Boolean function.
ExtractBF (wixi + · · ·+ wnxn ≥ θ):
g ← ExtractNC(wixi + · · ·+ wnxn ≥ θ);
if g is not NONE then

return g;
end if
g ← ExtractMF(wixi + · · ·+ wnxn ≥ θ);
if g is not NONE then

return g;
end if
return (xi ∧ ExtractBF (wi+1xi+1 + · · ·+ wnxn ≥ θ − wi)) ∨ ExtractBF (wi+1xi+1 + · · ·+ wnxn ≥ θ);

Proposition 13. ExtractBF transforms any linear threshold function into a Boolean function composed of disjunctions,
conjunctions, and majority functions of literals in O∗(2n) time.

In the worst case, the algorithm may output an exponential size Boolean function using exponential time. However,
the algorithm works in polynomial time with respect to the output size, and the output size is expected to be small if
the given threshold function can be represented as a composition of majority functions, nested canalyzing functions,
disjunctions and conjunctions.

Let us briefly compare our algorithm with Tsukimoto’s algorithm (Tsukimoto, 2000), which outputs the DNF form of
a Boolean function, and works in polynomial time if the size of each term is bounded by a constant. Otherwise it is
an exponential time algorithm, or an approximate one. Our algorithm is exact and works in polynomial time if a given
linear threshold function corresponds to a nested canalyzing function or a k-out-of-n majority function.

In all cases that we checked our algorithm outputs a Boolean function that is more concise than the one output by
Tsukimoto’s algorithm. For example, given a linear threshold function 0.5x1+0.4x2+0.1x3+0.1x4+0.1x5+0.1x6 ≥
1, our algorithm outputs x1x2(x3∨x4∨x5∨x6), whereas Tsukimoto’s algorithm outputs x1x2x3∨x1x2x4∨x1x2x5∨
x1x2x6. For another example, given a linear threshold function 0.5x1 + 0.5x2 + 0.4x3 + 0.4x4 + 0.4x5 ≥ 0.8, our
algorithm outputs Maj2(x1, . . . , x5). whereas Tsukimoto’s algorithm outputs x1x2 ∨ x1x3 ∨ x1x4 ∨ x1x5 ∨ x2x3 ∨
x2x4 ∨ x2x5 ∨ x3x4 ∨ x3x5 ∨ x4x5.

However, the rule extracted by our algorithm can be longer than necessary, even if the rule is a majority function but
not on all n variables. Consider the function whose weights are 12,11,11,10,10,10,1 and its threshold is θ = 29. This
function is equivalent to Maj3(x1, . . . , x6), but our algorithm outputs

(x1 ∧ ((x2 ∧ (x3 ∨ x4 ∨ x5 ∨ x6)) ∨ (x3 ∧ (x4 ∨ x5 ∨ x6)) ∨ (x4 ∧ (x5 ∨ x6))

∨(x5 ∧ x6)))

∨(x2 ∧ ((x3 ∧ (x4 ∨ x5 ∨ x6)) ∨ (x4 ∧ (x5 ∨ x6)) ∨ (x5 ∧ x6)))

∨(x3 ∧ ((x4 ∧ (x5 ∨ x6)) ∨ (x5 ∧ x6)))

∨(x4 ∧ x5 ∧ x6).

If it is important to extract a concise (and therefore more informative) rule, even if it may take considerably more time,
one can modify the above algorithm by replacing its last line by the following:

g1 ← (xi ∧ ExtractBF (wi+1xi+1 + · · ·+ wnxn ≥ θ − wi))

∨ ExtractBF (wixi + · · ·+ wn−1xn−1 ≥ θ);
g2 ← (xn ∧ ExtractBF (wixi + · · ·+ wn−1xn−1 ≥ θ − wn))

∨ ExtractBF (wi+1xi+1 + · · ·+ wn−1xn−1 ≥ θ);
if |g1| ≤ |g2| return g1 else return g2;

In the above, we considered the problem of extracting a Boolean function from a single neuron. We consider next
a network with hidden layers. In this case the extraction of the Boolean function corresponding to a given neuron
involves combining the Boolean functions extracted for all its input neurons, which may result in a very complicated
function.

We propose two methods for alleviating this problem. The first one is to add constraints on the length of the generated
Boolean functions. Computational experiments using this approach are presented in Section 5.1. The second one is

7
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to extract rules that are conditional probabilities, rather than deterministic ones. In the next section we describe this
probabilistic rule extraction algorithm.

4 Extraction of Probabilistic Rules from a Neural Network

4.1 Problem Definition

Figure 2: A network with two layers (left) and a network with one hidden layer (right).

In this section, we consider the problem of extracting conditional probabilities given a combination of some input
nodes values. Suppose that z is the output neuron directly connected to n input neurons x1, . . . , xn (see Fig. 2, left).
We assume that the input neurons obey independent distributions, meaning that the value Pr(xi = 1) depends only
on i. We also assume that the representation of Pr(xi = 1) uses only O(1) bits, as is the case for the uniform
distribution Pr(xi = 1) = 0.5. The Probabilistic Rule Extraction problem is to compute the probabilities Pr(z = a),
Pr(z = a|xi = b), Pr(z = a|xi1 = b1, xi2 = b2), · · · for a, b, bi ∈ {0, 1}, up to a fixed number of input nodes. The
problem can be extended to neural networks having hidden layers (Fig. 2, right).

