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Abstract

In this paper, we proposed T-Net containing a small encoder-decoder inside the

encoder-decoder structure (EDiED). T-Net overcomes the limitation that U-Net

can only have a single set of the concatenate layer between encoder and decoder

block. To be more precise, the U-Net symmetrically forms the concatenate

layers, so the low-level feature of the encoder is connected to the latter part

of the decoder, and the high-level feature is connected to the beginning of the

decoder. T-Net arranges the pooling and up-sampling appropriately during the

encoder process, and likewise during the decoding process so that feature-maps

of various sizes are obtained in a single block. As a result, all features from

the low-level to the high-level extracted from the encoder are delivered from

the beginning of the decoder to predict a more accurate mask. We evaluated

T-Net for the problem of segmenting three main vessels in coronary angiography

images. The experiment consisted of a comparison of U-Net and T-Nets under

the same conditions, and an optimized T-Net for the main vessel segmentation.

As a result, T-Net recorded a Dice Similarity Coefficient score (DSC ) of 0.815,

0.095 higher than that of U-Net, and the optimized T-Net recorded a DSC of

0.890 which was 0.170 higher than that of U-Net. In addition, we visualized the
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weight activation of the convolutional layer of T-Net and U-Net to show that T-

Net actually predicts the mask from earlier decoders. Therefore, we expect that

T-Net can be effectively applied to other similar medical image segmentation

problems.

Keywords: Convolutional neural network; Main vessel segmentation;

Coronary angiography; Encoder and decoder;

1. Introduction

Semantic segmentation is a typical problem where deep learning technology

is actively applied. Compared with classification, semantic segmentation has the

advantage of visualizing the characteristics of an image because it can display a

concrete region with classes of object. However, while labeling of classification

is word or number level, labeling of semantic segmentation requires much time

and effort for labeling because it needs to extract specific area from the image.

Therefore, the most active area of semantic segmentation problem is medical

image analysis. This is because the effect obtained by marking specific regions

in the medical image is large even if time and effort are involved. Unlike general

images, which have large number of objects to be segmented and their shape

vary, medical images are captured with a specific purpose, so the number of

classes for segmentation is relatively small and the image shape is fixed. There-

fore, various methods for semantic segmentation is proposed to solve specific

medical image segmentation problems [1].

Currently, the most popular method for medical image semantic segmenta-

tion is the fully convolutional neural network (CNN) structure based on U-Net

[2]. The U-Net consists of an encoder part extracting a feature from the original

image and a decoder part restoring the feature to a mask image. However, since

the size of the feature map continuously decreases during the encoder process,

noise is generated while restoring the extracted features in the decoder process.

Therefore, to minimize the loss of the original image, U-Net provides a con-

catenate layer that directly connects the encoder and decoder. However, due to
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the structural restriction of U-Net, there is only one set of convolution blocks

matching the feature-map of the same size in the encoder and decoder, which

has a limitation in generating a precise mask. More specifically, the high-level

feature extracted from the latter encoder is connected to the beginning of the

decoder, and the low-level feature is connected to the decoder near the predic-

tion layer. Particularly, this limitation is fatal in the medical image problem

where the number of classes of the object to be segmented is small, but the re-

gion of the mask has to be precisely segmented. An example of such a medical

image problem is the segmenting main vessels from coronary angiography. In

coronary angiography, the number of main vessels to be segmented is relatively

small, but masks should be generated in the same form as the main vessel of the

original image. In other words, the main vessel is identified among the various

blood vessels of similar shape in the image, and the predicted region should be

similar to the actual vessel shape in the original image. Therefore, from the

low-level feature indicating the shape of vessels to the high-level feature spec-

ifying the main vessel, all levels of features should be considered in the mask

restoring process.

In this paper, we propose a T-Net that allows various sizes of feature-maps

between encoder and decoder, resulting in sophisticated semantic segmenta-

tion. The core concept of T-Net is encoder-decoder in encoder-decoder (EDiED)

structure. Through EDiED structure, the size of the feature-map is increased by

up-sampling in the encoding process, while the size of the feature-map is reduced

by pooling in the decoding process. Thus, there are multiple sizes of feature

maps in the same block, which allows for a more versatile combination when

constructing the concatenated layers of the encoder-decoder. In other words,

precise segmentation is possible from the beginning of the decoder by trans-

mitting all levels of features extracted from every encoder block. We evaluated

T-Net for the problem of segmenting three types of main vessels in coronary an-

giography. The three main vessels are the left anterior descending artery (LAD),

the left circumflex artery (LCX), and the right coronary artery (RCA). We first

compare the performance of U-Net and T-Net under the same conditions and vi-
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sualize the intermediate convolutional layers to see how the actual weight varies

from original to mask image. Then, we fine-tuned the optimized T-Net struc-

ture to show the best segmentation performance. As a result, T-Net showed

0.095 higher Dice Similarity Coefficient score (DSC ), 5.71% higher sensitivity,

12.22% higher precision than those of U-Net in the same experiment condition.

The optimized T-Net showed an average of 0.890 DSC, 88.32% sensitivity and

90.50% precision for the three types of main vessels segmentation from coro-

nary angiography. Our T-Net is also expected to be effectively applied to other

medical image segmentation problems that require precise segmentation.

The rest of this Chapter is structured as followed. In Section 2, we review

the literature for vessel segmentation in coronary angiography and also briefly

review CNN-based studies for semantic segmentation. Section 3 describes the

basic structure of T-Net and shows examples of various models that can be de-

rived from T-Net. Section 4 describes the optimal T-Net structure for the main

vessel segmentation in coronary angiography. Section 5 evaluates the compari-

son of T-Net and U-Net and the performance of optimized T-Net. Finally, we

conclude this study in Section 6 and discusses future plans.

