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Abstract

Leveraging on the underlying low-dimensional structure of data, low-rank
and sparse modeling approaches have achieved great success in a wide range
of applications. However, in many applications the data can display struc-
tures beyond simply being low-rank or sparse. Fully extracting and exploit-
ing hidden structure information in the data is always desirable and favor-
able. To reveal more underlying effective manifold structure, in this paper,
we explicitly model the data relation. Specifically, we propose a structure
learning framework that retains the pairwise similarities between the data
points. Rather than just trying to reconstruct the original data based on
self-expression, we also manage to reconstruct the kernel matrix, which func-
tions as similarity preserving. Consequently, this technique is particularly
suitable for the class of learning problems that are sensitive to sample simi-
larity, e.g., clustering and semisupervised classification. To take advantage of
representation power of deep neural network, a deep auto-encoder architec-
ture is further designed to implement our model. Extensive experiments on
benchmark data sets demonstrate that our proposed framework can consis-
tently and significantly improve performance on both evaluation tasks. We
conclude that the quality of structure learning can be enhanced if similarity
information is incorporated.

Keywords: Similarity preserving; clustering; semisupervised classification;
similarity measure; deep auto-encoder

1. Introduction

With the advancements in information technology, high-dimensional data
become very common for representing the data. However, it is difficult to deal
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with high-dimensional data due to challenges such as the curse of dimension-
ality, storage and computation costs. Fortunately, in practice data are not
unstructured. For example, their samples usually lie around low-dimensional
manifolds and have high correlation among them [1, 2]. This phenomenon
is validated by the widely used Principal Component Analysis (PCA) where
the number of principal components is much smaller than the data dimen-
sion. Such a phenomenon is also evidenced in nonlinear manifold learning
[3]. Since dimension is closely related to the rank of matrix, low-rank charac-
teristic has been shown to be very effective in studying the low-dimensional
structures in data [4, 5].

Another motivation of utilizing rank in data and signal analysis is due to
the tremendous success of sparse representation [6] and compressed sensing
[7], which are mainly applied to deal with first order data, such as voices
and feature vectors. As an extension to the sparsity of order one data, low
rankness is a measure for the sparsity of second order data, such as images
8]. Low-rank models can effectively capture the correlation among rows and
columns of a matrix as shown in robust PCA [9], matrix completion [10, 11],
and so on. Recently, low-rank and sparse models have shown their effective-
ness in processing high-dimensional data by effectively extracting rich low-
dimensional structures in data, despite gross corruption and outliers. Unlike
traditional manifold learning, this approach often enjoys good theoretical
guarantees.

When data resides near multiple subspaces, a coefficient matrix Z is intro-
duced to enforce correlation among samples. Two typical models are low-rank
representation (LRR) [1] and sparse subspace clustering (SSC) [12]. Both
LRR and SSC aim to find a coefficient matrix Z by trying to reconstruct
each data point as a linear combination of all the other data points, which
is called self-expression property. Z is assumed to be low-rank in LRR and
sparse in SSC. In the literature, Z is also called the similarity matrix since it
measures the similarity between samples [13]. LRR and SSC have achieved
impressive performance in face clustering, motion segmentation, etc. In these
applications, they first learn a similarity matrix Z from the data by minimiz-
ing the reconstruction error. After that, they implement spectral clustering
by treating Z as similarity graph matrix [14]. Self-expression idea inspires
a lot of work along this line. Whenever similarity among samples/features
is needed, it can be used. For instance, in recommender system, we can use
it to calculate the similarity among users and items [15]; in semisupervised
classification, we can utilize it to obtain the similarity graph [16]; in multi-

2



view learning, we can use it to characterize the connection between different
views [17].

More importantly, there are a variety of benefits to obtain similarity
matrix through self-expression. First, by this means, the most informative
“neighbors” for each data point are automatically chosen and the global
structure information hidden in the data is explored [18]. This will avoid
many drawbacks in widely used k-nearest-neighborhood and e-nearest-neighborhood
graph construction methods, such as determination of neighbor number k or
radius e. Second, it is independent of similarity metrics, such as Cosine, Eu-
clidean distance, Gaussian function, which are often data-dependent and sen-
sitive to noise and outliers [19, 20]. Third, this automatic similarity learning
from data can tackle data with structures at different scales of size and den-
sity [21]. Therefore, low-rank and sparse modeling based similarity learning
can not only unveil low-dimensional structure, but also be robust to uncer-
tainties of real-world data. It dramatically reduces the potential chances that
might heavily influence the subsequent tasks [22].

Nevertheless, the data in various real applications is usually very compli-
cated and can display structures beyond simply being low-rank or sparse [23].
Hence, it is essential to learn the representation that can well embed the rich
structure information in the original data. Existing methods usually employ
some simple models, which is generally less effective and hard to capture
such rich structural information that exists in real world data. To combat
this issue, in this paper we demonstrate that it is beneficial to preserve simi-
larity information between samples when we perform structure learning and
design a novel term for this task. This new term measures the inconsistency
between two kernel matrices, one for raw data and another for reconstructed
data, such that the reconstructed data well preserves rich structural informa-
tion from the raw data. The advantage of this approach is demonstrated in
three important problems: shallow clustering, semi-supervised classification,
and deep clustering.

Compared with existing work in the literature, the main contributions of
this paper are as follows:

e Different from current low-dimensional structure learning methods, we
explicitly model the data relation by preserving the pairwise similarity
of the original data with a novel term. Our approach reduces the incon-
sistency between the structural information of raw and reconstructed
data, which leads to enhanced performance.



e Our proposed structure learning framework is also applied to deep auto-
encoder. This helps to achieve a more informative and discriminative
latent representation.

e The effectiveness of the proposed approach is evaluated on both shallow
and deep models with tasks from image clustering, document cluster-
ing, face recognition, digit/letter recognition, to visual object recogni-
tion. Comprehensive experiments demonstrate the superiority of our
technique over other state-of-the-art methods.

e Our method can serve as a fundamental framework, which can be read-
ily applied to other self-expression methods. Moreover, beyond clus-
tering and classification applications, the proposed framework can be
efficiently generalized to a variety of other learning tasks.