4.2 NP-hardness

We prove that probabilistic rule extraction is NP-hard, even for a neural network with one hidden layer.
Theorem 14. Deciding whether Pr(z = 1) > 0 is NP-hard for a neural network with one hidden layer.

Proof. The proof consists of a polynomial time reduction from 3SAT (Garey and Johnson, 1979). Let v1, . . . , vN be
the variables of the 3-SAT formula, and let c1, . . . , cL be its clauses, each clause being a logical OR of at most three
literals, ci = `i1 ∨ `i2 ∨ `i3 where `ij is either vij or v̄ij . 3SAT is the problem of deciding whether or not there exists
an assignment of 0-1 values to v1, . . . , vN which satisfies all the clauses (i.e., all clauses evaluate to 1).

From an instance of 3SAT, we construct a neural network as follows (see also Fig. 3).

The input nodes are X = {x1, . . . , xN}, and the hidden layer nodes are Y = {y1, . . . , yL}, where we assume the
uniform 0-1 distribution for each of the xi. Node yi in the hidden layer corresponds to clause ci, and its weights are
wi,ij = 1 if `ij = vij , and wi,ij = −1 if `ij is v̄ij , with wi,k = 0 for k 6= i1, i2, i3. The threshold of node yi is
θyi

= 1− |{`ij |`ij = x̄ij}|. The weights assigned to node z are w1 = w2 = · · · = wL = 1 and its threshold is θ = L.

It is straightforward to verify that Pr(z = 1) > 0 iff there exists an assignment such that all c1, . . . , cL evaluate to 1.
The reduction clearly takes polynomial time. �

In this reduction the number of nodes in the hidden layer is not bounded, whereas the weights are restricted to be -1,
0, and 1. The next Theorem points out that the problem remains NP-hard even if the number of nodes in the hidden
layer is restricted to be at most 2, provided the weights can be arbitrary integers.
Theorem 15. Deciding whether Pr(z = 1) > 0 is NP-hard for a neural network with one hidden layer with two
neurons if O(n) bits integer weights can be assigned.

Proof. As in the proof of the co-NP hardness of testing the equivalence of two threshold functions (Melkman et al.,
2018), we use a polynomial-time reduction from the subset sum problem. Recall that the subset sum problem asks:
given a set of positive integers A = {a1, a2, . . . , aN} and an integer b, is there a 0-1 assignment (v1, . . . , vN ) such
that a1v1 + a2v2 + · · ·+ aNvN = b?

8
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Figure 3: Reduction from a 3-SAT instance {v1 ∨ v3 ∨ v4, v1 ∨ v2 ∨ v3, v2 ∨ v3 ∨ v4} to probabilistic rule extraction.

From an instance (A, b) of the subset sum problem, we construct a neural network similar to the one used in the proof
of Theorem 14, with only two nodes y1 and y2 in the hidden layer. The weights associated with these two nodes are
wi,j = aj , i = 1, 2, j = 1, . . . , N , and their thresholds are θ1 = b, and θ2 = b+ 1. The weights of the output node z
are w1 = 1 and w2 = −1, and θz = 1.

Clearly Pr(z = 1) > 0 iff there exists a 0-1 assignment (v1, . . . , vN ) such that a1v1 + a2v2 + · · · + aNvN ≥ b and
a1v1 + a2v2 + · · ·+ aNvN < b+ 1. Furthermore, the time taken by the reduction is polynomial in the total number
of bits used to represent the instance of the Subset Sum problem. �

4.3 Probabilistic Rule Extraction from a Linear Threshold Function

Let us turn now to developing an algorithm for calculating Pr (z = 1) given a linear threshold function. As a first step
consider the case that the threshold function is a nested canalyzing function.

Let ncf(x) be a nested canalyzing function on the variables x and let pi denote the probability

pi = Pr(xi = 1). (2)

We assume that a constant number of bits suffices to specify pi. According to Lemma 9 we can assume that the
threshold function is in canonical form, and therefore its nested canalyzing form contains no negated variables, and
the variables appear ordered by non-increasing weights (cf. Algorithm 1). Here is the pseudo-code for calculating
Pr(ncf(x) = 1).

Algorithm 4 Probability Extraction Algorithm for a nested canalyzing function

Input: A canonical threshold function in the form of a nested canalyzing function ncf(xi, · · · , xn); probabilities
pj , j = i, . . . , n;

Output: Pr(ncf(xi, . . . , xn) = 1);
ExtractP(ncf(xi, · · · , xn)):
if i = n then return pn = 1;
end if
if ncf(xi, · · · , xn) = xi ∧ g(xi+1, · · · , xn) then

return pi ∗ ExtractP(g(xi+1, · · · , xn));
else if ncf(xi, · · · , xn) = xi ∨ g(xi+1, · · · , xn) then

return pi + (1− pi) ∗ ExtractP(g(xi+1, · · · , xn));
end if

Proposition 16. A probabilistic rule can be extracted from a nested canalyzing function in polynomial time.
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Proof. The correctness of Algorithm 4 is self-evident. Since by assumption the probabilities pi are represented with
a constant number of bits, each call makes at most one multiplication, and the number of calls is linear in n, the
algorithm works in time polynomial in n. �

Note that Pr(z = 1|xi1 = ai1 , . . . , xik = aik) can be computed by applying Algorithm 4 after setting (xi1 , . . . , xik)
to (ai1 , . . . , aik).

