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a b s t r a c t

It is well-known that artificial neural networks are universal approximators. The classical existence
result proves that, given a continuous function on a compact set embedded in an n-dimensional space,
there exists a one-hidden-layer feed-forward network that approximates the function. In this paper,
a constructive approach to this problem is given for the case of a continuous function on triangulated
spaces. Once a triangulation of the space is given, a two-hidden-layer feed-forward network with a
concrete set of weights is computed. The level of the approximation depends on the refinement of the
triangulation.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

One of the first results in the development of neural networks
s the Universal Approximation Theorem (Cybenko, 1989; Hornik,
1991). This classical result shows that any continuous function on
a compact set in Rn can be approximated by a multi-layer feed-
forward network with only one hidden layer and non-polynomial
activation function (like the sigmoid function). It is well-known
that this result has two important drawbacks for its practical use:
firstly, the width of the hidden layer grows exponentially and,
secondly, the proofs developed in Cybenko (1989) and Hornik
(1991) do not provide a practical algorithm for building such a
network. Bearing these results in mind, many researchers are
paying attention to theoretical aspects of the current success of
neural network architectures and searching for bounds for the
depth and width of such networks and the possibility that they
act as universal approximators (see, e.g., Liang & Srikant, 2016;
Safran & Shamir, 2017; Telgarsky, 2016 among many others).

Undoubtedly, the use of many hidden layers is a big contri-
bution to the success of deep learning architectures (Sun, Chen,
Wang, Liu, & Liu, 2016), but instead of exploring the power of
depth, recently several studies have made interesting contribu-
tions about the power of width (Hanin & Sellke, 2017; Lu, Pu,
Wang, Hu, & Wang, 2017; Nguyen, Mukkamala, & Hein, 2018). To
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sum up, these works show that there exist continuous functions
on compact sets that cannot be approximated by any neural
network if the width of the layers is not larger than a bound,
regardless of the depth of the network. In Guliyev and Ismailov
(2018), the authors constructively proved that single-hidden-
layer feed-forward networks with fixed weights are universal
approximators for univariate functions, and they provided a step-
by-step construction. However, as the authors claimed, not all
continuous multivariate functions can be approximated by such
neural networks. Their case of study could be considered some-
how a particular case of our approach for the 1-dimensional
case.

Other interesting research line on the expressive power of
neural networks follows an algebraic approach. In Delalleau and
Bengio (2011), Martens and Medabalimi (2014) and Poon and
Domingos (2012), sum product networks are explored and tensor
properties are studied in Cohen, Sharir, and Shashua (2016) and
Cohen and Shashua (2016). A different perspective was intro-
duced in Kileel, Trager, and Bruna (2019) where ‘‘deep polynomial
neural networks’’ (where the activation function is a polynomial
exponentiation) are considered.

In this paper, we provide an effective method for finding the
weights of a two-hidden-layer feed-forward network which ap-
proximates a given continuous function between two triangulable
metric spaces. Let us remark that the method is constructive,
and it only depends on the desired level of approximation to
the given function. Our approach is based on a classical result
from algebraic topology. Roughly speaking, our result is based on
two observations: Firstly, triangulable spaces can be ‘‘modeled’’
using simplicial complexes, and a continuous function between
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wo triangulable spaces can be approximated by a simplicial
ap between simplicial complexes. Secondly, a simplicial map
etween simplicial complexes can be ‘‘modeled’’ as a two-hidden-
ayer feed-forward network. Let us remark that the classical result
niversal Approximation Theorem is valid for all compact sets
n Rn and our results presented here are valid for triangulable
paces. However, triangulable spaces are common in real-world
roblems. Furthermore, we would like to highlight that an ad-
antage of our approach from a theoretical and practical point of
iew is that it can be useful to solve real-world problems that can
e modeled by triangulable spaces.
The paper is organized as follows: In Section 2, the preliminary

otions about multi-layer feed-forward networks and simplicial
omplexes are provided. Then, in Section 3, a concrete architec-
ure of such networks that acts equivalently to a given simplicial
ap is given. In Sections 4 and 5, we extend the Simplicial
pproximation Theorem and Universal Approximation Theorem,
espectively. The complexity of the architecture is studied in
ection 6. A specific example is described in Section 7. Finally,
onclusions are given in Section 8.

. Background

In this section, we recall some notions about artificial neural
etworks and simplicial complexes.

.1. Multi-layer feed-forward networks

Artificial neural networks are inspired by biological networks
f alive neurons in a brain. The number of different architectures,
lgorithms, and areas of application have recently grown in many
irections. In general, a neural network can be formalized as a
unction Nω,Θ : Rn

→ Rm that depends on a set of weights
and a set of parameters Θ which involves the description of

ctivation functions, layers, synapses between nodes (neurons),
nd whatever other consideration in its architecture. A good
ntroduction to artificial neural networks can be found in Haykin
1999).