The rest of the paper is organized as follows. Section 2 gives a brief
review about two popular algorithms. Section 3 introduces the proposed
technique and discusses its typical applications to spectral clustering and
semi-supervised classification tasks. After that, we present a deep neural
network implementation of our technique in Section 4. Clustering and semi-
supervised classification experimental results and analysis are presented in
Section 5 and Section 6, respectively. Section 7 validates our proposed deep
clustering model. Finally, Section 8 draws conclusions.

Notations. Given a data matrix X € R™*" with m features and n
samples, we denote its (7,7)-th element and i-th column as z;; and z;, re-
spectively. The ¢y-norm of vector x is represented as ||z|| = VT -z, where
T is transpose operator. The ¢;-norm of X is denoted by || X[y = >_;; [xi].
The squared Frobenius norm is defined as [| X || = >, 7;. The definition of
X’s nuclear norm is || X||. = ), 0;, where o; is the i-th singular value of X. I
represents the identity matrix with proper size and 1 denotes a column vector
with proper length where all elements are ones. Z > 0 means all the elements
of Z are nonnegative. Inner product is denoted by < x;,z; >= z; -x;. Trace
operator is denoted by T'r(-).

2. Related Work

In this paper, we focus on the learning of new representation that char-
acterizes the relationship between samples, namely, the pairwise similarity
information. It is well-known that similarity measure is a fundamental and
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crucial problem in machine learning, pattern recognition, computer vision,
data mining and so on [24, 25]. A number of traditional approaches are of-
ten utilized in practice for convenience. As aforementioned, they often suffer
from different kinds of drawbacks. Adaptive neighbors approach can learn
a similarity matrix from data, but it can only capture the local structure
information and thus the performance might have deteriorated in clustering
[18].

Self-expression, another strategy, has become increasingly popular in re-
cent years [26]. The basic idea is to encode each datum as a weighted com-
bination of other samples, i.e., its direct neighbors and reachable indirect
neighbors. Similar to locally linear embedding (LLE) [27], if z; and z; are
similar, weight coefficient z;; should be big. From this point of view, Z also
behaves like a similarity matrix. For convenience, we denote the reconstructed
data as X, where X = XZ. The discrepancy between the original data X
and the reconstructed data X is minimized by solving the following problem:

1 9
min 11X — XZ|[2 + Bp(2), "
s.t. diag(Z) =0,

where p(Z) is a regularizer on Z, 8 > 0 is used to balance the effects of the
two terms. Thus, we can seek either a sparse representation or a low-rank
representation of the data by adopting the ¢; norm and nuclear norm of 7,
respectively. Since this approach can capture the global structure information
hidden in the data, it has drawn significant attention and achieved impressive
performance in a number of applications, including face recognition [28], sub-
space clustering [29, 12, 30], semisupervised learning [31], dimension reduc-
tion [32], and vision learning [33]. To consider nonlinear or manifold structure
information of data, some kernel-based methods [34, 35] and manifold learn-
ing methods [36, 37] have been developed. However, these manifold-based
methods depend on labels or graph Laplacian, which are often not available.

Recently, Kang et al. propose a twin learning for similarity and clustering
(TLSC) [19] method. TLSC performs similarity learning and clustering in a
unified framework. In particular, the similarity matrix is learned via self-
expression in kernel space. Consequently, it shows impressive performance in
clustering task.

However, all existing self-expression based methods just try to reconstruct
the original data such that some valuable information is largely ignored. In



practice, the low-dimensional manifold structure of real data is often very
complicated and presents complex structure apart from low-rank or sparse
[23]. Exploiting data relations has been proved to be a promising means to
discover the underlying structure in a number of techniques [38, 27]. For
instance, ISOMAP [38] retains the geodesic distance between pairwise data
in the low-dimensional space. LLE [27] learns a low-dimensional manifold by
preserving the linear relation, i.e., each data point is a linear combination
of its neighbors. To seek a low-dimensional manifold, Laplacian Eigenmaps
[39] minimizes the weighted pairwise distance in the projected space, where
weight characterizes the pairwise relation in the original space.

In this paper, we demonstrate how to integrate similarity information
into the construction of new representation of data, resulting in a significant
improvement on two fundamental tasks, i.e., clustering and semi-supervised
classification. More importantly, the proposed idea can be readily applied
to other self-expression methods such as smooth representation [40], least
squared representation [41], and many applications, e.g., Occlusion Removing
[42], Saliency Detection [43], Image Segmentation [44].

3. Proposed Formulation

To make our framework more general, we build our model in kernel space.
Eq.(1) can be easily extended to kernel representation through mapping ¢.
By utilizing kernel trick k(z,y) = ¢(z) " ¢(y), we have

min L[[6(X) ~ 6(X) 2|3+ Gp(2),
= min JTr(6(X)T9(X) — 6(X)T6(X)Z
— ZTO(X) 6(X) + ZTH(X) $(X)Z) + Bp(Z), @)
<= min %TT(K —2KZ+Z"KZ)+ Bp(Z),
s.t. diag(Z) = 0.

By solving this problem, we can learn the nonlinear relations among X . Note
that (2) becomes (1) if a linear kernel is adopted.