Next, we present an algorithm for a general canonical threshold function. It is based on the following straightforward
recursion.

Pr(f(x1, . . . , xn) = 1) = p1Pr(f(x1, . . . , xn) = 1|x1 = 1)

+ (1− p1))Pr(f(x1, . . . , xn) = 1|x1 = 0). (3)

To implement the recursion efficiently we use dynamic programming, as in (Melkman et al., 2018). Given a canonical
threshold function w1x1 + · · ·+ wnxn ≥ θ with positive integer weights wi and threshold θ, define T (i, s) by

T (i, s) = Pr(
n∑

j=i

wjxj ≥ s).

From recursion 3 we get a recursion for T (i, s):

T (i, s) = piT (i+ 1, s− wi) + (1− pi)T (i+ 1, s). (4)

Note that the value we are after is Pr(z = 1) = T (1, θ); it is obtained by computing recursively, with memorization,
the values T (i, s), i = 1, . . . , n, for appropriate values of s. Since all weights are positive, the smallest and largest
values of s of possible interest are 0 and θ. The table is initialized by T (i, s) = 1 if s ≤ 0 and

T (n, s) = 1 if s ≤ 0, T (n, s) = pn if 0 < s ≤ wn, T (n, s) = 0 if wn < s. (5)

Theorem 17. Given a canonical threshold function the value Pr(z = 1) can be computed in O∗(nθ) time.

Proof. The correctness of the dynamic programming procedure is self evident.

The number of table entries T (i, s) needed for the computation is nθ. The size of each entry is polynomially bounded,
so that the computations of Equations (4) and (5) take polynomial time. �

Since θ may be exponentially large in terms of the input size, this algorithm runs in pseudo-polynomial time, although
if θ is polynomially large then so is the running time.

Here is an example illustrating the working of the algorithm. Suppose that we are requested to compute Pr(2x1 +
3x2 + x3 − 2x4 ≥ 2) where Pr(xi = 1) = 0.5 for i = 1, . . . , 4. The canonical form of the threshold function is
3x1 + 2x2 + 2x3 + x4 ≥ 4. According to Equation (5) the initial values are

T (4, s) = 1 if s ≤ 0,
1

2
if 0 < s ≤ 1, 0 if 1 < s.

A straightforward computation using Equation (4) yields

Pr(2x1 + 3x2 + x3 − 2x4 ≥ 2) = T (1, 4) = p1T (2, 1) + (1− p1)T (2, 4) = · · · = 9

16
.

Only 8 values were computed, half of the table.

4.4 Probabilistic Rule Extraction: Network with One Hidden Layer

Here we extend the dynamic programming algorithm presented above to a neural network with one hidden layer; the
next subsection describes how to handle multiple hidden layers. In these subsections ni denotes the number of input
nodes in layer i, with n = n1 being the number of input nodes. The right side of Fig. 2 shows the structure of a
network with one hidden layer.

Caution: In these two subsections we consider two or more functions simultaneously. Therefore we do not assume that
all threshold functions are given in canonical form. Using the method of Lemma 9 we can still assume that the weights
of the threshold functions are all non-negative; the price we pay is that the threshold functions are combinations of
literals rather than of variables. Given an assignment a to the variables x of a threshold function w1`1 + · · ·+wn`n ≥
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Γ, we will denote by `j(aj) the value given to `j by the assignment xj = aj ; for example, if `j = xj and aj = 1 then
`j(aj) = 0.

Consider to begin with the simplest case of a neural network having one hidden layer with two nodes y1 and y2. The
values of y1 and y2 are determined by the threshold functions

wk,1`k,1 + · · ·+ wk,n`k,n ≥ Γk, k = 1, 2, (6)

with wk,j ≥ 0, k = 1, 2, 1 ≤ j ≤ n. The value of the output node z is 1 iff wy1
`y1

+ wy2
`y2
≥ T with wy1

, wy2
≥ 0,

and 0 < T < w2,1 + w2,2 (otherwise the value is constant). For simplicity we will assume in the following that
`yk

= yk, k = 1, 2; the other possibilities are handled similarly.

We describe next two ways to compute the probability Pr(z = 1).

1. The first method starts by initializing P3(1) to 0. Then it considers all assignments a to the variables of the
input layer, and for each it computes
(a) the resulting assignment (b1, b2) to (y1, y2):

bk = (wk,1`k,1(a) + · · ·+ wk,n`k,n(a) ≥ Γk) , k = 1, 2;

(b) the resulting value of z: c = (wy1
`y1

(b1) + wy2
`y2

(b2) ≥ T );
(c) adds Pr(x = a) to P3(1) if c = 1.