In this paper, we focus on one of the simplest classes of ar-
ificial neural networks: multi-layer feedforward networks. They
onsist of three or more fully connected layers of nodes: an input
ayer, an output layer, and one or more hidden layers. Each node
n one layer has an activation function and it is connected with
very node in the following layer. The next definition formalizes
his idea.

efinition 1 (Adapted From Hornik, 1991). A multi-layer feed-
forward network defined on a real-valued n-dimensional space
is a function N : Rn

→ Rm such that, for each x ∈ Rn, N (x) is the
composition of k + 1 functions

N (x) = fk+1 ◦ fk ◦ . . . ◦ f1(x)

where k ∈ Z is the number of hidden layers, k ≥ 1, and, for
1 ≤ i ≤ k + 1, fi : Rdi−1 → Rdi is defined as

fi(y) = φi(W (i)
; y; bi)

being W (i) a real-valued di−1×di matrix, (that is, W (i)
∈ Mdi−1×di ),

bi ∈ Rdi the bias term, and φi a bounded, continuous, and non-
constant function (called activation function). Notice that d0 = n,
dk+1 = m and di ∈ Z, 1 ≤ i ≤ k, is called the width of the ith
hidden layer.

Next, we rewrite one of the most important theoretical results
of multi-layer feed-forward networks adapted to our notation.
Theorem 1 (Universal Approximation Theorem, Hornik, 1991). Let
A be any compact subset of Rn and let C(A) be the space of real-
valued continuous functions on A. Then, given any ϵ > 0 and any
function g ∈ C(A), there exists a multi-layer feed-forward network
N : Rn

→ R approximating g, that is, ∥g − N∥ < ϵ.

As far as we know, the existing proofs of this theorem are
non-constructive. See Cybenko (1989), Hornik (1991) and Hornik,
Stinchcombe, and White (1989) where it is claimed that there
exists a one-hidden-layer feed-forward network N : Rn

→ R,
defined asN (x) = f2◦f1(x) with f1(y) = φ1(W (1)

; y; b1) and f2(y) =
(2)y, approximating g , that is, ∥g − N∥ < ϵ, but no general

lgorithm to build N is given. In this paper, we will provide
constructive approach to Theorem 1 through a two-hidden-

ayer feed-forward network. The most important restriction to
ur approach is that our result is valid for triangulable spaces
nstead of compact ones but, as pointed out above, triangulable
paces cover most of the real-world problems.

.2. Simplicial complexes

In this subsection, we recall the main result used in this paper
ased on a classical theorem from algebraic topology known
s the Simplicial Approximation Theorem. For a further compre-
ension of the field, Ayala, Domínguez, and Quintero (2002),
oissonnat, Chazal, and Yvinec (2018), Edelsbrunner and Harer
2010), Hatcher (2002) and Munkres (1984) can be consulted.

Simplicial complexes are a data structure widely used to rep-
esent topological spaces. They are versatile mathematical ob-
ects that decompose a given topological space into pieces called
implices.

efinition 2. Let v0, v1, . . . , vi be i + 1 affinely independent
oints in Rn (being i ≤ n). An i-simplex, σ = (v0, v1, . . . , vi),
s the convex set

x ∈ Rn
⏐⏐ x =

i∑
j=0

λjvj with λj ≥ 0 and
i∑

j=0

λj = 1
}
.

he points v0, v1, . . . , vi are the vertices of σ . The dimension of
is i. We say that σ ′ is a face of σ (denoted as σ ′

⪯ σ ) if σ ′ is
n i′-simplex, with i′ ≤ i, and whose vertices are also vertices of
.

When several simplices are joint together, a more complex
tructure called simplicial complex is built. The following defi-
ition exhibits the way simplices can be glued together to obtain
uch a simplicial complex.

efinition 3. A simplicial complex K is a collection of simplices
uch that:

1. σ ∈ K and σ ′
⪯ σ implies σ ′

∈ K ;
2. σ , µ ∈ K implies σ ∩ µ is either empty or a face of both.

f such collection is finite, then K is a finite simplicial complex
see Fig. 1).

The underlying space of K , denoted by |K |, is the union of
he simplices of K together with the topology inherited from the
mbient Euclidean space where the simplices are placed.

efinition 4. A simplex σ ∈ K is maximal if it is not a face of any
ther simplex in K . The dimension of K , denoted by dim(K ) is the
argest of the dimensions of its maximal simplices. The simplicial
omplex K is pure if all the maximal simplices have dimension
qual to dim(K ).



E. Paluzo-Hidalgo, R. Gonzalez-Diaz and M.A. Gutiérrez-Naranjo / Neural Networks 131 (2020) 29–36 31

T

D
o
d

s
m

D
K

s

s
r
p

D
K

b

T

ϕ

t
t
K
a

D
|

b
g

g

f

o
a

A subcomplex L of K is a simplicial complex such that L ⊆ K .
he skeleton of K is a particular subcomplex of K . Let us remark

that the 0-skeleton of K is its vertex set.

efinition 5. The subcomplex of K consisting of all the simplices
f K of dimension j or less is called the j-skeleton of K and it is
enoted by K (j).