In this paper, we aim to preserve the similarity information of the original
data. To this end, we make use of the widely used inner product. Specifically,
we try to minimize the inconsistency between two inner products: one for the



raw data and another for reconstructed data X Z. To make our model more
general, we build it in a transformed space. In other words, we have

min [¢(X)" - ¢(X) = (6(X)2)" - (6(X) Z)]I% (3)
(3) can be simplified as
min || K — ZTKZ|3. (4)

Comparing Eq. (4) to (2), we can see that Eq. (4) involves higher order of Z.
Thus, our designed Eq. (4) captures high order information of original data.
Although we claim that our method seeks to preserve similarity information,
it also includes dissimilarity preserving effect, so it can preserve the relations
between samples in general. Combining (4) with (2), we obtain our Structure
Learning with Similarity Preserving (SLSP) framework:

1
min §TT(K—2KZ+ZTKZ)+a||K—ZTKZH%+BP(Z),
s.t. diag(Z) = 0.

(5)

Through solving this problem, we can obtain either a low-rank or sparse ma-
trix Z, which carries rich structure information of the original data. Besides
this, SLSP enjoys several other nice properties:

(1) Our framework can not only capture global structure information but
also preserve the original pairwise similarities between the data points in the
original data in the embedding space. If a linear kernel function is adopted
in (5), our framework can recover linear structure information hidden in the
data.

(2) Our proposed technique is particularly suitable to problems that are sensi-
tive to sample similarity, such as clustering [12], classification [31], users/items
similarity in recommender systems [15], patient/drug similarity in healthcare
informatics [45]. We believe that our framework can effectively model and
extract rich low-dimensional structures in high-dimensional data such as im-
ages, documents, and videos.

(3) The input is kernel matrix. This is an appealing property, as not all types
of real-world data can be represented in numerical feature vectors form. For
example, we often find clusters of proteins based on their structures and
group users in social media according to their friendship relations.

(4) Generic similarity rather than inner product can also be used to construct
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(4) given that the resulting optimization problem is still solvable. It means
that similarity measures that reflect domain knowledge such as [46] can be
incorporated in SLSP directly. Even dissimilarity measures can be included
in this algorithm. This flexibility extends the range of applicability of SLSP.

3.1. Optimization

Although the SLSP problem can be solved in several different ways, we
describe an alternating direction method of multipliers (ADMM) [41] based
approach, which is easy to understand. Since the objective function in (5)
is a fourth-order function of Z, ADMM can lower its order by introducing
auxiliary variables.

First, we rewrite (5) in the following equivalent form by introducing three
new variables:

1
min o Tr(K —2K.J+J K)+al|K =W KH|5+8p(2),
sit. diag(Z) =0, J=Z, W =2 H=17Z.

(6)

Then its augmented Lagrangian function can be written as:
L(J,W,H,Z,Y1,Ys,Y3) =
1
5Tr(K—zKJJrJTKJ) +allK =W T KH||%4Bp(Z )+ 7)

1% Y10 Yo 9 Y3 2)
— |\ IW—Z+—]||%+ —Z+—||%>+||[H—Z+—
2<|I MHF 1144 MHF | u”F

where p > 0 is a penalty parameter and Y7, Y5, Y3 are Lagrangian multipliers.
We can update those variables alternatively, one at each step, while keeping
the others fixed. Then, it yields the following updating rules.

Updating J: By removing the irrelevant terms, we arrive at:

1 Y;
wmin 5T7~(—2KJ+ﬂKJ)+gHJ—ZJr—lH?w (8)
L

It can be seen that it is a strongly convex quadratic function and can be
solved by setting its first derivative to zero, so

J = (K + pl) YK + pnZ — Y7). (9)

Updating W: For W, we are to solve:

Y:
win oK~ WTKHIG + W =2+ =2 (10)
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By setting its first derivative to zero, we obtain
W=0QaKHH"K" +ul) ' QaKHK" 4+ nZ — Ys). (11)

Updating H: We fix other variables except H, the objective function
becomes:

Y.
min oK W K H + g||H—Z+E3||%,. (12)

Similar to W, it yields
H=2aK"WW'K + ul) ' 2aK"WK + uZ —Ys). (13)

Updating Z: For Z, the subproblem is:
) 3
min §p(2) + 512 = D, (14)

J+WH+ AtYo+Ys
where D = 5——— Depending on regularization strategy, we have

different closed-form solutions for Z. Let’s write the singular value decom-
position (SVD) of D as Udiag(c)V . Then, for low-rank representation, i.e.,
p(Z) = || Z||«, we have [47],

7 = Udiag(maz{oc — Sﬁ, oHv7T. (15)
7
To obtain a sparse representation, i.e., p(Z) = ||Z||;, we can update Z
element-wisely as [48] :
_ B :
Zij = max{]D”\ — 3—, 0} . szgn(Dij). (16)
7

For clarity, the complete algorithm to solve problem (6) is summarized in
Algorithm 1. We stop the algorithm if the maximum iteration number 300 is
reached or the relative change of Z is less than 1075,

3.2. Complexity Analysis

First, the construction of kernel matrix costs O(n?). The computational
cost of Algorithm 1 is mainly determined by updating the variables J, W,
and H. All of them involve matrix inversion and multiplication of matrices,
whose complexity is O(n?). For large scale data sets, we might alleviate this
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Algorithm 1: The algorithm of SLSP
Input: Kernel matrix K, parameters o > 0, 8 > 0, u > 0.
Initialize: Random matrix H and Z, Y} =Y, =Y;3 = 0.
REPEAT

. Calculate J by (9).

Update W according to (11).

Calculate H using (13)

Calculate Z using (15) or (16).

Update Lagrange multipliers Y7, Y5 and Y3 as

Y3 =Ys+ pu(H - Z).

UNTIL stopping criterion is met.

by resorting to some approximation techniques or tricks, e.g., Woodbury
matrix identity. In addition, depending on the choice of regularizer, we have
different complexity for Z. For low-rank representation, it requires an SVD
for every iteration and its complexity is O(rn?) if we employ partial SVD (r is
lowest rank we can find), which can be achieved by package like PROPACK.
The complexity of obtaining a sparse solution Z is O(n?). The updating of
Y1, Vs, and Y3 cost O(n?).