2. Related Work

2.1. Main vessel segmentation in coronary angiography

The World Health Organization (WHO) has announced that cardiovascular

diseases (CVDs) are the leading cause of death in today’s world [3]. More than

17 million people died of CVDs in 2016 which is an about 31% of all deaths,

and more than 75% of these deaths occurred in low-income and middle-income

countries [3]. Among CVDs, coronary artery disease (CAD) is the most com-

mon cause of death [4][5]. In 2015, CAD affected 110 million people, resulting in

8.9 million deaths and 15.6% of all deaths, making it the most common cause of

death worldwide [4][5]. The primary imaging method to observe CAD is X-ray

angiography, often called coronary angiography. Especially in coronary angiog-

raphy, it is important to identify the main blood vessels correctly. However, the
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identification of main vessels currently depends on the manual segmentation

from the radiologist, requiring a lot of time and effort. Moreover, it is difficult

to identify the vessel clearly because of low contrast, non-uniform illumination,

and low signal to noise ratios (SNR) of X-ray angiography [6]. Therefore, stud-

ies on automated vessel segmentation are aimed at reducing time and cost by

helping relevant experts. Among them, the main vessel segmentation is a diffi-

cult problem because it does not identify the whole blood vessels shown in the

image but only the main blood vessel is segmented. Figure 1 shows the LAD,

LCX, and RCA vessels observed in coronary angiography.

Figure 1: Three main vessels with overlapping mask images

There are several studies on blood vessel segmentation in coronary angiog-

raphy. Near-Esfahani proposed a CNN-based method to classify whole blood

vessels in X-ray angiography [6]. Near-Esfahani used CNN to classify the cen-

tral pixel of each patch after dividing a single image into several small patches.

A total of 44 coronary angiography images of 512 x 512 size were spliced into

26 train-sets and 18 test-sets and the result was 93.5% segmentation accuracy.
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Felfelian proposed a method of extracting the ROI of the coronary arteries with

a Hessian filter and segmenting the blood vessel by overlapping the ROI with

the flux flow measurement result [7]. As a result, the segmentation accuracy

was about 96% for a total of 50 x-ray angiography images. Wang proposed a

method of vessel segmentation by combining Hessian matrix multi-scale filtering

and region growing algorithm [8]. Similarly, M’hiri proposed a vessel segmenta-

tion method that combines Hessian-based vesselness information with a random

walk formulation [9]. Compared with existing methods such as Frangi’s filter

and active contour method for 9 angiography images, the AUC was 0.95. In

addition, there are many other vessel segmentation approaches, but as above,

they are not suitable for the main vessel segmentation problem because they

segment the entire vessel in X-ray angiography [10][11][12]. In other words, a

machine learning based method is needed to extract the characteristics and po-

sition of the main vessel in order to segment only the main vessel. Recently, Jo

proposed the method of segmenting the LAD in coronary angiography, which is

the most consistent with our study [13]. Jo automatically selects the appropri-

ate filter through the selective feature mapping (SFM) method to extract the

candidate area. Then, LAD vessel segmentation is performed in the candidate

area. The CNN model for segmentation is typical U-Net and is compared to

U-Nets with backbone CNN using VGGNet [14] or DenseNet [15]. In a total of

1,987 angiography images, 200 images were used as train-set and 1,787 images

were used as test-set, and the highest result showed an average of 0.676 DSC.

Although Jo’s approach utilizes U-Net and presents a novel SFM method, the

segmentation performance is still low.

2.2. CNN for semantic segmentation

CNN for semantic segmentation has been developed in two major directions.

One is the direction of the semantic segmentation of objects in a general image.

Generally, it is evaluated in PASCAL VOC [16] and MS COCO [17] dataset,

where numbers of classes to segment are 20 and 91 respectively, excluding the

background. Therefore, the feature extraction performance of the encoder is of
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primary importance in this direction. The first proposed CNN-based method is

the fully convolutional network (FCN) proposed by Long [18]. FCN is the model

that changes the fully connected layer of the well-known classification models

such as AlexNet [19], VGGNet [14], and GoogLeNet [20] to a 1x1 convolution

and up-sampling the final prediction. However, there is a limitation that the

process of restoring the FCN from a very small feature-map to the original mask

at a single step is not accurate. Therefore, transposed convolution is proposed to

overcome the limitation of FCN [21]. Meanwhile, various studies for improving

the performance in the PASCAL VOC dataset have been proposed [22] [23] [24]

[25]. The recently proposed DeepLabv3+ [26] takes into account the encoder-

decoder architecture in previous version of DeepLabv3 [27].

Another direction is to perform semantic segmentation in medical images.

In fact, creating a mask of semantic segmentation is very costly because it

is almost impossible to segment all objects that appear in a wide variety of

generic images. This is why the number of classes in ImageNet [28], a dataset

for classification, is 1000, while PASCAL VOC and MS COCO are less than

100. However, since medical image segmentation require relatively fewer classes

(tumor, vessel, organs, etc.) in typical types of images (MRI, CT, X-ray, etc.),

higher performance can be obtained with a fewer number of images. In addition,

because segmentation provides explainable information on medical judgment

than simply classifying images, studies on medical image segmentation are very

active in a wide range of medical fields [1] [29]. The most popular CNN based

model in medical segmentation is U-Net, which is also called encoder-decoder

architecture. A detailed description of U-Net follows in the next section. Also,

there are variations of U-Net for medical image segmentation such as 3D U-Net

[30], V-Net [31], H-DenseUNet [32], etc. However, there has been no study

related to transmitting various levels of features extracted from encoders by

performing multiple pooling and up-sampling in a single block to generate multi-

sized feature maps.
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3. T-Net: encoder-decoder in encoder-decoder architecture

Before describing T-Net in detail, we introduce the basic structure of U-Net

and explain the structural limitation. U-Net is a symmetric structure, as its

name implies, an encoder that extracts a feature and a decoder that restores

a feature to a mask. The difference with FCN is that as the depth of the

encoder increases, the number of filters increases as the general classification

CNN model, and conversely, the number of filters decreases as the decoder

reaches the prediction layer. Figure 2 shows the basic structure of U-Net.