Next, we recall the concept of the star of a simplex σ in a
implicial complex K . Intuitively, it is the subcomplex of K whose
aximal simplices share σ as a face.

efinition 6. Let K be a simplicial complex and σ a simplex of
. The star of σ in K , denoted by st(σ ), is defined as:

t(σ ) =
{
µ ∈ K

⏐⏐ ∃ ξ ∈ K such that σ ⪯ ξ and µ ⪯ ξ
}
.

As said above, simplicial complexes are combinatorial data
tructures used to model topological spaces. A way to obtain a
efined model from an existing one is to subdivide it into small
ieces so that the result is topologically equivalent to the former.

efinition 7. Let K and K ′ be simplicial complexes. It is said that
′ is a subdivision of K if:

1. |K | = |K ′
|;

2. σ ′
∈ K ′ implies that there exists σ ∈ K such that σ ′ is

contained in σ .

The barycentric subdivision is a concrete example of subdi-
vision of simplicial complexes. Using that the barycenter of an
i-simplex σ = (v0 . . . vi) is

(σ ) =

i∑
j=0

1
j + 1

vj,

the definition of barycentric subdivision of a simplicial complex
arises in a natural way.

Definition 8. Let K be a simplicial complex. The barycentric
subdivision of the 0-skeleton of K is defined as the set of vertices
of K , that is, Sd K (0)

= K (0). Assuming we have Sd K (i−1), which
denotes the barycentric subdivision of the (i − 1)-skeleton of K ,
Sd K (i) is built by adding the barycenter of every i-simplex as
a new vertex and connecting it to the simplices that subdivide
the boundary of such i-simplex. The barycentric subdivision of
K , denoted by Sd K , is Sd K (u) where u is the dimension of K .
The iterated application of barycentric subdivisions is denoted by
Sdt K where t is the number of iterations (see Fig. 2).

Let us see now how the ‘‘geometric size’’ of the simplices of a
simplicial complex can be measured.

Definition 9. Let K be a finite simplicial complex. The diameter
of a simplex σ in K is defined as

δ(σ ) = max
{
∥x − y∥ such that x, y are vertices of σ

}
and the mesh of K is defined as

m(K ) = max
{
δ(σ ) such that σ ∈ K

}
.

Theorem 2 (Munkres, 1984, p. 86). Given a simplicial complex K
and a real number ϵ > 0, there exists an integer t > 0 such that
m(Sdt K ) ≤ ϵ.

Let us now think about maps between simplicial complexes.
These maps can be considered as extensions of simpler maps
defined between the corresponding vertices of two given sim-
plicial complexes. Interestingly, such maps can be considered as
approximations of continuous functions defined on the underly-
ing topological spaces that the simplicial complexes are modeling.
Let us formalize these notions.
Fig. 1. Example of a simplicial complex. (d) is a 0-simplex, (o, p) is a
1-simplex, (a, b, c) is a 2-simplex, and (e, f , g, h) is a 3-simplex. The 1-simplex
(a, b) is a face of (a, b, c). The maximal simplices of the simplicial complex are
(e, f , g, h), (a, b, c), (i, h, k), (i, j, k), (o, p), (o, q), (p, q), and (d). The dimension of
the simplicial complex is 3.

Fig. 2. On the left, a simplicial complex with just one maximal simplex, the
2-simplex (a, b, c). On the right, its first barycentric subdivision.

Definition 10. Let K and L be two simplicial complexes. A vertex
map is a map ϕ : K (0)

→ L(0) with the property that for every
simplex σ in K there exists a simplex µ in L such that the vertices
of σ map to vertices of µ.

A vertex map ϕ can be extended to a continuous function
ϕc : |K | → |L| in the following way.

Definition 11. Let K and L be two simplicial complexes and let
ϕ : K (0)

→ L(0) be a vertex map. The simplicial map ϕc induced by
ϕ is defined as follows. Let x ∈ |K |. Then there exist an i-simplex
σ = (v0, . . . , vi) in K and numbers λj ≥ 0 such that

i∑
j=0

λj = 1 and x =

i∑
j=0

λjvj.

hen

c(x) =

i∑
j=0

λjϕ(vj).

Any vertex map ϕ induces a simplicial map ϕc , but if we want
hat map to be a simplicial approximation of a continuous func-
ion between the underlying spaces of two simplicial complexes
and L, a restriction on the star of each vertex of K must be

dded.

efinition 12. Let K and L be simplicial complexes and g : |K | →

L| a continuous function. A simplicial map ϕc : |K | → |L| induced
y a vertex map ϕ : K (0)

→ L(0) is a simplicial approximation of
if

(|st(v) |) ⊂ |st(ϕ(v)) |

or each vertex v of K .

The Simplicial Approximation Theorem ensures the existence
f simplicial maps that approximate continuous functions as close
s we want.
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Fig. 3. From left to right and from top to bottom: (1) A sphere and a loop that
intersect; (2) the sphere and the loop with a possible triangulation (the loop is
covered by 2-simplices); (3) the triangulation of the loop and the sphere.