3.3. Application of Similarity Matrixz Z

One typical application of Z is spectral clustering which builds the graph
Laplacian L based on pairwise similarities between data points. pecific, L =
D — Z, where D is a diagonal matrix with i-th element as > ; Zij- Spectral
clustering solves the following problem:

I%HTMFWLFL F'F=1, (17)

where F' € R"*¢ is the cluster indicator matrix.

Another classical task that make use of Z is semi-supervised classifica-
tion. In the past decade, graph-based semi-supervised learning (GSSL) has
attracted numerous attentions due to its elegant formulation and low com-
putation complexity [49]. Similarity graph construction is one of the two

10



fundamental components in GSSL, which is critical to the quality of classifi-
cation. Nevertheless, with respect to label inference, graph construction has
attracted much less attention until recent years [50].

After we obtain L, we can adopt the popular local and global consistency
(LGC) as the classification framework [51]. LGC finds a classification function
F € R™¢ by solving the following problem:

min Tr{F'LF +~(F -Y)"(F -Y)}, (18)

where c is the class number, Y € R"*¢ is the label matrix, in which y;; =1
iff the i-th sample belongs to the j-th class, and y;; = 0 otherwise.

4. Extension to Deep Model

The proposed objective function in Eq. (5) can discover the structure in
the input space. However, it has less representation powers of data. On the
other hand, deep auto-encoder [52] and its variants [53, 54] can learn structure
of data in the nonlinear feature space. However, it ignores the geometry of
data in learning data representations. It is a key challenge to learn useful
representations for a specific task [55]. In this paper, we propose the idea
of similarity preserving for structure learning. Therefore, it is alluring to get
the best of both worlds by implementing our SLSP framework within auto-
encoder. As we show later, the proposed similarity preserving regularizer
indeed enhance the performance of auto-encoder.

l/ _________ \: i I/ ________ ™\
X'I'IF."“I___E"F"__"‘E':'. '-}»'T'T'rr—,i-»ll__lri-»ﬁ-:»x
l | s |
- 2 VN J

Figure 1: The framework of Deep SLSP. Input data X are mapped onto the latent space
by the encoder, passed through a fully connected layer to represent L by itself, and finally
reconstructed by the decoder.
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4.1. Model Formulation

Implementing Eq. (5) in auto-encoder, we first need to express Z. Re-
cently, Ji et al. [56] proposed a deep subspace clustering model with the ca-
pability of similarity learning. Inspired by it, we introduce a self-expression
layer into the deep auto-encoder architecture. Without bias and activation
function, this fully connected layer encodes the notion of self-expression. In
other words, this weights of this layer are the matrix Z. In addition, kernel
mapping is no longer needed since we transform the input data with a neural
network. Then, the architecture to implement our model can be depicted as
Figure 1. As we can see, input data X is first transformed into a latent rep-
resentation L, self-expressed by a fully-connected layer, and again mapped
onto the original space.

Let X denote the recovered data by decoder. We take each data point
{li}i=1... n as a node in the network. Let the network parameters © consist
of encoder parameters O, self-expression layer parameters Z, and decoder
parameters O4. Then, X is a function of {O,, Z, 04} and L is a function of
©.. Eventually, we reach our loss function for Deep SLSP (DSLSP) as:

1 A
L(©) = 5||X — X2+ ML — LZ||% 4 Aap(Z)+
M| L'L—-ZTLTLZ|% st diag(Z) = 0.

(19)

The first term denotes the traditional reconstruction loss which guarantees
the recovering performance, so that the latent representation will retain the
original information as much as possible. With the reconstruction perfor-
mance guaranteed, the latent representation L can be treated as a good
representation of the input data X. The second term is the self-expression as
in Eq. (1). The fourth term is the key component which functions as similar-
ity preserving. For simplicity, it is implemented by dot product. This is also
motivated by the fact that our input data points have experienced a series
of highly non-linear transformations produced by the encoder.

5. Shallow Clustering Experiment

In this section, we conduct clustering experiments on images and docu-
ments with shallow models.
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Table 1: Description of the data sets

# instances | # features | # classes
YALE 165 1024 15
JAFFE 213 676 10
ORL 400 1024 40
COIL20 1440 1024 20
BA 1404 320 36
TR11 414 6429 9
TRA41 878 7454 10
TR45 690 8261 10
TDT2 9394 36771 30

5.1. Data

We implement experiments on nine popular data sets. The statistics in-
formation of these data sets is summarized in Table 1. Specifically, the first
five data sets include three face databases (ORL, YALE, and JAFFE), a toy
image database COIL20, and a binary alpha digits data set BA. Tr11, Tr41,
and Tr45 are derived from NIST TREC Document Database. TDT2 corpus
has been among the ideal test sets for document clustering purposes.

Following the setting in [57], we design 12 kernels. They are: seven Gaus-

sian kernels of the form k(z, y) = exp(—||xz—y|3/(td?,,.)) with t € {0.01,0.0,0.1, 1, 10, 50, 100},

max
where d,,., is the maximal distance between data points; a linear kernel

k(z,y) = x"y; four polynomial kernels k(x,y) = (a + 2 "y)? of the form with
a € {0,1} and b € {2,4}. Besides, all kernels are normalized to [0, 1] range,
which is done through dividing each element by the largest pairwise squared
distance [57].

5.2. Comparison Methods

To fully investigate the performance of our method on clustering, we
choose a good set of methods to compare. In general, they can be classified
into two categories: similarity-based and kernel-based clustering methods.

e Spectral Clustering (SC) [58]: SC is a widely used clustering tech-
nique. It enjoys the advantage of exploring the intrinsic data structures.
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However, how to construct a good similarity graph is an open issue.
Here, we directly use kernel matrix as its input. For our proposed SLSP
method, we obtain clustering results by performing spectral clustering
with our learned Z.