Since the input node variables are independent Pr(x = a) =
n∏

j=1

Pr(xj = aj). Pr(z = 1) equals the final

value of P3(1). The total computation time is O(n2n).
This computation is easily generalized to a network with n1 input nodes and a hidden layer contain-
ing n2 nodes y: (1a) computes the assignment b to y in time O(n1n2), and (1b) computes c =(

n2∑
j=1

wyj
`yj

(bj) ≥ T

)
. Thus the computation time is

O(n1n22n1). (7)

2. The basic idea of the second method is to compute the joint probabilities of the two nodes in the hidden
second layer, P2(b1, b2) = Pr(y1 = b1, y2 = b2), b1, b2 ∈ {0, 1}. With these values in hand the probability
that z = 1 is

Pr(z = 1) = H(wy1
− T )P2(1, 0) +H(wy2

− T )P2(0, 1) + P2(1, 1). (8)
The method first computes the matrix F (i, s1, s2), 1 ≤ i ≤ n, 0 ≤ sk ≤ Γk, defined by

F (i, s1, s2) = Pr(
n∑

j=i

w1,j`1,j ≥ s1 and
n∑

j=i

w2,j`2,j ≥ s2).

Once all of F has been computed, the value of P2(1, 1) is given by P2(1, 1) = F (1,Γ1,Γ2). Although
the other values needed for Equation 8, P2(1, 0) and P2(0, 1), do not themselves appear in F , they can be
derived from values that do appear: P2(1, ∗) = Pr(y1 = 1) = P2(1, 1) + P2(1, 0) = F (1,Γ1, 0), and
P2(∗, 1) = F (1, 0,Γ2). Note that the computation accessed all values P2(c1, c2), c1, c2 ∈ {0, 1, ∗}.
F can be computed using a recursion similar to the one for T .

F (i, s1, s2) = piF (i+ 1, s1 − `1,i(1)w1,i, s2 − `2,i(1)w2,i)

+ (1− pi)F (i+ 1, s1 − `1,i(0)w1,i, s2 − `2,i(0)w2,i),
(9)

with the initialization
F (n, s1, s2) = pnH((`1,n(1)w1,n − s1)H((`2,n(1)w2,n − s2)

+ (1− pn)H((`1,n(0)− s1)H((`2,n(0)− s2).
(10)

In particular, F (n, s1, s2) = pnH(`1,n(1)w1,n−s1)+(1−pn)H(`1,n(0)−s1) for s2 ≤ 0, and F (n, s1, s2) =
1 when both s1 and s2 are non-positive.
The time complexity of the resulting algorithm is pseudo-polynomial, O∗(nΓ1Γ2).
To extend these ideas to a neural network with a single hidden layer containing n2 nodes, define the matrix
F (i, s1, . . . , sn2

); it can be computed recursively using the analogs of Equations (9) and (10). From this
matrix we derive the values P2(c) with c ∈ {0, 1, ∗}n2 in n2 stages, where at stage r we consider those

11



A PREPRINT - DECEMBER 3, 2020

c containing exactly r 0’s. For such a c let jr be the first index such that cjr = 0, and define t and u by
tj = uj = cj if j 6= jr, 1 ≤ j ≤ n2 and tjr = ∗, ujr = 1. Then P2(c) = P2(t) − P2(u). Each such
computation subtracts one already computed value from another and takes constant time. The initialization
stage of the computation is to copy the values of P2(c) for c ∈ {1, ∗}n2 from F : P2(c) = F (1, t), where
tj = Γj if cj = 1, tj = 0 if cj = ∗, 1 ≤ j ≤ n2.

On completing the computation of P2 from F we know all 3n2 values P (c) with c ∈ {∗, 0, 1}n2 . Con-
sequently the time to compute all of P2 is O(3n2), and the overall computation time for this method

is O(n1
n2∏
k=1

Γk + 3n2). Thus this method is much faster than the first naive method, Equation (7), if

n1 � max{log2 3 · n2,
∑n2

k=1 log2 Γk}.

4.5 Probabilistic Rule Extraction: Network with Multiple Hidden Layers

To extend the approach of the previous subsection further to multilayer neural networks, we assume that our computa-
tion model is the real RAM (random access machine) (Shamos, 1978). The real RAM is an idealized model in which
it is assumed that any real number can be stored in a word and that each arithmetic operation takes constant time. This
model has been widely used for analyzing algorithms in computational geometry (Preparata and Shamos, 1985). In
actual computers, real numbers are of course represented as finite precision floating point numbers. Therefore, when
implemented on actual computers, our algorithms may output approximate probabilities.

Consider a neural network with L (L ≥ 4) layers, the first one being the input layer, the last one consisting of the lone
output node z, and the ith layer having ni nodes for i = 1, . . . , L. We briefly indicate how to generalize the algorithms
of the previous sections to the current setting.

The first generalized method computes, for each assignment a to the variables of the input layer, the assignment
generated to the variables of the i + 1-st layer by the assignment that was generated to the variables of the i-th layer,
i = 1, . . . , L − 1. If the resulting assignment to z is 1, then Pr(a) is added to the current value of PL(1). At the

completion of the computation Pr(z = 1) = PL(1). The total time taken by the computation is O(2n1

L−1∑
i=1

nini+1).