Theorem 3 (Simplicial Approximation Theorem Edelsbrunner &
arer, 2010, p. 56). If g : |K | → |L| is continuous then there is
sufficiently large integer t > 0 such that ϕc : |Sdt K | → |L| is a

implicial approximation of g.

Theorems 1 and 3 are key results in their respective fields. Our
im in this paper is to consider Theorem 3 as a pillar to obtain a
onstructive approach to Theorem 1. Roughly speaking, the idea
s to consider a simplicial approximation of a continuous function
etween two simplicial complexes. Such a simplicial approach is
haracterized through a vertex map which can be expressed as a
eural network. Besides, the simplicial approximation can be cho-
en in such a way that it approximates the continuous function
etween the underlying spaces of two simplicial complexes. Since
he parameters of the neural network can be effectively obtained
rom the vertex map, this method provides a constructive way
o find a neural network that approximates a continuous func-
ion between the underlying spaces of two simplicial complexes.
ollowing that aim, let us formalize the relationship between
opological spaces and simplicial complexes.

efinition 13. A triangulation of a topological space X consists
f a simplicial complex K and a homeomorphism τ : X → |K |.
e say that the triangulation is finite if K is finite. We say that X

s (finitely) triangulable if such (finite) triangulation exists.

The spaces that can be triangulated by simplicial complexes
see Hatcher, 2002, Theorem A.7, p. 525) are compact, locally
ontractible spaces that can be embedded in Rn for some n. Let us
emark that the Universal Approximation Theorem (Theorem 1)
s valid for any compact subset of Rn, regardless of whether they
re locally contractible or not. Not all compact sets in a metric
pace are locally contractible (see Geoghegan, 2010, Chapter 17.7,
. 426). Nevertheless, as far as we know, non-locally contractible
paces are very odd in Rn and this technical topological property
as no practical application in real-world problems. Therefore, we
an say that the results proved on triangulable spaces are true
n a large amount of current neural network problems. Besides,
e will restrict ourselves to finite pure triangulations. The other
ases could be obtained using homotopies. For example, given a
phere and a circumference that intersect transversely, the sphere
an be triangulated using 2-simplices, and the circumference can
e covered by 2-simplices obtaining a finite pure triangulation of
space homotopic to the initial one (see Fig. 3).
Next, we extend the definition of a mesh of a simplicial com-

lex in the following way.

efinition 14. Let X be a triangulable metric space and (K , τ )
finite triangulation of X . The mesh of X induced by (K , τ ) is
efined as

˜ (X) = max
{
δ̃(σ ) | σ ∈ K

}

(K ,τ )
here

˜(σ ) = max
{
dX (x, y) | x = τ−1(a), y = τ−1(b); a, b ∈ σ

}
s the extended diameter of a simplex.

. Multi-layer feed-forward networks and simplicial maps

In this section, we will show that simplicial maps can be mod-
led via multi-layer feed-forward networks in a straightforward
ay.
In the following theorem, we will compute a two-hidden-layer

eed-forward network to model a simplicial map ϕc : |K | → |L|
where K and L are finite pure simplicial complexes. This is not
an important constraint in our case, since our final aim is to
design a multi-layer feed-forward network that approximates a
continuous function between finitely triangulable spaces.

Theorem 4. Let us consider a simplicial map ϕc : |K | → |L|
between the underlying space of two finite pure simplicial complexes
K and L. Then a two-hidden-layer feed-forward network Nϕ such
hat ϕc(x) = Nϕ(x) for all x ∈ |K | can be explicitly defined.

Proof. Let us assume that dim(K ) = n and dim(L) = m.
esides, let {σ1, . . . σk} be the maximal n-simplices of K , where
i =

(
vi0, . . . , v

i
n

)
for all i; and let {µ1, . . . , µℓ} be the maximal

-simplices of L, where µj =
(
uj
0, . . . , u

j
m
)
for all j. Let us con-

ider a multi-layer feed-forward network Nϕ with the following
rchitecture:
(1) An input layer composed of d0 = n neurons;
(2) a first hidden layer composed of d1 = k · (n + 1) neurons;
(3) a second hidden layer composed of d2 = ℓ·(m+1) neurons;

nd
(4) an output layer with d3 = m neurons.
Then, let Nϕ = f3◦ f2◦ f1 being fi(y) = φi(W (i)

; y; bi), i = 1, 2, 3.
ow, the idea is to encode the simplicial complexes involved
n the mapping in the hidden layers of the multi-layer feed-
orward network. Firstly, a point x in Rn is transformed into a
· (n + 1) vector. This vector can be seen as the juxtaposition
f k vectors of dimension n + 1, one for each of the k simplices
n K . Each vector of dimension n + 1 represents the barycentric
oordinates of x with respect to the corresponding simplex. The
atrix W (1)

∈ Mk(n+1)×n and the bias term b1 can be obtained
rom the barycentric coordinates relations as follows. Firstly,

(1)
=

⎛⎜⎝W (1)
1
...