Figure 2: Basic structure of U-Net

There are various deformation models of U-Net at present, but the basic

structure does not deviate much from Figure 2. That is, the encoder gradually

reduces the size of the feature-map in order to extract the high-level features,

while in the decoder, the size of the feature-map gradually increases to match

the size of the mask. Unlike the classification in which the extracted high-level

features are directly connected to the prediction layer, the segmentation requires
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a process of restoring to the prediction layer, which creates a noisy boundary

mask different from the shape of the object in the original image. Therefore, in

U-Net, there is a concatenate layer that connects feature-maps of the same size

in encoder and decoder.

Suppose both the width and height of input image are h. Let E i be the i -th

block of the encoder, and halve the width and height of the feature-map towards

En. Assume E 1 be a direct convolutional connection to the input image to have

a feature-map of size h. Likewise, the i -th block of the decoder is called D i, and

for convenience, let a block near the prediction layer be D1. And D i doubles

the width and height of the feature-map by up-sampling in the direction of D1.

Therefore, E i and D i of U-Net have feature-map of the following sizes.

S(Ei) = S(Di) =
h

2i-1
(1)

Because the concatenate layer connects the same sized convoluted layer, the con-

catenated layer in U-Net is only one-to-one matching of E i and D i. However,

as the depth of the encoder becomes deeper, the high-level feature of the orig-

inal image is extracted, whereas the corresponding decoder block just started

restoring. On the other hand, the earliest block of the encoder extracts the

low-level feature, but the matching decoder block connected is the block closest

to the prediction. In other words, U-Net connects low-level features close to

the prediction layer and connects high-level features far to the prediction layer.

This is an inevitable limit for a single set of encoder-decoder architecture.

3.1. Encoder-decoder in encoder-decoder (EDiED)

In order to overcome the structural simplicity of U-Net, we propose the

encoder-decoder in encoder-decoder (EDiED) architecture. The purpose of

EDiED is to ensure that the various levels of features extracted from the encoder

are delivered during the training of the decoder. To do this, the unmatched E i

and D j need to be concatenated to each other. The Figure 3 shows the simplest

T-Net, which is named T3-Net.
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Figure 3: Structure of T3-Net with PPU and UUP

We named it T3-Net because there are three pooling and up-sampling in

the single convolution block. Likewise, if there are 5 pooling and up-sampling,

it is T5-Net and if there are 5 times in encoder and 3 times in decoder, it is

T53-Net. Depending on the order of pooling and up-sampling, the same T3-Net

can be in various forms. We name the block in the order of P (pooling) and

U (up-sampling) appearing in the block. That is, if E i of T3-Net is composed

of pooling, up-sampling, and pooling, it is called PUP i, and in the case of

D i, it is called UPU i. As can be inferred from EDiED, PUP and UPU can

be regarded as small-scale encoder-decoders existing in encoder and decoder,

respectively. Like U-Net, E i reduces the size of the final feature-map in half,

so the sum of n(P) and n(U ) must be odd, and n(P) is one more than n(U ).

Likewise, D i needs to double the size of the feature-map, so n(U ) is one more
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than n(P). Therefore, E i that can exist in T3-Net are PUP i and PPU i, and D i

are UPU i and UUP i. Assuming that P and U are general stride 2 pooling and

up-sampling, the feature-map sizes of E i and D i that can exist in T3-Net are

as follows.

S(Ei) = S(PPUi) = { h

2i-1
,
h

2i
,

h

2i+1
}

S(Ei) = S(PUPi) = { h

2i-1
,
h

2i
}

S(Di) = S(UUPi) = { h

2i-3
,

h

2i-2
,

h

2i-1
}

S(Di) = S(UPUi) = { h

2i-2
,

h

2i-1
}

(2)

From equation 2, T3-Net with E i and D i with PPU i and UUP i respectively

has E i-1, E i, E i+1 and D i+1, D i+2 and D i+3 blocks with feature-map size h/2i.

Thus, when compared to U-Net, T3-Net can add up to nine times more concate-

nate layers between encoder and decoder. And concatenation of these various

combinations improves segmentation performance by transferring various lev-

els of extracted features to the decoder’s restore process. Figure 3 shows the

architecture of T3-Net where E i and D i are PPU i and UUP i.

3.2. Considerations for designing T-Net

T-Net can exist in various forms depending on the number and order of

pooling and up-sampling that build up E i and D i. However, even if n(P)

and n(U ) increase, what is needed to obtain various sizes of feature-maps is

continuous pooling or up-sampling. In other words, even though the depth of

the block can be increased by placing P and U alternately, the sizes of the

feature-maps generated are the same. The following equation shows the sizes of

the feature-maps when alternating between P and U.

S(PUPi) = S(PUPUPi) = S(PUPUP ... PUPi) = { h
2i
,

h

2i-1
}

S(UPUi) = S(UPUPUi) = S(UPUPU ... UPUi) = { h

2i-2
,

h

2i-1
}

(3)

On the other hand, it should also be taken into consideration that if the

continuous P or U are long-lasting, the depth of E i can not be deepened. For
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example, consider T7-Net, where E i is PPPPUUU i. Suppose that the size h of

the original image is 256, which we normally deal in CNN classification. In this

case, the feature-map sizes of E i are as follows.

S(PPPPUUUi) = {256
2i-1

,
256

2i
,
256

2i+1
,
256

2i+2
,
256

2i+3
} (4)

That is, the size of the smallest feature-map in the third encoder block becomes

4 (256/64). Empirically, it is not recommended that the size of the last feature-

map of the encoder be reduced to less than 8. In the semantic segmentation

problem, this is because we can extract the high-level feature as we reduce the

feature-map, but it will be difficult to restore it to the mask. Also, repeated

placement of pooling or up-sampling at short depths has the disadvantage of

making the shape of the feature-map too simple before extracting sufficient

levels of features. For example, considering the E i of the PPPUU structure in

which the convolution and pooling layers are arranged three times, the size of

the feature-maps may vary, but by reducing the size of the feature-map by one-

eighth in the same block, this structure is insufficient as an encoder. Therefore,

we configured only up to T5-Net in the evaluation and set the smallest feature-

map size of the encoder not to be smaller than 8. And E i in T5-Net is designed

as PPUPU structure instead of PPPUU to avoid more than two continuous

pooling layers.