Robust Kernel K-means (RKKM)[57]: As an extension to clas-
sical k-means clustering method, RKKM has the capability of dealing
with nonlinear structures, noise, and outliers in the data. RKKM shows
promising results on a number of real-world data sets.

Simplex Sparse Representation (SSR) [21]: Based on sparse repre-
sentation, SSR achieves satisfying performance in numerous data sets.

Kernelized LRR (KLRR) [34]: Based on self-expression, low-rank
representation has achieved great success on a number of applications.
Kernelized LRR deals with nonlinear data and demonstrates better
performance than LRR in many tasks.

Kernelized SSC (KSSC) [35]: Kernelized version of SSC has also
been proposed to capture nonlinear structure information in the input
space. Since our framework is an extension of KLRR and KSSC to
preserve similarity information, the difference in performance will shed
light on the effects of similarity preserving.

Twin Learning for Similarity and Clustering (TLSC) [19]: Based
on self-expression, TLSC has been proposed recently and has shown
superior performance on a number of real-world data sets. TLSC does
not only learn similarity matrix via self-expression in kernel space but
also has optimal similarity graph guarantee. However, it fails to preserve
similarity information.

SLKE-S and SLKE-R [59]: They are closely related to our method
developed in this paper. However, they only have similarity preserving
term, which might lose some low-oder information.

Our proposed SLSP: Our proposed structure learning framework with
similarity preserving capability. After obtaining similarity matrix Z, we
perform spectral clustering based on Eq.(17). We examine both low-
rank and sparse regularizer and denote their corresponding methods as
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SLSP-r and SLSP-s, respectively. The implementation of our algorithm
is publicly available!.

Table 2: Clustering results obtained from those benchmark data sets. The average perfor-
mance of those 12 kernels are put in parenthesis. The best results among those kernels are
highlighted in boldface.

(a) Accuracy(%)

Data SC RKKM |SSR| TLSC KSSC KLRR SLKE-S | SLKE SLSP-s SLSP-1

YALE |49.42(40.52) |48.09(39.71) | 54.55 | 55.85(45.35) | 65.45(31.21) | 61.21(53.69) | 61.82(38.89) | 66.24(51.28) | 65.45(44.60) | 66.60(56.92)
JAFFE|74.88(54.03) | 75.61(67.89) | 87.32|99.83(86.64) | 99.53(35.45) |99.53(90.41) | 96.71(70.77) | 99.85(90.89) | 99.53(82.94) | 100.0(93.04)
ORL  |58.96(46.65) |54.96(46.88) | 69.00 | 62.35(50.50) | 70.50(38.10) | 76.50(63.51) | 77.00(45.33) | 74.75(59.00) | 76.50(49.67) | 81.00(65.67)
COIL20{67.60(43.65) | 61.64(51.89) | 76.32| 72.71(38.03) | 73.54(53.54) | 83.19(79.48) | 75.42(56.83) | 84.03(65.65) | 87.71(75.94) | 87.71(75.58)
BA  [31.07(26.25) |42.17(34.35) | 23.97|47.72(39.50) | 50.64(29.29) | 47.65(41.07) | 50.74(36.35) |44.37(35.79) | 53.85(39.51) | 52.28(41.96)
TRI1 {50.98(43.32)|53.03(45.04) |41.06 | 71.26(54.79) | 62.56(36.94) | 79.23(59.60) | 69.32(46.87) | 74.64(55.07) | 68.36(48.53) | 80.68(60.23)
TRA1 | 63.52(44.80) | 56.76(46.80) | 63.78( 65.60(43.18) | 59.57(33.34) | 71.98(58.29) | 71.19(47.91) | 74.37(53.51) | 71.53(53.50) |76.80(60.91)
TR45 |57.39(45.96) | 58.13(45.69) | 71.45 | 74.02(53.38) | 71.88(31.87) | 78.84(61.18) | 78.55(50.59) | 79.89(58.37) | 79.85(50.08) | 83.04(64.18)
TDT2 |52.63(45.26) |48.35(36.67) | 20.8655.74(44.82) | 30.82(27.30) | 74.80(46.23) |59.61(25.40) | 74.92(33.67) | 64.98(29.04) |75.08(43.91)

(b) NMI(%)

Data sC RKKM | SSR| TLSC KSSC KLRR SLKE-S SLKE-R SLSP-s SLSP-r

YALE |52.92(44.79) | 52.29(42.87) | 57.26 | 56.50(45.07) | 63.94(30.03) | 62.98(65.91) | 59.47(40.38) | 64.29(52.87) | 64.38(45.36) | 64.22(57.07)
JAFFE |82.08(59.35)|83.47(74.01) |92.93| 99.35(84.67) [99.17(30.74) | 99.16(89.91) | 94.80(60.83) | 99.49(81.56) | 99.17(82.86) |100.0(92.32)
ORL  |75.16(66.74) | 74.23(63.91) | 84.23| 78.96(63.55) | 83.47(28.17) | 86.25(78.30) | 86.35(58.84) | 85.15(75.34) | 85.25(61.48) | 88.21(79.46)
COIL20 | 80.98(54.34) | 74.63(63.70) | 86.89 | 82.20(73.26) | 80.69(59.95) | 89.87(78.79) | 80.61(65.40) | 91.25(73.53) | 92.28(83.78) | 92.36(83.25)
BA  |50.76(40.09)|57.82(46.91) |30.29|63.04(52.17) |62.71(54.03) | 61.43(55.88) | 63.58(55.06) | 56.78(50.11) | 64.76(57.06)| 64.23(55.91)
TRI1  |43.11(31.39)|49.69(33.48) | 27.60 | 58.60(37.58) |62.92(11.98) | 70.82(47.44) | 67.63(30.56) | 70.93(45.39) | 68.06(31.19) | 72.23(46.46)
TRA1  |61.33(36.60)|60.77(40.86) | 59.56 | 65.50(43.18) | 63.36(11.57) | 69.63(50.26) | 70.89(34.82)| 68.50(47.45) | 68.21(43.43) | 70. oU(uB 02)
TR45  |48.03(33.22) | 57.86(38.96) | 67.82| 74.24(44.36) | 69.23(12.65) | 77.01(53.73) | 72.50(38.04) | 78.12(50.37)| 74.26(37.03) | 75.27(57.04)
TDT2 |52.23(27.16)|54.46(42.19) |02.44 | 58.35(46.37) | 50.65(25.27) | 73.83(48.85) | 58.55(15.43) | 68.21(28.43) | 56.10(29.04) | 59.77(36.02)