W (1)
k

⎞⎟⎠
where W (1)

i ∈ M(n+1)×n is:(
vi0 · · · vin
1 · · · 1

)−1

=
(
W (1)

i

⏐⏐ Bi
)

being {vi0, . . . , v
i
n} the set of vertices of the maximal simplex σi

of K , and second, b1 ∈ Rk(n+1) is:

b1 =

⎛⎜⎝B1
...

Bk

⎞⎟⎠ .
The function φ1 is then defined as:

φ1(W (1)
; y; b1) = W (1)y + b1.

The matrix of weights W (2)
∈ Mℓ(m+1)×k(n+1) between the first

and the second hidden layer of Nϕ encodes the vertex map ϕ.

The first hidden layer is composed of k · (n + 1) neurons that
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correspond to the vertices of the maximal simplices of K . The
second hidden layer is composed of ℓ · (m + 1) neurons that
correspond to the vertices of the maximal simplices of L. The
atrix W (2) is composed of values zeros and ones. On the one
and, an element of W (2) has value 1 if the corresponding vertices
n K and L are related by the vertex map ϕ, and, on the other hand,
it has value 0 if they are not related by ϕ. Then,

W (2)
=
(
W (2)

s1,s2

)
where

W (2)
s1,s2 =

{
1 if ϕ(vit ) = uj

r ,

0 otherwise;

being s1 = j(r +1) and s2 = i(t +1) for i = 1, . . . , k; j = 1, . . . , ℓ;
t = 0, . . . , n; and r = 0, . . . ,m. The bias term b2 is the null
vector. Then, the function φ2 is defined as:

φ2(W (2)
; y; b2) = W (2)y.

The output of the second hidden layer can be seen as the jux-
taposition of ℓ vectors of dimension m + 1, one vector for each
simplex in the simplicial complex L. Each of these vectors rep-
resents the barycentric coordinates of ϕc(x) with respect to the
corresponding simplex in L. In the next step, only vectors whose
all coordinates are greater than or equal to zero are considered.
This condition encodes the simplices of L to which ϕc(x) belongs.
Then, φ3(W (3)

; y; b3) maps the barycentric coordinates of ϕc(x)
with respect to each maximal simplex of L to which ϕc(x) belongs,
to the Cartesian coordinates of ϕc(x). Specifically,

W (3)
=
(
W (3)

1 · · · W (3)
ℓ

)
∈ Mm×ℓ(m+1),

being W (3)
j =

(
uj
0 · · · uj

m
)
; and b3 is the null vector. Finally, φ3

is defined as:

φ3(W (3)
; y; b3) =

∑ℓ

j=1 z
jψ(yj)∑ℓ

j=1 ψ(yj)

for y =

⎛⎜⎝y1
...

yℓ

⎞⎟⎠ ∈ Mℓ·(m+1), with z j = W (3)
j yj and ψ(yj) = 1 if all

the coordinates of yj are greater than or equal to 0 and ψ(yj) = 0
otherwise.

The particular choice of φ3 and ψ is motivated by the use of
the barycentric coordinates. Let us observe that the barycentric
coordinates vary with respect to the maximal simplex considered
to compute them and that the barycentric coordinates are com-
puted from the coordinates of the vertices of the maximal simplex
considered. Besides, maximal simplices can share common ver-
tices. Then, the map ψ is used to determine if a given input is
located in a specific simplex. The map φ3 is used to normalize the
esult in case that a point belongs to more than one simplex. □

Summing up, Theorem 4 establishes that a two-hidden-layer
eed-forward network can act equivalently to a simplicial map.
he architecture and the specific computation of the parameters
f the network are provided in the proof of the theorem.

. Simplicial approximation theorem extension

In this section, we provide an extension of the Simplicial
pproximation Theorem together with an explicit algorithm to
ompute a simplicial approximation ‘‘as close as desired’’ to a
iven continuous function g : |K | → |L| between the underlying

spaces of two simplicial complexes K and L. The first observa-
tion is that the Simplicial Approximation Theorem (Theorem 3)
refers to any continuous function. Nevertheless, continuity is a
property of functions between topological spaces, not necessarily
metric spaces. The next result introduces the concept of closeness
between simplicial approximations and continuous functions.
Proposition 1. Given ϵ > 0 and a continuous function g : |K | →

|L| between the underlying spaces of two simplicial complexes K and
L, there exist t1, t2 > 0 such that ϕc : |Sdt1 K | → |Sdt2 L| is a
simplicial approximation of g and ∥g − ϕc∥ ≤ ϵ.

Proof. By Theorem 2, there exists t2 such that m(Sdt2 L) ≤ ϵ.
Then, by Theorem 3, there exists t1 such that ϕc : |Sdt1 K | →

|Sdt2 L| is a simplicial approximation of g:

|K | |L|

K L

Sdt1 K Sdt2 L

|Sdt1 K | |Sdt2 L|

g

Sd Sd

ϕc

Besides, ∥g − ϕc∥ ≤ ϵ because m(Sdt2 L) ≤ ϵ. □

Algorithm 1: Computing a vertex map that induces a simplicial
approximation
Input: A continuous function g : |K | → |L| between the

underlying spaces of two simplicial complexes K and L,
and an integer t where Sdt k satisfies the star
condition: for each v ∈ Sdt K (0) there exists w ∈ L(0)
such that g(|st(v)|) ⊆ |st(w)|.