The last point to consider when designing T-Net is that the P and U of

the encoder and decoder need not be symmetric. That is, there is no problem

in configuring the encoder with PPUPU and the decoder with UUP. However,

since the purpose of EDiED is to transfer the various levels of features extracted

from the encoder to the decoder, it is recommended that the length of the

block constituting the encoder is longer than the decoder. In other words, T53-

Net delivers more feature levels to the decoder than T35-Net. Therefore, we

added T53-Net as a comparison with U-Net. In T53-Net, the encoder block is

composed of PPUPU and the decoder block is composed of UUP. As a result,

the T-Nets we have configured for comparison with U-Net are T3-Net, T5-Net,

and T53-Net. The structure of T3-Net is in Figure 3, and the structure of T5-
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Net is shown in Figure 4. T53-Net is the same as replacing T5-Net decoder with

UUP instead of UUPUP in Figure 4.

Figure 4: Structure of T5-Net with PPUPU and UUPUP

4. Optimized T-Net for main vessel segmentation

In this section, we describe an optimized T-Net structure for main vessel

segmentation in coronary angiography. Figure 5 shows the detailed structure of

optimized T-Net.

The overall process of glaucoma detection is as follows. First, angiogra-

phy images are augmented for regularization of the model. And we train the

augmented images on optimized T-Net by the mini-batch size. The model is
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Figure 5: Optimized T-Net structure for main vessel segmentation

improved to minimize the validation loss and finally, the performance of the

model is evaluated using the test-set.

4.1. Data augmentation

Our data consists of 4,700 grayscale images with a size of 512 x 512. This is a

small number compared to general datasets such as ImageNet [28] or MS COCO
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[17], and without proper augmentation, the model will inevitably face overfitting

problem. Fortunately, because coronary angiography is taken in a defined form

with a specific purpose, overfitting can be avoided with augmentation even with

4,700 images. The effect of preventing overfitting can also be confirmed through

the training loss of the optimized T-Net in the result section. In addition, we

train the model by resizing an image in a classification problem, but since the

prediction of segmentation is done by pixel levels, resizing is not recommended

if GPU memory allows. Therefore, we used the size of the input image as the

original 512 x 512. Our image augmentation policy is as follows. First, we

zoom-in and zoom-out an image at a random ratio within ±20%. And the

height and width of the image are shifted at a random ratio within ±20% of

image size 512 x 512. Next, we rotate the angiography image within ±30◦ at

random rates. Finally, because the brightness of the angiography image can

vary, the brightness is also changed within ±40% at random rates. Figure 6

shows images when each augmentation policy is applied to a single image at a

maximum rate.

Figure 6: Vessel images result from data augmentation

15



4.2. T-Net optimization for main vessel segmentation

In this section, we describe the specific structure and fine-tuning parameters

of optimized T-Net for main vessel segmentation. First, we set the overall T-Net

structure to T5-Net. This is because we compared U-Net, T3-Net, T5-Net, and

T53-Net under the same conditions, and as a result, T5-Net showed the best

performance. However, the image used in the comparison is resized to 256 x 256

in order to shorten the training time, and the structure of optimized T-Net is

advanced from that of T5-Net. The structures of T3-Net, T5-Net, and T53-Net

designed for comparison with U-Net are described in detail in the result section.

The optimized T-Net consists of five encoder blocks (E i) and decoder blocks

(D i), respectively. E i is composed of PPUPU i, and D i is composed of UUPUP i.

Each pooling or up-sampling layer is preceded by a convolutional layer (C ).

That is, the actual PPUPU is CPCPCUCPCU, but it is called PPUPU for

convenience. Let PE i
k be the k-th pooling or up-sampling layer that appears

in E i, and similarly define UE i
k, PD i

k, UE i
k, where i ∈ {1,2,3,4,5} and k ∈

{1,2,3,4,5}. The sizes of the feature-maps constituting E 1 is as follows.

S(E1) = S({PE1

1,PE1

2,UE1

3,PE1

4,UE1

5}) = {512, 256, 128, 256, 128} (5)

Likewise, the sizes of feature-maps from E 2 to E 5 are as follows.

S(E2) = {256, 128, 64, 128, 64}

S(E3) = {128, 64, 32, 64, 32}

S(E4) = {64, 32, 16, 32, 16}

S(E5) = {32, 16, 8, 16, 8}

(6)

As previously defined, the decoder block becomes D1 near the prediction, and

the block close to the convolutional layers of center becomes D5. Therefore, the
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sizes of feature-maps from D5 to D1 are as follows.

S(D5) = {16, 32, 64, 32, 64}

S(D4) = {32, 64, 128, 64, 128}

S(D3) = {64, 128, 256, 128, 256}

S(D2) = {128, 256, 512, 256, 512}

S(D1) = {256, 512, 1024, 512, 1024}

(7)

Since the S (PD1
5) is 1024, the size of next convolutional layer’s feature-maps

become 512. Therefore, connecting this convolutional layer to the final convo-

lutional layer with four filters and applying a softmax function to the result, a

feature-map of size 512 x 512 x 4 is generated. This represents the background,

LAD, LCX, and RCA scores for the 512 x 512 size mask. And each of these

scores is compared with the actual class as pixel-by-pixel, and the total loss is

used for the gradient calculation of the next epoch. Next, we explain how the

concatenate layers are constructed based on the above feature-maps sizes and

describe the specific parameters for fine-tuning.

4.2.1. Concatenate layers in optimized T-Net

In optimzized T-Net, concatenate layers are connected immediately after

up-sampling layers of UD i
1 and UD i

2. In case of UD4
1, the size of feature-

map after the up-sampling is 64, and the layers of the encoders having such

feature-map size is as follows.