5.3. Bvaluation Metrics

To quantify the effectiveness of our algorithm on clustering task, we use
the popular metrices, i.e., accuracy (Acc) and normalized mutual information

(NMI) [60].

As the most widely used clustering metric, Acc aims to measure the
one-to-one relationship between clusters and classes. If we use h; and h;

Thttps://github.com/sckangz/L2SP
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to represent the clustering partition and the ground truth label of sample z;,
respectively, then we can define Acc as

toe . Sy Olhimap(h)

n

)

where n is the total number of instances, §(-) is the famous delta function, and
map(-) maps each cluster index to a true class label based on Kuhn-Munkres
algorithm [61].

The NMI is defined as follows

7 p(hh)
X he%leﬁp(ha h)log(p(h)p(ﬁ))
NMI(H, H) = == _ :
max(E(H), E(H))

where H and H denote two sets of clusters, p(h) and p(h) are the corre-
sponding marginal probability distribution functions induced from the joint
distribution p(h, k), and E(-) represents the entropy function. Bigger NMI
value indicates better clustering performance.

5.4. Clustering Results

We report the experimental results in Table 2. As we can see, our method
can beat others in almost all experiments. Concretely, we can draw the fol-
lowing conclusions:

(i) The improvements of SLSP against SC verify the importance of high qual-
ity similarity measure. Rather than directly using kernel matrix in SC, we
use learned Z as input of SC. Hence, the big improvement entirely comes
from our high-quality similarity measure;

(ii) Comparing SLSP-s with KSSC and SLSP-r with KLRR, we can see the
benefit of retaining similarity structure information. In particular, for TDT2
data set, SLSP-s enhances the accuracy of KSSC by 25.16%.

(iii) It is worth pointing out our big gain over recently proposed method
TLSC. Although both SLSP and TLSC are based on self-expression and ker-
nel method, TLSC fails to consider preserving similarity information, which
might be lost during the reconstruction process.

(iv) With respect to SLKE-S and SLKE-R, which have the effect of sim-
ilarity preserving, our method still outperforms them in most cases. This
is attributed to the fact that the first term in Eq. (5) can keep some low-
order information, which is missing in SLKE-S and SLKE-R. We can observe
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that SLSP-r improves the accuracy of SLKE-R over 6% on ORL, BA, TR11
datasets.

In summary, these results confirm the crucial role of similarity measure in
clustering and the great benefit due to similarity preserving.

5.5. Parameter Analysis

There are two parameters in our model: a and . Taking YALE data
set as an example, we demonstrate the sensitivity of our model SLSP-r and
SLSP-s to o and 8 in Figure 2 and 3. They illustrate that our methods are
quite insensitive to o and [ over wide ranges of values.

a 1le-05
3 3

Figure 2: Performance of SLSP-r with respect to the variation of o and 5 on YALE data
set.

Figure 3: Performance of SLSP-s with respect to the variation of @ and § on YALE data
set.
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6. Semi-supervised Classification Experiment

In this section, we show that our method performs well on semi-supervised
classification task based on Eq.(18).

6.1. Data

We perform experiments on different types of recognition tasks.

(1) Evaluation on Face Recognition: We examine the effectiveness of
our similarity graph learning for face recognition on two frequently used face
databases: YALE and JAFFE. The YALE face data set contains 15 individ-
uals, and each person has 11 near frontal images taken under different illu-
minations. Each image is resized to 32x32 pixels. The JAFFE face database
consists of 10 individuals, and each subject has 7 different facial expressions
(6 basic facial expressions +1 neutral). The images are resized to 26 x26 pix-
els.

(2) Evaluation on Digit/Letter Recognition: In this experiment, we ad-
dress the digit/letter recognition problem on the BA database. The data set
consists of digits of “0” through “9” and letters of capital “A” to “Z”, this
leads to 36 classes. Moreover, each class has 39 samples.

(3) Evaluation on Visual Object Recognition: We conduct visual object
recognition experiment on the COIL20 database. The database consists of
20 objects and 72 images for each object. For each object, the images were
taken 5 degrees apart as the object is rotating on a turntable. The size of
each image is 32x32 pixels.

To reduce the work load, we construct 7 kernels for each data set. They
include: four Gaussian kernels with ¢ varies over {0.1,1,10,100}; a linear
kernel k(x,y) = x'y; two polynomial kernels k(z,y) = (a + x'y)? with
a € {0,1}.

6.2. Comparison Methods

We compare our method with several other state-of-the-art algorithms.

e Local and Global Consistency (LGC) [51]: LGC is a popular la-
bel propagation method. For this method, we use kernel matrix as its
similarity measure to compute L.

e Gaussian Field and Harmonic function (GFHF) [62]: Different
from LGC, GFHF is another mechanics to infer those unknown labels
as a process of propagating labels through the pairwise similarity.
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Table

Semi-supervised Classification with Adaptive Neighbours (SCAN)
[63]: Based on adaptive neighbors method, SCAN adds the rank con-
straint to ensure that Z has exact ¢ connected components. As a result,
the similarity matrix and class indicator matrix F' are learned simulta-
neously. It shows much better performance than many other techniques.