The second generalized method is a combination of the previous two methods: it begins by applying the second
method to compute all joint probabilities for the first hidden layer, Next it essentially uses the first generalized method
just described, but starts it from the second layer. Thus, for each assignment b, whose probability Pr(b) was just
calculated, the method traces the assignment it generates to the variables of the i-th layer, i = 3, . . . , L − 1. If the
resulting assignment to z is 1, then Pr(b) is added to the current value of PL(1). Upon termination this method returns
PL(1) as the value of Pr(z = 1). Thus the running time is

O(n1

n2∏
k=1

Γk + 3n2 + 2n2

L−1∑
i=2

nini+1). (11)

Then the following Theorem summarizes the foregoing description.

Theorem 18. Given a neural network with L (L ≥ 4) layers, suppose n1 ≥ max{log2 3 · n2,
n2∑
k=1

log2 Γk}. Then

Pr(z = 1) can be computed in time O(n1
n2∏
k=1

Γk + 3n2 + 2n2
∑L−1

i=2 nini+1).

Theorem 11 means that the second method is at least as fast as the first naive enumeration based method if n1 ≥
max{log2 3 · n2,

∑n2

k=1 log2 Γk} and is much faster if n1 � max{log2 3 · n2,
∑n2

k=1 log2 Γk}. Although many
neurons are used in hidden layers in recent applications, there are several practical cases in which only a few neurons
are used in hidden layers (Zhao and Thorpe, 2000) (Mazurowski et al., 2008). In such cases, the second method might
work much faster than the naive method. At least this result gives a theoretical advance over the native method.

The analyses above are all for binary classifications. It might be possible to extend this probabilistic rule extraction to
multiclass classification. A possible way is to compute P (z1 = 1), P (z2 = 1), . . . , P (zp = 1) separately for neural
networks with p outputs.
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5 Computational Experiments

5.1 Computational Experiments with Boolean Rule Extraction

In addition to the theoretical analyses of the Boolean rules extraction, we performed computational experiments to
demonstrate its potential usefulness.

Although the algorithms presented in Section 3 are applicable only to single neurons, they can be extended to neural
networks with hidden layers, using a strategy similar to the one given in (Tsukimoto, 2000). Namely, starting with the
first layer, and proceeding layer by layer, the Boolean functions for all neurons in a layer are computed. The Boolean
function so obtained for the single neuron in the final layer is the function for the output .

To study the performance of our proposed method, different neural networks were trained on one synthetic dataset and
two real datasets, all with sigmoid functions using the Adam optimizer in PyTorch version 1.0.0 (Paszke et al., 2017).
Binary cross-entropy is selected as our loss function. Since we want to see how well our Boolean rules approximate
the neural networks we used in each case all of the dataset after samples with missing attributes were removed. The
training was terminated once the training loss was less than 0.02.

In order to obtain concise Boolean rules, we ceased the generation of terms at the third order, where a term is of order
i if it has the form

∏i
k=1 xk. Therefore, the rules contain only first, second and third order terms. Technically this

meant adding to Algorithms 1 and 3 an order parameter r ≥ 0 which indicates the highest order to be generated by
the algorithm. For example, the heading of Algorithm 1 was changed to ExtractNC(wixi + · · · + wnxn ≥ θ; r),
to its body we added another base case "if r = 0 return 0" as a first statement, and the order parameter was decreased
as necessary in other statements. For simplicity in this part the procedure ExtractMF was deleted from Algorithm
3. Here is an example of this order-capped Boolean function generation: the threshold function 5x1 + 3x2 + 3x3 +
2x4 + 2x5 ≥ 10 with order parameter r = 3 yields the function x1 ∧ ((x2 ∧ (x3 ∨ x4 ∨ x5)) ∨ (x3 ∧ (x4 ∨ x5))).

1. Regulation of the Mammalian Cell Cycle
As mentioned in Section 2.2, many biologically important functions are reported to be nested canalyzing.
For example, the following rule is used in a logical model of the mammalian cell cycle network (Fauré et al.,
2006):

UbcH10 : (Cdh1) ∨ (Cdh1 ∧ Ubc ∧ (Cdc20 ∨ CycA ∨ CycB))

In order to examine whether our algorithm can reconstruct this rule from samples, we generated at random
a dataset of 16384 samples with the 15 binary attributes Cdh1, Ubc, Cdc20, CycA, CycB and 10 noise
attributes. Classes were UbcH10 and UbcH10.
These data were then used to train each one of the three neural networks shown in Fig. 4.

Figure 4: Architectures of the Neural Networks.

Applying our Boolean rule extraction algorithm to the resulting trained neural networks yielded the correct
nested canalyzing function for UbcH10 in each case.

2. The Votes Data
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The votes data set consists of 232 out of the 435 voting records of congressmen in 1984, as they appear in
the UCI Machine Learning Repository (Dua and Graff, 2017), after entries with missing data were removed.
Each sample has 16 binary attributes (the votes of the congressman on 16 issues). Classes are Democrat and
Republican. Each extracted Boolean variable is of the form ’a:v’, meaning that a has value v.
We trained each of the three neural networks depicted in Fig. 4 on these data. Then we tested our Boolean
rule extraction algorithm on each of the resulting neural networks. In all three cases the following Boolean
rule was obtained:

Democrat : (physician-fee-freeze:n) ∨ ((adoption-of-the-budget-resolution:y)

∧ (anti-satellite-test-ban:n)

∧ (synfuels-corporation-cutback:y))

The accuracy of the rule is 98.3%. This rule is the same as the one obtained for the votes data by Tsuki-
moto (Tsukimoto, 2000) (with initial weight parameters 1).