64 = S(Ei) = {S(PE4

1),S(PE3

2),S(PE3

4),S(UE2

3),S(UE2

5)} (8)

If there are layers of the same size in the encoder block, we concatenate the

preceding layer only in order to reduce GPU memory consumption. Therefore,

the layers concatenated with UD4
1 are PE4

1, PE3
2, and UE2

3. Likewise, UD4
2

is concatenated with PE3
1, PE2

2, and UE1
3. Figure 7 shows the concatenate

layers between encoder and decoder blocks.

From Figure 7, we can observe that T-Net delivers various levels of features

to the decoder. In case of U-Net, the encoder block connected to D4 is only E 4,
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Figure 7: The concatenate layers in optimized T-Net

but T-Net connects D4 with all blocks in the encoder except the E 5. Assume

that the first concatenate layers list for D i is M 1(D i) and the second list is

M 2(D i). Than the lists of concatenate layers in optimized T-Net are as follow.

M1(D5) = {PE5

1,PE4

2,UE3

3}, M2(D5) = {PE4

1,PE3

2,UE2

3}

M1(D4) = {PE4

1,PE3

2,UE2

3}, M2(D4) = {PE3

1,PE2

2,UE1

3}

M1(D3) = {PE3

1,PE2

2,UE1

3}, M2(D3) = {PE2

1,PE1

2}

M1(D2) = {PE2

1,PE1

2}, M2(D2) = {PE1

1}, M1(D1) = {PE1

1}

(9)

M 2(D i) does not exist because the size of the feature-map is 1024 and there is

no matching encoder layer with the same size.

4.2.2. Short-cut connections in optimized T-Net

In optimized T-Net, the number of filters in the convolutional layer of E 1

starts from 32, and doubles in the next block. Short-cut connection is a concept

proposed in ResNet [33], which has the effect of preventing the performance

degradation caused by deeply stacking the convolutional layers. Therefore, re-

cent CNN models necessarily include short-cut connections, and they also form

short-cut connections that connect all the convolutional layers within a block,

such as DenseNet [15]. Short-cut connections result in the addition between
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layers, requiring the same number of filters as feature-maps of the same size.

In case of optimized T-Net, the second and fourth, third and fifth layers of

all E i and D i have the same number of filters as the same feature-map size,

respectively. Through the equation 6-8, the first layer in the next block has

a feature-map of the same size as the second and fourth layers of the previ-

ous block. Therefore, an additional short-cut connection is possible by making

only the first convolutional layer equal to the number of filters of the previous

block before double the number of filters of the next block. Figure 8 shows how

short-cut connections are constructed in three consecutive encoder blocks.

Figure 8: Short-cut connections in encoder blocks of optimize T-Net

Finally, the number of filters and size of feature-maps constituting each block

of optimized T-Net is as follow. The number in parentheses is the size of the
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feature-map.

F(E1) = {32(512), 32(256), 32(128), 32(256), 32(128)}

F(E2) = {32(256), 64(128), 64(64), 64(128), 64(64)}

F(E3) = {64(128), 128(64), 128(32), 128(64), 128(32)}

F(E4) = {128(64), 256(32), 256(16), 256(32), 256(16)}

F(E5) = {256(32), 512(16), 512(8), 512(16), 512(8)}

F(Ce) = {1024(16), 512(16)}

F(D5) = {512(16), 512(32), 512(64), 512(32), 512(64)}

F(D4) = {256(32), 256(64), 256(128), 256(64), 256(128)}

F(D3) = {256(64), 128(128), 128(256), 128(128), 128(256)}

F(D2) = {128(128), 64(256), 64(512), 64(256), 64(512)}

F(D1) = {64(256), 32(512), 32(1024), 32(512), 32(1024)}

F(Pr) = {32(512), 4(512)}

(10)

where Ce denotes two convolutional layers in the center and Pr refers the last

two convolutional layers before final prediction.

4.2.3. Fine-tuning T-Net for optimization

Convolutional layers of optimized T-Net consist of convolution, batch nor-

malization [34], and activation function. The activation function uses softmax

only in the last convolutional layer and the others use ReLU [35]. The weights

of the convolution are initialized by He initialization [36]. For up-sampling,

transposed convolution [21] and bi-linear up-sampling are the most common

methods. As a result of the experiment, there was no significant difference in

performance between two. The detailed performance comparison result apply-

ing each method in optimized T-Net is explained in the next section. However,

we used bi-linear up-sampling because transposed convolution requires number

of free parameters.

In general, Dice Similarity Coefficient score (DSC ) is the performance metric

for semantic segmentation problems. The definition of the DSC is described in
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the result section. The commonly used loss function in deep learning is cross

entropy loss (CELoss). However, CELoss has a disadvantage in that loss cannot

be easily improved when a large number of background pixels are included,

which corresponds to most medical image segmentation problems. Therefore,

the following loss function DSCLoss is used to provide a balance between CELoss

and DSC.

DSCLoss = 1 + αCELoss−DSC (11)

Where α is a coefficient for adjusting the scale of DSCLoss which set to 0.1 in

this paper. More specifically, 1 - DSC attempts to reduce the loss of the pixels

corresponding to the vessels, and αCELoss tries to reduce the overall pixel loss,

including the background.

In the case of the optimizer function, we used the Adam [37] and set the

initial learning rate to 0.0001. In addition, we reduced the learning rate with a

factor of 0.5 if the validation loss does not improve for the last 5 epochs.

5. Results

A total of 4,700 coronary angiography images of patients who visited Asan

Medical Center were evaluated. All patients participating in the study provided

written informed consent and the institutional review board of Asan Medical

Center approved the study. Experts with more than five years of experience

split the main vessels (LAD, LCA, RCA) from the ostium to the distal site

by using The CAAS QCA system (Pie Medical Imaging BV, the Netherlands)

[38]. Of the 4,700 angiography images, 1,987 (42.3%) were LAD, 1,307 (27.8%)

were LCX, and 1,406 (29.9%) were RCA. From the total number of 4,700 an-

giography images, 3,755 images (80%) were randomly split into train-set and

945 images into (20%) test-set with the similar class distribution. 945 test-set

images consisted of 393 LAD, 271 LCX, and 281 RCA images. Validation-set

consists of 565 images which correspond to about 15% of the train-set. As a

result, 3,190 train-set images consisted of 1,349 LAD, 876 LCX, and 965 RCA
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images. Likewise, of the 565 validation-set images, 245 images are LAD, 160

images are LCX, and 160 images are RCA.