Output: A vertex map ϕ that induces simplicial
approximation ϕc of g .

foreach vertex v ∈ Sdt K (0) do
Choose w ∈ L(0) such that g(|st(v)|) ⊆ |st(w)| and define
ϕ(v) := w.

Algorithm 1 is inspired in the proof of the Simplicial Approx-
imation Theorem given in Edelsbrunner and Harer (2010, p. 56)
and computes a vertex map ϕ : Sdt K (0)

→ L(0) from which we
can define the simplicial approximation ϕc : |Sdt K | → |L| of a
continuous function g : |K | → |L|.

Theorem 5. Given a continuous function g : |K | → |L| and ϵ > 0,
a two-hidden-layer feed-forward network N such that ∥g−N∥ ≤ ϵ

can be explicitly defined.

Proof. By Proposition 1, there exists a simplicial approximation
ϕc of g such that ∥g − ϕc∥ ≤ ϵ, that can be computed using
Algorithm 1. Then, by Theorem 4 there exists Nϕ such that ϕc =

Nϕ . □

5. Universal approximation theorem extension

In the previous sections, we have proved that a continuous
function between triangulable spaces can be approximated by us-
ing the Simplicial Approximation Theorem. In this section, using
the extension of the Simplicial Approximation Theorem given in
Proposition 3, we provide a constructive version of the Univer-
sal Approximation Theorem that approximates any continuous
function (under some specific conditions) arbitrarily close.

Proposition 2. Let (K , τ ) be a finite triangulation of a metric
space X. For all ϵ > 0 there exist t > 0 and γ > 0 such that if
m(Sdt K ) ≤ γ then m̃(Sdt K ,τ )(X) ≤ ϵ.
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roof. Let us consider a, b0 ∈ |K |. Then, a ∈ σ0 for some maximal
simplex σ0 ∈ K . If b0 belongs to σ0 then ∥a − b0∥ ≤ δ(σ0) and
dX (x, y0) ≤ δ̃(σ0), being x = τ−1(a) and y0 = τ−1(b0). Otherwise,
we repeat the reasoning with Sd K . Now, a and b0 can belong
to the same simplex in Sd K or not. If they belong to the same
simplex in Sd K , write b1 = b0. If not, take a new point b1 such
that a, b1 ∈ σ1 and σ1 ∈ Sd σ0. Therefore, ∥a − b1∥ ≤ δ(σ1) ≤

(σ0). Besides, dX (x, y1) ≤ δ̃(σ1) ≤ δ̃(σ0) being x = τ−1(a) and
y1 = τ−1(b1) This process can be iterated: ∥a − bt∥ ≤ δ(σt ) ≤

. . . ≤ δ(σ1) ≤ δ(σ0) and dX (x, yt ) ≤ δ̃(σt ) ≤ . . . ≤ δ̃(σ1) ≤ δ̃(σ0),
being x = τ−1(a) and yt = τ−1(bt ). By this, we have defined
a sequence {bi}ti=0 that converges to a. Therefore, given ϵ > 0,
there exists t such that dX (x, yt ) ≤ ϵ, being x = τ−1(a) and
yt = τ−1(bt ). Let us suppose, without loss of generality, that
δ̃(σt ) = m̃(Sdt K ,τ )(X). Then, we can consider γ = m(Sdt K ). □

Corollary 1. Given ϵ > 0 and a finite triangulation (K , τ ) of a
metric space X, there exists t such that

m̃(Sdt K ,τ )(X) ≤ ϵ.

Proof. By Theorem 2 there exists t ′ such that m(Sdt ′ K ) ≤ γ .
Then, by Proposition 2, there exists t such that m̃(Sdt K ,τ )(X) ≤

ϵ. □

Given two continuous functions g1 and g2 between two met-
ric spaces X and Y , we denote sup{dY (g1(x), g2(x)) | x ∈ X}

also by ∥g1 − g2∥. Now, given a continuous function g between
two finitely triangulable metric spaces X and Y , there exists a
simplicial approximation ϕc ‘‘arbitrarily close’’ to g .