3. The Mushroom Data
This dataset, also taken from the UCI Machine Learning Repository (Dua and Graff, 2017), consists of 5644
mushrooms (after removal of samples with missing values), each with 22 discrete physical characteristics.
Classes are edible and poisonous. The following Boolean rule was obtained for all three networks depicted
in Fig. 4:

edible : ¬(spore-print-color:green) ∧ ((odor:none)

∨ (odor:almond)

∨ (odor:anise))

The accuracy of this Boolean rule is 99.7%.
The rule that Tsukimoto (Tsukimoto, 2000) extracted for the mushroom data is:

edible : (gill-size:board) ∧ ((odor:none)

∨ (odor:almond)

∨ (odor:anise))

and its 95.6% accuracy for the 4062 mushrooms that Tsukimoto used is not as good as ours. Its accuracy on
the full dataset of 5644 mushrooms is even slightly less, 94.5%.
Applying the C4.5 algorithm of (Quinlan, 1993) to our dataset yields the following rule:

(odor:none) ∨ (odor:almond) ∨ (odor:anise)→ edible

with an accuracy of 98.7%, slightly less than ours.
The best rule that extracted from the mushroom dataset is (Ishikawa, 2000):

edible : ((gill-size:board) ∧ ¬(stalk-surface-below-ring:scaly) ∧ ¬(population:clustered))∧
¬(spore-print-color:green) ∧ ((odor:none)

∨ (odor:almond)

∨ (odor:anise))

The accuracy of this rule is 100%. Therefore, the method by Ishikawa (Ishikawa, 2000) might be useful
in practice. However, there is no theoretical guarantee on what kinds of rules are extracted by his method.
Therefore, we continued our experiments on our proposed methods.
We tested architecture 1 on this dataset using mean square error with different values. When the loss is
0.0228, we obtained the same rule as the experiments using binary cross-entropy loss even if we ceased the
generation of terms at the sixth order. We continued the training until the loss achieved 0.00258. We got
the same rule as previous. However, when the loss achieved 0.00086, we obtained a rule with more than 20
literals even we ceased the generation of terms at the third order. These experiments indicate that use of very
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small loss values might lead to overfitting and generation of complex rules. Therefore, the stopping condition
should be carefully chosen in practice.
The above experiments are all focus on binary classifications. It might be possible to extend this Boolean rule
extraction to multiclass classifications. One way is to consider neurons connected to each output as individual
neural networks. Then Boolean rules can be obtained for each output.

5.2 Computational Experiments with Probabilistic Rule Extraction

This subsection has three parts. First, we examine the differences between the rules extracted by our algorithm as
compared with the rules extracted directly from the trained sigmoid network. Second, we demonstrate that our algo-
rithm can extract probabilistic rules with very small probabilities through experiment. Finally, we study the possibility
of extracting important attributes from trained neural networks.

The probabilistic rule extraction algorithm outputs accurate probabilities for neural networks consisting of linear
threshold functions. However, in practice sigmoid functions are often used in neural networks in order to enable
training with sample data. For such networks, our algorithm outputs approximate probabilities. We report here on
computational experiments aimed at examining the differences between the rules extracted by our algorithm as com-
pared with the rules extracted directly from the trained sigmoid network.

In the experiments we trained a neural network consisting of ten input neurons, one output neuron, and one hidden
layer with two neurons, all with sigmoid activation functions using the Adam optimizer in PyTorch version 1.0.0
(Paszke et al., 2017). Three sets of training samples with 500, 1024, 1024 samples respectively, ten attributes and one
output label (all binary valued), were randomly generated from the following three Boolean functions:

1. 5-out-of-10 majority function (Maj5(x1, . . . , x10)),
2. conjunction of two majority functions (Maj2(x1, . . . , x5) ∨Maj2(x6, . . . , x10)),
3. Maj2(x1, . . . , x5) ∨ (x6 ∨ (x7 ∧ (x8 ∨ (x9 ∧ x10)))),

where we used Pr(xi = 1) = 0.5 for all i = 1, . . . , n. The weights and thresholds of the resulting trained network
were converted to integers by the quantization method shown in Fig. 5.
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Figure 5: Quantization of weights and threshold.

Here wmax and wmin represent the maximum and the minimum values among w1 · · ·wn and b, respectively. The
constant d was set to 200.

The quantized weights were used to construct a linear threshold network, the derived linear threshold network. From
this network five probabilistic rule values (P1, . . . , P5, to be shown in the following paragraphs) were extracted by the
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Probabilistic Rule Extraction Algorithm, PE, as follows. Using the threshold functions (6) for the hidden nodes, the
matrix F was computed by means of the recursion (9) and the initialization (10); the value of the target is deduced from
F by equation (8). We compare these target values with the exact probability computed from the original Boolean
functions and the ones obtained by the following simple sampling-based algorithm for extracting probabilistic rules
directly from the trained sigmoid network.