A Unified Optimization Framework for Semi-supervised Learn-
ing [16]: Li et al. propose a unified framework based on self-expression
approach. Similar to SCAN, the similarity matrix and class indicator
matrix [’ are updated alternatively. By using low-rank and sparse reg-
ularizer, they have S2LRR and S®R method, respectively.

KLRR [34] and KSSC [35]: They represent state-of-the-art similarity
graph construction techniques. By comparing against them, we can
clearly evaluate the effects of similarity preserving on semi-supervised
learning.

Our Proposed SLSP: After we obtain Z from SLSP-r and SLSP-s,
we plug them into LGC algorithm to predict labels for unlabeled data
points.

3: Classification accuracy (%) on benchmark data sets (meantstandard deviation).

The best results are in bold font.

Labeled

Data GFHF LGC S*R S’LRR SCAN KLRR KSSC SLSP-s SLSP-r
Percentage(%)
10 38.004:11.91/47.33+13.96/38.8348.60| 28.7749.59 [45.07-+1.30|50.534-11.36(47.03+10.32 51.20+1.29 53.34414.30
YALE 30 54.1349.47 | 63.0842.20 |58.25+4.25| 42.58+5.93 |60.92+4.03| 62.6743.38 | 70.0843.39 | 70.7143.13| 71.1342.88

50 60.28+5.16 | 69.56+5.42 (69.0046.57| 51.2246.78 |68.9444.57| 70.61+£4.98 | 77.83+5.84 (78.06+4.74| 75.89+4.82

JAFFE 30 98.50+1.01 | 98.86+1.14 [99.254:0.81| 98.8241.05 [98.2041.22| 99.22+0.72 | 98.17+1.54 (99.3310.99| 99.20+0.99

10 92.85£7.76 | 96.68+2.76 [97.334+1.51|94.384+6.23 |96.92+1.68| 95.2943.27 | 91.2242.46 | 98.594+1.07 | 98.99+0.83

50 98.94£1.11 | 99.29+£0.94 199.8240.60| 99.4740.59 |99.2545.79] 99.86+0.32 | 99.38+0.65 |99.91£0.27| 99.914+0.99

10 45.0943.09 | 48.3741.98 |25.32+1.14/ 20.10£2.51 |55.05+1.67| 46.2942.33 | 49.1342.06 | 56.714+1.71 | 58.18+£1.27

BA 30 62.74+0.92 | 63.31£1.03 |44.16+1.03|43.84+1.54 |68.84+1.09| 62.82+1.47 | 66.51+1.15 |68.86+1.71| 67.37+1.01
50 68.30+1.31 | 68.45+1.32 |54.10+1.55|52.49+1.27)(72.20+£1.44| 67.74+1.44 | 70.69+1.25 | 73.40+1.06 | 73.82+1.24
10 87.74+2.26 | 85.43+1.40 93.57+£1.59|81.10£1.69 [90.09+1.15| 88.9042.46 | 85.70+4.03 |97.35+1.22| 94.68+2.38
COIL20 39 95.48+1.40 | 87.8241.03 96.5240.68| 87.69+1.39 [95.2740.93| 96.754+1.49 | 96.17£1.65 |99.46+1.55| 98.50+£0.85

[

50 98.62£0.71 | 88.47£0.45 (97.8740.10{ 90.9241.19 [97.5340.82| 98.89£1.02 | 98.24£0.97 (99.9140.34| 99.47£0.59
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6.3. Experimental Setup

The commonly used evaluation measure accuracy is adopted here. Its

definition is ;
— x 100,
n

where t is the number of samples correctly predicted and n is the total number
of samples. We randomly choose some portions of samples as labeled data
and repeat 20 times. In our experiment, 10%, 30%, 50% of samples in each
class are randomly selected and labeled. Then, classification accuracy and
deviation are shown in Table 3. For GFHF, LGC, KLRR, KSSC, and our
proposed SLSP method, the aforementioned seven kernels are tested and
best performance is reported. For these methods, more importantly, the label
information is only used in the label propagation stage. For SCAN, S?LRR,
and S°R, the label prediction and similarity learning are conducted in a
unified framework, which often leads to better performance.

6.4. Results

As expected, the classification accuracy for all methods monotonically
increases with the increase of the percentage of labeled samples. As it can be
observed, our SLSP method consistently outperforms other state-of-the-art
methods. This confirms the effectiveness of our proposed method. Specifi-
cally, we have the following observations:

(i) By comparing the performance of our proposed SLSP with LGC, we can
clearly see the importance of graph construction in semi-supervised learning.
On COIL20 data set, the average improvement of SLSP-s and SLSP-r over
LGC is 11.67% and 10.31%, respectively. In our experiments, LGC directly
uses kernel matrix as input, while our method uses the learned similarity
matrix Z instead in LGC. Hence, the improvements attribute to our high-
quality graph construction;

(ii) The superiority of SLSP-s and SLSP-r over KSSC and KLRR, respec-
tively, derives from our consideration of similarity preserving effect. The im-
provement is considerable especially when the portion of labeled samples is
small, which means our method would be promising in a real situation. With
10% labeling, for example, the average gain is 7.69% and 6% for sparse and
low-rank representation, respectively;

(iii) Although SCAN, S?LRR, and S?R can learn similarity matrix and la-
bels simultaneously, our two-step approach still reach higher recognition rate.
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These imply that our proposed method can produce a more accurate similar-
ity graph than existing techniques that without explicit similarity preserving
capability.