Proposition 3. Let X and Y be two finitely triangulable metric
spaces, g : X → Y a continuous function, and ϵ > 0. Then,
there exist two finite triangulations (K , τK ) and (L, τL) of X and Y ,
espectively, and a simplicial approximation ϕc : |Sdt1 K | → |Sdt2 L|
uch that ∥g − ϕ̃c∥ ≤ ϵ being ϕ̃c = τ−1

L ◦ ϕc ◦ τK .

roof. First, by Corollary 1, there exists t2 such that
m̃(Sdt2 L,τL)(Y ) ≤ ϵ. Next, by Theorem 3, there exist t1 > 0

nd a vertex map ϕ : (Sdt1 K )(0) → (Sdt2 L)(0) such that ϕc :

Sdt1 K | → |Sdt2 L| is a simplicial approximation of τL ◦ g ◦ τ−1
K .

ake into account that |Sdt1 K | = |K | and |Sdt2 L| = |L|. Finally,
ince m̃(L,τL)(Y ) ≤ ϵ then ∥g − ϕ̃c∥ ≤ ϵ. Below, a diagram that
chematizes the proof:

X Y

|K | |L|

K L

Sdt1 K Sdt2 L

(Sdt1 K )(0) (Sdt2 L)(0)

τK

g

τL

ϕc

Sd Sd

ϕ

Finally, we reach the main result of this section: Given a
ontinuous function g between two finitely triangulable spaces
and Y , we can obtain two finite simplicial complexes K and

L associated to them, and a multi-layer feed-forward network
between the underlying spaces of K and L which ‘‘approximates’’
g .
Theorem 6. Given a continuous function g : X → Y between two
finitely triangulable metric spaces X and Y and finite triangulations
(K , τK ) and (L, τL) of, respectively, X and Y , a two-hidden-layer feed-
orward network N such that ∥g−Ñ∥ ≤ ϵ, being Ñ = τ−1

L ◦N ◦τK ,
an be explicitly defined.

roof. By Proposition 3, there exists a simplicial approximation
c such that ∥g − ϕ̃c∥ ≤ ϵ. Finally, by Theorem 4, there exists N
uch that N = ϕc in all the domains. □

. Complexity of the architecture of the network

In previous sections, we have provided a constructive ap-
roach to build neural networks to approximate continuous func-
ions as close as desired. Now, let us study how the ‘‘complexity’’
f the architecture of the neural network increases in terms of
he number of neurons in each hidden layer.

efinition 15. The complexity of a neural network is the maxi-
um of the widths of its hidden layers.

First, let us observe that we can infer an upper bound for
he amount of barycentric subdivisions of a simplicial complex
eeded to reach a specific mesh.

roposition 4. Let us consider a finite pure simplicial complex K .
et dim(K ) = n and let 0 < ε < m(K ). If

≥
log(m(K )) − log(ε)
log(n + 1) − log(n)

then m(Sdt (K )) ≤ ε.

Proof. Let us observe that m(Sdt (K )) ≤ m(K ) ·
( n
n+1

)t . Then,
m(Sdt (K )) ≤ ε ⇐ m(K ) ·

(
n

n + 1

)t

≤ ε ⇔ t ≥

log
(

ε
m(K )

)
log
( n
n+1

) . □

Let us recall that, given two finite pure simplicial complexes
K and L with, respectively, k and ℓ maximal simplices, being,
respectively, dim(K ) = n and dim(L) = m, the width of the first
and the second hidden layer of the neural network N described in
Theorem 4 is, respectively, k·(n+1) and ℓ·(m+1). Let us describe
how the complexity of N increases with the iterated applications
of the barycentric subdivisions. Let us consider, without loss of
generality, that we apply one barycentric subdivision to K . Then,
the width of the first hidden layer increases from k · (n + 1) to
k · (n + 1)! · (n + 1).

Remark 1. Let us consider a simplicial approximation ψc :

|Sdt1 K | → |Sdt2 L| of a continuous function, being K and L two
finite pure simplicial complexes of dimension n and m, and with
k and ℓ maximal simplices, respectively. The complexity of the
two-hidden-layer feed-forward network Nψ is

C(t1, t2) = max
{
k
(
(n + 1)!

)t1 (n + 1), ℓ
(
(m + 1)!

)t2 (m + 1)
}
.

We can relate the modulus of continuity of the input function
and the modulus of continuity of the simplicial approximation
c between triangulations of the input spaces. Let us recall the
efinition of modulus of continuity of a function.

efinition 16. The modulus of continuity of a continuous func-
ion g : X → Y between two metric spaces X and Y is given
y:

(δ, g) = sup
{
dY (g(x), g(y)) | dX (x, y) ≤ δ

}
.

n particular we have that:

X (x, y) ≤ δ ⇒ dY (g(x), g(y)) ≤ ρ(δ, g).
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Now, let us study the complexity of the resulting network in
terms of the mesh of the triangulation and on the modulus of
continuity of the considered function.