Algorithm 5 Probabilistic Rule Extraction by Sampling
count = 0
for i = 1 to m do

generate a random 0-1 assignment to the variables in the input layer;
compute the 0-1 value of node z output by the trained neural network;
if z = 1 then count+ +;

end for
output count/m as an approximation of Pr(z = 1)

For the 5-out-of-10 majority function the targets were P1 = Pr(z = 1|x1 = 1), P2 = Pr(z = 1|x1 = 1, x2 = 1),
P3 = Pr(z = 1|x1 = 1, x2 = 1, x3 = 0), P4 = Pr(z = 1|x1 = 1, x2 = 1, x3 = 0, x4 = 0), and P5 = Pr(z = 1|x1 =
1, x2 = 1, x3 = 0, x4 = 0, x5 = 1), and for each target the comparison value was obtained by running Algorithm 5
100 times with m = 100 samples.

The results, displayed in Table 1, show that the values output by our algorithm are essentially exact, whereas the results
of Algorithm 5 depend on the samples that were generated. The small differences between the exact probabilities and
those by PE are due to that the latter ones were computed using the linear threshold network obtained from the trained
neural network.

Algorithms Parameters P1 P2 P3 P4 P5

exact probability 0.74609 0.85547 0.77344 0.65625 0.8125
PE 0.7461 0.8555 0.7734 0.6563 0.8125

PA Mean 0.7488 0.8601 0.7727 0.6588 0.8084
STD 0.0451 0.0347 0.0423 0.0507 0.0314

Table 1: Results for the 5-out-of-10 majority function. PE is the probabilistic rule extraction algorithm. PA refers to
Algorithm 5. Consult the text for the definitions of P1, . . . , P5.

For the second Boolean function the targets were P1 = Pr(z = 1|x1 = 1), P2 = Pr(z = 1|x1 = 1, x2 = 0),
P3 = Pr(z = 1|x1 = 1, x2 = 0, x3 = 1), P4 = Pr(z = 1|x1 = 1, x2 = 0, x3 = 1, x4 = 0), and P5 = Pr(z =
1|x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1). The results, displayed in Table 2, show that again the values output by
our algorithm are essentially exact, and those of Algorithm 5 depend on the set of samples.

Algorithms Parameters P1 P2 P3 P4 P5

exact probability 0.76172 0.71094 0.8125 0.8125 0.8125
PE 0.7617 0.7109 0.8125 0.8125 0.8125

PA Mean 0.7631 0.7088 0.8129 0.8155 0.8121
STD 0.0437 0.0401 0.0380 0.0373 0.0383

Table 2: Results for the conjunction of two 2-out-of-5 majority functions. PE is the probabilistic rule extraction
algorithm. PA refers to Algorithm 5. Consult the text for the definitions of P1, . . . , P5.

For the third Boolean function the targets were P1 = Pr(z = 1|x1 = 0), P2 = Pr(z = 1|x1 = 0, x2 = 1),
P3 = Pr(z = 1|x1 = 0, x2 = 1, x3 = 0), P4 = Pr(z = 1|x1 = 0, x2 = 1, x3 = 0, x4 = 0), and P5 = Pr(z = 1|x1 =
0, x2 = 1, x3 = 0, x4 = 0, x5 = 1). The results, displayed in Table 3, show that our algorithm gives more accurate
values than PA gives.
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Algorithms Parameters P1 P2 P3 P4 P5

exact probability 0.89258 0.95703 0.91406 0.82813 1
PE 0.8828 0.9570 0.9141 0.8281 1

PA Mean 0.8802 0.9602 0.9157 0.8249 1.0
STD 0.0347 0.0196 0.0305 0.0385 0.0

Table 3: Results for Maj2(x1, . . . , x5) ∨ (x6 ∨ (x7 ∧ (x8 ∨ (x9 ∧ x10)))). PE is the probabilistic rule extraction
algorithm. PA refers to Algorithm 5. Consult the text for the definitions of P1, . . . , P5.

One advantage of our algorithm is that it is deterministic, so that its results do not depend on random samples. Another
advantage is that it can extract probabilistic rules with very small probabilities.

In order to verify this property, we performed the following experiment. We designed a neural network with one
hidden layer of 2 neurons and sigmoid activation functions for the Boolean function x1 ∧ · · · ∧ x20 since it is hard to
train a neural network for this function. From the designed network we constructed the derived threshold network with
integer weights and threshold, and extracted from it Pr(z = 1) as 9.53674× 10−7, which is in fact the exact value of
that probability. In contrast, 100 trials of Algorithm 5 on the sigmoid network, each with 100 samples, were unable to
find this non-zero probability, because the number of samples is too small. Possibly using a large number of samples
will yield a non-zero probability, but it is difficult to estimate in advance the required number of samples.