The software and hardware environment for the evaluation are as follows.

We tested on a 64GB server with two NVIDIA Titan X GPUs and an Intel Core

i7-6700K CPU. The operating system is Ubuntu 16.04, and the development of

the CNN model uses Python-based machine learning libraries including Keras

[39], Scikit-learn [40], and TensorFlow [41].

5.1. Evaluation setup

The evaluation of this paper proceeds from two perspectives. The first is

to compare U-Net and T-Nets under the same conditions. In other words, it

is to see how the performance of the main vessel segmentation differs in the

most basic U-Net and T-Net structures. Therefore, unlike the optimized T-Net,

the size of the image is resized to 256 x 256 to improve the training speed,

and the depth of the encoder and decoder is fixed to 3. The learning rate was

fixed at 0.0001 regardless of the validation loss, and no short-cut connection was

used. Likewise, since there is no reduction in the learning rate, the max epoch

is 50, which corresponds to half of the optimized T-Net. That is, the goal of

the first evaluation is to compare the performance of pure U-Net with that of

T-Nets, to the greatest extent, excluding other performance-enhancing factors.

However, the loss function uses the same DSCLoss as optimized T-Net because

convergence is faster than using CELoss. The T-Nets used in the comparison

is T3-Net, T5-Net, and T53-Net. Unlike T-Nets, U-Net uses two consecutive

convolutional layers to maintain the number of weights in each block similar to

that of T3-Net. Figure 9 shows the schematic structure of the four models used

for the U-Net and T-Nets comparisons.

The second is to evaluate the optimized T-Net that exhibits the maximum

performance of the main vessel segmentation in coronary angiography. First,

Opt-Net is T-Net with all the fine-tuning methods described in section 4. Briefly,

the convolutional layer is connected with short-cut connections, the loss func-

tion is DSCLoss, and uses bi-linear up-sampling. The T-Nets compared to

22



Figure 9: Schematic structures of U-Net, T3-Net, T5-Net, and T53-Net.

Opt-Net are models with removing two methods. Opt-Net1 uses transposed

convolution instead of bi-linear up-sampling and Opt-Net2 does not have the

short-cut connections. Other unspecified methods apply equally to all models.

More specifically, the loss function is DSCLoss, data augmentation is applied,

the learning rate has a factor of 0.5 with 5 epochs patience, and the maximum

epoch is 100.

5.2. Evaluation metrics

The evaluation of the main vessel segmentation was based on the following

three metrics: Dice Similarity Coefficient score (DSC ), sensitivity (Se), and

precision (Pr). Dice Similarity Coefficient score, also called F1-score, means

the harmonic mean of sensitivity and precision. Generally, in the semantic seg-

mentation problem, we use the name DSC rather than F1-score. Sensitivity,

also known as the true positive rate or recall, measures the percentage of pos-

itives that are correctly identified as the main vessel. Precision measures the
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percentage of positives that are predicted as the main vessel. In the case of

accuracy and specificity, it is not generally included in evaluation metrics for

semantic segmentation problem because the class corresponding to negative is

a background. These metrics are defined with the following three terminolo-

gies. However, since there are three types of main vessels, all evaluation metrics

are into four different categories. That is, metrics for all types of main vessels

(ALL), LAD, LCX, and RCA.

• True Positive(TP): The number of pixels in an angiography image cor-

rectly identified as main vessels.

• False Positive(FP): The number of pixels in an angiography image incor-

rectly identified as main vessels.

• False Negative(FN ): The number of pixels in an angiography image incor-

rectly identified as background

Dice similarity coefficient(DSC) =
2× Pr × Se
Pr + Se

Sensitivity(Se) =
TP

TP + FN
× 100(%)

Precision(Pr) =
TP

TP + FP
× 100(%)

(12)

In addition, loss and DSC according to epoch are graphically represented, and

visualizations of model weights and predicted mask with an actual mask are

included. Detailed descriptions of the graphs and visualizations are provided in

the following section.

5.3. Evaluation results of U-Net and T-Nets

Table 1 summarizes the evaluation results of U-Net and T-Nets compared

under the same condition explained in the previous section.

The highest overall DSC was 0.815 for T5-Net, 0.08 higher than T53-Net,

0.028 higher than T3-Net and 0.095 higher than U-Net. T5-Net and T53-Net

did not show significant performance differences in LAD and RCA, but T5-Net

obtained 0.023 higher DSC in LCX segmentation. Comparing T3-Net and U-

Net, T3-Net was 0.067 higher than U-Net based on overall DSC. The difference

24



ALL LAD

Method DSC Se(%) Pr(%) DSC Se(%) Pr(%)

T53-Net 0.807 81.10 81.89 0.805 79.96 82.73

T5-Net 0.815 80.93 83.74 0.804 79.77 82.87

T3-Net 0.787 81.01 78.62 0.786 80.21 79.08

U-Net 0.720 75.39 71.52 0.733 76.25 72.78

LCX RCA

Method DSC Se(%) Pr(%) DSC Se(%) Pr(%)

T53-Net 0.730 75.52 72.68 0.883 88.08 89.60

T5-Net 0.753 75.70 77.08 0.890 87.58 91.39

T3-Net 0.697 73.83 69.20 0.874 89.00 87.05

U-Net 0.565 63.86 54.10 0.853 85.27 86.55

Table 1: Comparison results between U-Net and T-Nets

in performance between U-Net and T3-Net, which is the most similar in terms of

the number of weights and structurally, demonstrates that various concatenate

layers enhance performance. Considering that T3-Net has lower performance

than T53-Net or T5-Net, the number of up-sampling layers of the decoder block

to which the concatenate layer is connected is also important. That is, T3-Net

is concatenated to the first up-sampling layer of the decoder block, but T5-Net

and T53-Net are concatenated in the first and second up-sampling layers. This

makes it clear that the performance of T53-Net is closer to T5, despite the fact

that T53-Net is a half-mixed structure of T5 and T3.