Theorem 7. Let g : X → Y be a continuous function between two
triangulable metric spaces with modulus of continuity ρ(δ, g) ≥ 0.
Let us suppose that there exist finite triangulations (K , τK ) and (L, τL)
of X and Y , respectively. Then, there exists a two-hidden-layer feed-
forward network N such that ρ(δ, Ñ ) ≤ 2ρ(δ, g) and ∥g − Ñ∥ ≤
ρ(δ,g)

2 being Ñ = τ−1
L ◦ N ◦ τK .

roof. Let ϵ =
ρ(δ,g)

2 . By Theorem 6, there exists a two-hidden-
layer feed-forward network N such that ∥g − Ñ∥ ≤ ϵ. Consider
x, y ∈ X such that dX (x, y) ≤ δ. then,

dY (Ñ (x), Ñ (y))
≤ dY (g(x), Ñ (x)) + dY (g(x), g(y)) + dY (g(y), Ñ (y))
≤ 2∥g − Ñ∥ + ρ(δ, g) ≤ 2ρ(δ, g). □

7. Example

In this section, we show a concrete example of a multi-layer
feed-forward network approximating a continuous function be-
tween two triangulable spaces. The following diagram illustrates
the example:

B3 B2

K L

K (0) L(0)

g

τK
τL

ϕc

ϕ

Let us consider the n-dimensional ball Bn
=
{

x ∈ Rn
| 1 ≥

∥x∥
}
. Then, a triangulation of B3 is the simplicial complex K

whose maximal simplex is a tetrahedron with set of vertices
K (0)

=
{

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)
}
and a homeomor-

phism τK : B3
→ |K | whose inverse is defined for any point

P ∈ |K | as follows:

P ′
= τ−1

K (P) = λ(P) ·

(
P −

(1
4
,
1
4
,
1
4

))
where λ(P) is the quotient |OB|/|OA| being point O = (0, 0, 0),
point A the intersection of the boundary of the tetrahedron with
the line that goes through O and P , and point B the intersection
of such line with the sphere S2 =

{
x ∈ R3

| 1 = ∥x∥
}
. See Fig. 4

for a similar homeomorphism in the 2-dimensional case.
Besides, let us consider the continuous function g : B3

→ B2

where g : B3
→ B2 is the projection given by g : (Px, Py, Pz) →

(Px, Py) being P = (Px, Py, Pz) ∈ B3. Besides, B2 can be triangu-
lated by the simplicial complex L whose maximal simplex is the
triangle with set of vertices L(0) = {(0, 0), (1, 0), (0, 1)} and the
homeomorphism τL : B2

→ |L|, whose inverse is

P ′
= τ−1

L (P) = λ(P) ·

(
P −

(1
4
,
1
4

))
where P ∈ |L| and λ(P) is computed in a similar way than above.
See Fig. 4.

Now, let us approximate g with a two-hidden-layer neural
network. First, let us observe that a simplicial approximation
Fig. 4. Geometric visualization of the computation of the parameter λ in the
homeomorphism τL by which P is mapped to P ′ .

ϕc of τL ◦ g ◦ τ−1
K is given by the vertex set ϕ : K (0)

→ L(0)
defined as ϕ((0, 0, 0)) = (0, 0), ϕ((1, 0, 0)) = (1, 0), ϕ((0, 1, 0)) =

(0, 1), and ϕ((0, 0, 1)) = (0, 1). Once the simplicial approximation
is computed, we can determine the specific two-hidden-layer
neural network Nϕ that acts equivalently to ϕc . Concretely, the
architecture of Nϕ is composed of an input layer with 3 neurons,
a first hidden layer with 4 neurons, a second hidden layer with
3 neurons, and an output layer with 2 neurons. The weights and
bias can be computed following the proof of Theorem 4:⎛⎜⎝0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

⎞⎟⎠
−1

=

⎛⎜⎝−1 −1 −1 1 1
1 0 0 1 0
0 1 0 1 0
0 0 1 1 0

⎞⎟⎠

Then, W (1)
=

⎛⎜⎝−1 −1 −1
1 0 0
0 1 0
0 0 1

⎞⎟⎠ and b1 =

⎛⎜⎝1
0
0
0

⎞⎟⎠.

W (2)
=

(1 0 0 0
0 1 0 0
0 0 1 1

)

W (3)
=

(
0 1 0
0 0 1

)
In this straightforward example, the spaces B3 and B2 are

approximated by just one 3-simplex and one 2-simplex, respec-
tively. Therefore, m̃(K ,τK )(B

3) and m̃(L,τL)(B
2) are upper bounded

by the size of B3 and B2, respectively. If we want a better ap-
roximation to g , we should apply the barycentric subdivision to

K and L, respectively. Doing that, we would obtain six maximal
2-simplices in L, and sixteen maximal 3-simplices in K . Hence,
the architecture of the neural network will consist of 64 neurons
in the first hidden layer, and 18 neurons in the second hidden
layer.

8. Conclusion

In this paper, we have provided an effective method to build a
multi-layer feed-forward network which approximates a continu-
ous function between triangulable spaces. The main contribution
of the paper is the proof that the weights can be exactly computed
without any training process. Although the homeomorphisms
between the triangulable spaces and the simplicial complexes
can be hard to find and the classic theorem for approximations
through neural networks is valid for compact sets and our result
is only valid for triangulable spaces, most of the real-world prob-
lems are covered by our result and, therefore, approximations
to continuous functions through neural networks can effectively
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e built. Besides, our method can be considered a suitable and
owerful tool for the approximation of continuous functions on
riangulable spaces. Two of the main advantages of the proposed
ethod are: (1) knowing a priori how many hidden neurons are
eeded to reach the desired accuracy; and (2) no need for a
raining process.
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