7. Deep Clustering Experiment

To demonstrate the effect of deep model DSLSP, we follow the settings
in [56] and perform clustering task on Extended Yale B (EYaleB), ORL,
COIL20, and COIL40 datasets. We compare with LRR [1], Low Rank Sub-
space Clustering (LRSC) [64], SSC [12], Kernel Sparse Subspace Clustering
(KSSC) [35], SSC by Orthogonal Matching Pursuit (SSC-OMP) [65], Efficient
Dense Subspace Clustering (EDSC) [66], SSC with pre-trained convolutional
auto-encoder features (AE+SSC), Deep Embedding Clustering (DEC) [67],
Deep k-means (KDM) [68], Deep Subspace Clustering Network with ¢; norm
(DSC-Net-L1) [56], and Deep Subspace Clustering Network with ¢, norm
(DSC-Net-L2) [56]. For a fair comparison with DSC-Nets, we adopt ¢; and ¢,
norm respectively using the same network architectures, which are denoted as
DSLSP-L1 and DSLSP-L2. We adopt convolutional neural networks (CNNs)
to implement the auto-encoder. Adam is employed to do the optimization
[69]. The full batch of dataset is fed to our network. We pre-train the net-
work without the self-expression layer. The details of the network structures
are shown in Table 4.

Table 4: Network settings for our experiments, including the ”kernel size@Qchannels” and
size of Z.

EYaleB ORL COIL20 COIL40
5x5@10 5x 5@5 3x3@15 3x3@20
encoder; 3x3@20 3x3@3 - -
3x3@30 3x3@3 - -
Z 2432x2432 | 400x400 | 1440x1440 | 28802880
3x3@30 3x3@3 3x3@15 3x3@20
decoder; 3x3@20 3x3@3 - -
5x5@10 5xH@5 - -

The clustering performance of different methods is provided in Table 5.

We observe that DSLSP-1.2 and DSLSP-L1 achieve very good performance.
Specifically, we have the following observations:
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Table 5: Clustering results on EYaleB, ORL, COIL20, and COIL40

Dataset Metric SSC  KSSC SSC-OMP EDSC LRR LRSC | AE+SSC DEC DKM DSC-Net-L1 DSC-Net-L2 DSLSP-L1 DSLSP-L2
EYaleB Accuracy | 0.7354  0.6921 0.7372 0.8814 0.8499 0.7931 | 0.7480  0.2303 0.1713 0.9681 0.9733 0.9757 0.9762
NMI 0.7796  0.7359 0.7803 0.8835 0.8636 0.8264 | 0.7833  0.4258 0.2704 0.9687 0.9703 0.9668 0.9674
ORL Accuracy | 0.7425 0.7143 0.7100 0.7038 0.8100 0.7200 | 0.7563  0.5175 0.4682 0.8550 0.8600 0.8700 0.8775
NMI 0.8459 0.8070 0.7952 0.7799 0.8603 0.8156 | 0.8555  0.7449 0.7332 0.9023 0.9034 0.9237 0.9249
COIL20 Accuracy | 0.8631 0.7087 0.6410 0.8371 0.8118 0.7416 | 0.8711  0.7215 0.6651 0.9314 0.9368 0.9743 0.9757
NMI 0.8892  0.8243 0.7412 0.8828 0.8747 0.8452 | 0.8990  0.8007 0.7971 0.9353 0.9408 0.9731 0.9740
COIL40 Accuracy | 0.7191  0.6549 0.4431 0.6870 0.6493 0.6327 | 0.4872  0.5812 0.1713 0.8003 0.8075 0.8389 0.8417
NMI 0.8212  0.7888 0.6545 0.8139 0.7828 0.7737 | 0.8318  0.7417 0.7840 0.8852 0.8941 0.9262 0.9267

The ¢5 norm performs slightly better than ¢; norm. This is consistent
with the results in [56]. Perhaps, this is caused by the inaccurate opti-
mization in ¢, norm since it is non-differentiable at zero.

As they share the same network for latent representation learning, the
improvement of DSLSP over DSC-Net is attributed to our introduced
similarity preserving mechanism. Note that the only difference between
their objective function is the additional similarity preserving term in
Eq. (19). For example, on COIL20, DSLSP-L2 improves over DSC-Net-
L2 by 3.89% and 3.32% in terms of accuracy and NMI, respectively.
For COIL40, our method with f5 norm outperforms DSC-Net-L2 by
3.42% on accuracy and 3.26% on NMI.

Both ORL and COIL20 datasets are used in Table 2 and 5. DSLSP-
L2 enhances the accuracy from 0.81, 0.8771 in Table 2 to 0.8775 and
0.9757, respectively. Once again, this demonstrates the power of deep
learning models. Furthermore, for these two datasets, our results in
Table 2 are also better than the shallow methods and AE+SSC in
Table 5. This further verifies the superior advantages of our similarity
preserving approach.

Compared to DEC and DKM, our method can improve the perfor-
mance significantly. This is own to that our method is based on sim-
ilarity, while other methods are based on Euclidean distance which is
not suitable for complex data.

In summary, above conclusions imply the superiority of our proposed simi-
larity preserving term, no matter in shallow or deep models.
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8. Conclusion

In this paper, we introduce a new structure learning framework, which is
capable of obtaining highly informative similarity graph for clustering and
semi-supervised methods. Different from existing low-dimensional structure
learning techniques, a novel term is designed to take advantage of sample
pairwise similarity information in the learning stage. In particular, by incor-
porating the similarity preserving term in our objective function, which tends
to keep the similarities between samples, our method consistently and sig-
nificantly improves clustering and classification accuracy. Therefore, we can
conclude that our framework can better capture the geometric structure of
the data, resulting in more informative and discriminative similarity graph.
Besides, our method can be easily extended to other self-expression based
methods. In the future, we plan to further investigate efficient algorithms
for constructing large-scale similarity graphs. Also, current methods conduct
label learning after graph construction. It is interesting to develop principled
method to solve the graph construction and label learning problems at the
same time.
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