The difference between U-Net and T-Net is more evident when comparing

segmentation performance for each vessel. First, the smallest performance gap

between T-Net and U-Net is RCA segmentation, and RCA has higher overall

performance than LAD or LCX. The highest DSC in the RCA segmentation is

0.890 in T5-Net, 0.037 higher than the lowest DSC from U-Net. On the other

hand, in LCX segmentation, T5-Net achieve 0.753 DSC while U-Net shows only

0.565 DSC. This means that LCX segmentation is the most difficult and RCA
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segmentation is the easiest problem. In other words, T-Net achieves higher

performance than the U-Net in a more difficult problem, which is LCX segmen-

tation. Figure 10 show box plots for overall DSC, sensitivity, and precision for

U-Net and T-Nets, respectively.

Figure 10: Box plots for comparison of U-Net and T-Nets
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The solid line in the box represents the median value and the dotted line rep-

resents the mean value. The rounded points above and below the box represent

outliers of 5% and 95%, respectively. Other expressions follow the definition of

the general box plot. In Table 1, T53-Net and T5-Net showed similar perfor-

mance on average, but the box plot shows that T5-Net achieves a fairly higher

performance throughout the test-set. This is also the basis for our decision

to design the optimized T-Net with T5-Net as the basis. Figure 11 show the

validation DSCLoss and validation DSC for each epoch while training U-Net

and T-Nets. As with the above performance analysis, we can see that T-Net

performs better than U-Net. In other words, we can see that DSCLoss of U-Net

converges at a higher value than those of T-Nets.

Figure 11: Validation loss and DSC of U-Net and T-Nets

In the comparison between U-Net and T-Nets, the last thing to evaluate

is to visualize how the actual weights of each model are trained. Therefore,

we visualized how the weights of the convolutional layer that constitutes each

decoder block are activated for the same input image. Figure 12 are visualization

of weight activation for U-Net, T3-Net, T5-Net, and T53-Net.
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Figure 12: Visualization of weight activation for U-Net and T-Nets
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First, we set the one of RCA vessel as the input image which shows relatively

little performance difference than LAD and LCX vessels. What we want to see

in Figure 12 is from which decoder starts to segment the mask clearly. The

T-Nets begin to show the outline of the mask from the beginning of the decoder

(D3), but D3 in U-Net is almost invisible. In D2, the weights in T-Nets are

fairly clear, but those of U-Net are still unclear. And in D1, T-Nets activate

the weights similar to mask, but U-Net still activates the other vessels of the

original image. This means that T-Net accurately predicts the mask from the

beginning decoder block, which is possible through various concatenate layers

between encoder and decoder blocks. More specifically, all the blocks of the

encoder are connected to D3, so early prediction can be performed since the

low-level to high-level features extracted from the encoder are transmitted to

D3.

5.4. Evaluation results of optimized T-Net for main vessel segmentation

Table 2 summarizes the optimized T-Net for three types of main vessel seg-

mentation in coronary angiography.

ALL LAD

Method DSC Se(%) Pr(%) DSC Se(%) Pr(%)

Opt-Net 0.890 88.32 90.50 0.884 86.57 91.17

Opt-Net1 0.875 86.24 89.91 0.878 85.11 91.56

Opt-Net2 0.865 87.10 87.13 0.855 84.49 87.88

LCX RCA

Method DSC Se(%) Pr(%) DSC Se(%) Pr(%)

Opt-Net 0.860 86.68 86.23 0.927 92.50 93.63

Opt-Net1 0.831 83.10 84.53 0.914 91.10 92.58

Opt-Net2 0.818 84.74 80.68 0.923 93.04 92.28

Table 2: Evaluation results of optimized T-Net
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The overall performance is best for Opt-Net followed by Opt-Net1 and Opt-

Net2. Opt-Net is more efficient than Opt-Net1 because the segmentation per-

formance is better and trained with fewer free-parameters. Comparing the total

number of free-parameters, Opt-Net has 43,570,372 free-parameters and Opt-

Net1 has 55,883,236, which is about 28.26% more than Opt-Net. Based on the

overall DSC, Opt-Net is the best at 0.890 followed by Opt-Net1 and Opt-Net2.

In addition, Opt-Net is always better in all three metrics, with the exception of

precision for LAD and sensitivity for RCA. Opt-Net2, which removed short-cut

connections, shows a 0.025 lower DSC than Opt-Net. That is, adding a short-

cut connection has reasonable effect on performance improvement. The DSC of

Opt-Net is 0.170 higher than the DSC of U-Net in Table 1. From Table 1 and

2, proposed T-Net performs better than U-Net in the main vessel segmentation

problem, and the optimized T-Net shows the highest performance.

The segmentation performance of each main vessel shows the highest DSC in

RCA, followed by LAD and LCX. This is in the same order as Table 1, with the

highest DSC of 0.927 for RCA segmentation, which is an excellent segmentation

performance. The highest DSC for LCX is 0.860, which is 0.295 higher than U-

Net, which has the lowest DSC in Table 1. In the LAD segmentation, Opt-Net’s

DSC is 0.884, an improvement of 0.151 over U-Net in Table 1.

Figure 13 show box plots of DSC, sensitivity, and precision for each main

vessel and overall vessel. Box plots also show that the segmentation performance

of the LCX is lower than that of the other two main vessels. Considering that the

number of LCX and RCA images is 1,307 and 1,406 respectively, this difference

is not due to class imbalance. This is because unlike RCA, which is relatively

easy to segment with no branching, LAD and LCX are more difficult to segment

because they are separated from single vessel. Also, because of the small number

of LCX images compared to LAD, there is performance difference between two

vessels. The RCA segmentation shows high performance in the entire test-set as

well as the highest average DSC seen in the Table 2. That is, the inter-quartile

range (IQR) is very narrow and is formed near 0.9 DSC, where IQR means

the difference between 75-th and 25-th percentiles. The performance of LAD
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segmentation is intermediate between RCA and LCX and very similar to the

distribution of overall performance.