Finally, we examine the possibility of extracting important attributes from trained neural networks using our proba-
bilistic rule extraction algorithm. In this experiment, we train a neural network with n binary inputs xi for 1 ≤ i ≤ n
and one binary output z. We would like to compute p(z = 1|xi = 0) and p(z = 1|xi = 1) for all xi using our proba-
bilistic rule extraction algorithm. We assume the trained neural network has one hidden layer (3 hidden neurons).

We tested our proposed algorithm on three different datasets.

1. The Votes Data
This is the same dataset we considered in Sect. 5.1. The training was terminated once the loss was less than
0.02. The results in Fig. 6 show that physician-fee-freeze:n is significantly more important than others. In
fact, the accuracy of using only physician-fee-freeze:n is 96.9%.

Figure 6: Rules with the Top 20 Highest Probabilities (Vote)

2. The Moral Reasoner Data
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Figure 7: Rules with the Top 20 Highest Probabilities (Moral Reasoner)

This dataset, also part of the UCI Machine Learning Repository (Dua and Graff, 2017), contains 202 sam-
ples each having 23 attributes, of which 21 are binary. The other two discrete attributes are mental_state :
neither/negligent/reckless/intend and foreseeability : n/low/high. The classes are guilty and
not guilty.

We consider mental_state : neither/negligent/reckless/intend as 4 binary attributes
mental_state_neither : n/y, mental_state_negligent : n/y, mental_state_reckless : n/y and
mental_state_intend : n/y. Discrete attribute foreseeability : n/low/high can be converted to 3 bi-
nary attributes in a similar way. Therefore there are 28 binary attributes. Training was halted once the
training loss fell below 0.02.

It is fairly easy to construct from a few of the attributes that predict "guilty" with highest probabilities, as
shown in Fig. 7, a rule with high accuracy. The following rule, for example, has an accuracy of 96%.

guilty : (benefit_victim : n) ∧ (external_force : n) ∧ (severity_harm : y)

Interestingly, although the attribute mental_state_intend : y has higher probability than external_force :
n, it does not participate in this rule.

The above results show that if the training loss is small, that is, the neural network approximates the corre-
sponding dataset well, it is possible to obtain important rules through the probabilistic rule extraction algo-
rithm. Next, we test whether it is possible to obtain some important rules when the training loss is not so
small.

3. The Chess (King-Rook vs. King-Pawn) Data
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Figure 8: Rules with the Top 20 Highest Probabilities (Chess)

This dataset, also from the UCI Machine Learning Repository (Dua and Graff, 2017), includes 3196 samples. Each
sample consists of the description of a legal initial board for this chess endgame and whether it is won by white,
assuming optimal play by both sides. There are 36 discrete attributes of which 35 are binary. The discrete attribute
katri : b/n/w was converted into 3 binary attributes katri_b : n/y, katri_n : n/y, katri_w : n/y. So there are
38 binary attributes. Classes are won and nowin. The training process is terminated when the training loss is 0.02.
Fig. 8 shows rules with the top 20 highest probabilities. Among these rules, we found that the following Boolean rule
achieved an accuracy of 90.4%.

won : (rimmx : t) ∨ (wknck : f) ∧ (bxqsq : f)

6 Conclusions

In this paper we presented several theoretical results for extracting knowledge from trained neural networks.

We described first an algorithm for extracting a Boolean function from a trained neural network. The algorithm is
efficient if the linear threshold functions in the neural network can be represented as nested canalyzing functions,
k-out-of-n majority functions, or some combinations of the two. If that is not the case, or if the neural network has
hidden layers, the extracted Boolean function may turn out to be very large.

In order to cope with hidden layers, we limited the generation of rule terms to the third order. Computational experi-
ments show that even if there are three hidden layers, the extracted Boolean functions approximate the corresponding
neural networks well. Since banning high-order terms may not be appropriate in some applications, one important
future direction of work is to obtain small size Boolean functions by combining our algorithm with simplification
algorithms for Boolean functions such as (El-Bakry and Mastorakis, 2009). Although this modification may lead
to generation of simple and understandable rules, the computational complexity in the first phase remains the same.
Consequently, reduction of the computational complexity of the first phase is another important future work.

We also proposed an algorithm that extracts probabilistic relations between the input values and the output value in
the form of conditional probabilities. Although this problem is NP-hard in general, our proposed algorithm works in
pseudo-polynomial time if the number of neurons in hidden layers is bounded by a constant. Compared with a naive
sampling-based algorithm, our algorithm has the advantages that it is deterministic, it outputs the exact probabilities
if linear threshold functions are assigned to all nodes, and it does not miss rare relations. The potential usefulness of
the algorithm was demonstrated by means of computational experiments. One disadvantage of this algorithm is that
it needs to perform an exhaustive search for the second layer (i.e., the first hidden layer). Therefore, this algorithm is
not practical if there are many neurons in the second layer and thus some improvements should be done. Use of sparse
modeling (Rish and Grabarnik, 2014) might be useful to find important input attributes without exhaustive search.
Therefore, incorporation of sparse modeling into our proposed methods is important future work. Another problem is
that we assume that the input neurons obey independent distributions. Although computational experiments show the
effectiveness of this algorithm under the independence assumption, dependencies between input attributes is almost
inevitable in real world data. It might be useful to study the quantitative relation between the difference and the degree
of dependencies. Thus we leave it as an open problem.
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