Figure 13: Box plots for optimized T-Net
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Figure 14 show the loss and DSC of the Opt-Net training process for each

train-set and validation-set. The part where the loss and DSC fluctuate in the

staircase form is the epoch where the learning rate is halved because there is no

improvement in the validation DSC during the last five epochs.

Figure 14: Loss and DSC of optimized T-Net

Overall, we can observe that the validation loss and DSC improved con-

tinuously over 100 epochs. However, we have experimentally found that the

minimum validation loss is formed between 80 and 100 epochs and is not im-

proved much thereafter. Of course, if we increase the reduction factor of the

learning rate and lengthen the patience epoch, the performance can be improved

with longer epochs. However, we did not perform an additional evaluation with

longer epochs because it took too much time because our server performance

was limited. This effect is clearly observed near the 30 epoch of Figure 14.

Table 3 compares the results of the proposed optimized T-Net with the pre-

vious main vessel segmentation study. Jo’s study only performed LAD vessel

segmentation, so no performance comparison is possible in LCX and RCA ves-

sels. From Table 3, proposed T-Net in the LAD segmentation achieved 0.208
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higher DSC than Jo’s approach. In addition, Jo used U-Net, which is similar to

the U-Net structure used for comparison with T-Net in this paper. Under the

same conditions, T5-Net showed 0.071 higher DSC for LAD segmentation than

that of U-Net. Therefore, it can be said that T-Net’s segmentation performance

is better than U-Net in the main vessel segmentation problem.

ALL LAD

Method DSC Se(%) Pr(%) DSC Se(%) Pr(%)

Proposed 0.890 88.32 90.50 0.884 86.57 91.17

T5-Net 0.815 80.93 83.74 0.804 79.77 82.87

U-Net 0.720 75.39 71.52 0.733 76.25 72.78

Jo et al [13] - - - 0.676 60.70 80.00

LCX RCA

Method DSC Se(%) Pr(%) DSC Se(%) Pr(%)

Proposed 0.860 86.68 86.23 0.927 92.50 93.63

T5-Net 0.753 75.70 77.08 0.890 87.58 91.39

U-Net 0.565 63.86 54.10 0.853 85.27 86.55

Jo et al [13] - - - - - -

Table 3: Comparison results between proposed method with previous study

Figure 15 is the visualization of weight activation for Opt-Net. Unlike Figure

12 with U-Net and T-Nets, we included entire blocks including encoder and

decoder. We can see the process of predicting the final mask from the first

encoder block through the intermediate convolution layer and then through the

decoder block. In the first encoder block, low-level features such as the contour

of the blood vessel are observed, and the higher-level features other than the

outline of the blood vessel are extracted as the next encoder moves. When we

reach the center, activation of weights is no longer similar to the original image’s

shape. In case of U-Net, only the information of the last encoder is concatenated

to the first decoder block D5. However, since all encoder blocks, except E 1, are

connected with D5, T-Net outputs activation close to the mask image from the
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beginning of restoring process. As a result, subsequent decoder blocks focus on

more sophisticated restoration of the mask, resulting in higher performance. In

other words, the closer the latter stage of the decoder, the clearer the differences

in the activation of main vessels and background.

Figure 15: Visualization of weight activation for Opt-Net

Finally, we show the predicted results of LAD, LCX, and RCA segmentation
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of U-Net, T-Nets, and Opt-Net with actual masks in Figure 16 through 18.

Although these examples are not the entire test-set, but are sufficient to show

the performance differences between U-Net, T-Nets, and Opt-Net. From the

figures, U-Net and T-Net do not differ greatly in the role of the encoder to

extract high-level feature such as main vessel position under the same condition.

However, there is a performance gap in the restoration of the actual mask due

to the different levels of features passed to the decoder

Figure 16: Visualized LAD segmentation prediction results

Figure 17: Visualized LCX segmentation prediction results
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Figure 18: Visualized RCA segmentation prediction results

6. Conclusion

In this paper, we proposed T-Net containing a small encoder-decoder inside

the encoder-decoder structure (EDiED). T-Net overcomes the limitation that

U-Net, which is the most popular model, can only have a single set of the

concatenate layer between encoder and decoder block. To be more precise, the

U-Net symmetrically forms the concatenate layers, so the low-level feature of the

encoder is connected to the latter part of the decoder, and the high-level feature

is connected to the beginning of the decoder. T-Net arranges the pooling and

up-sampling appropriately during the encoder process, and likewise during the

decoding process so that feature-maps of various sizes are obtained in a single

block. As a result, all features from the low-level to the high-level extracted

from the encoder are delivered from the beginning of the decoder to predict a

more accurate mask.

We evaluated T-Net for the problem of segmenting three main vessels (LAD,

LCX, RCA) in coronary angiography images. The experiment consisted of a

comparison of U-Net and T-Nets under the same conditions, and an optimized

T-Net for the main vessel segmentation. As a result, under the same conditions,

T-Net recorded a DSC of 0.815, 0.095 higher than that of U-Net, and the

optimized T-Net recorded a DSC of 0.890 which was 0.170 higher than that
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of U-Net. In addition, we visualized the weight activation of the convolutional

layer of T-Net and U-Net to show that T-Net actually predicts the mask from

earlier decoders. Therefore, we expect that T-Net can be effectively applied to

other similar medical image segmentation problems.

Although this paper only introduces a 2-dimensional T-Net structure, the

structure of 3-D T-Net is the same. Only the convolutional layer and the pooling

layer change from the existing 2-D to 3-D. Therefore, We will apply 3-D T-Net

to 3-D medical image segmentation problems in future work.
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