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Abstract Image-to-image translation has drawn great

attention during the past few years. It aims to translate

an image in one domain to a given reference image in

another domain. Due to its effectiveness and efficiency,

many applications can be formulated as image-to-image

translation problems. However, three main challenges

remain in image-to-image translation: 1) the lack of

large amounts of aligned training pairs for different

tasks; 2) the ambiguity of multiple possible outputs

from a single input image; and 3) the lack of simultane-

ous training of multiple datasets from different domains

within a single network. We also found in experiments

that the implicit disentanglement of content and style

could lead to unexpect results. In this paper, we pro-

pose a unified framework for learning to generate di-

verse outputs using unpaired training data and allow

simultaneous training of multiple datasets from differ-

ent domains via a single network. Furthermore, we also

investigate how to better extract domain supervision

information so as to learn better disentangled represen-

tations and achieve better image translation. Experi-

ments show that the proposed method outperforms or

is comparable with the state-of-the-art methods.

Keywords Neural networks · Generative adversarial

network · Image-to-image translation

Weihao XIA
Graduate School at Shenzhen, Tsinghua University, P.R.
China
E-mail: xiawh16@mails.tsinghua.edu.cn

Yujiu Yang
Graduate School at Shenzhen, Tsinghua University, P.R.
China
E-mail: yang.yujiu@sz.tsinghua.edu.cn

Jing-Hao Xue
Department of Statistical Science, University College London
E-mail: jinghao.xue@ucl.ac.uk

1 Introduction

Image-to-image translation aims to learn a mapping

that can transfer an image from a source domain to

a target domain, while maintaining the main represen-

tations of the input image. It has received significant at-

tention since many problems in computer vision can be

formulated as the cross-domain image-to-image trans-

lation (Isola et al., 2017; Zhu et al., 2017a,b), including

super-resolution (Ledig et al., 2017), image inpainting

(Yu et al., 2018a,b; Nazeri et al., 2019), and style trans-

fer (Gatys et al., 2016).

Despite of the great success, learning the mapping

between two visually different domains is still challeng-

ing in three aspects. First, exquisite large-scale datasets

with thousands of aligned training pairs for different
tasks are often unavailable. Second, in many scenarios,

such mappings of interest are inherently multi-modal or

one-to-many, i.e., a single input may correspond to mul-

tiple possible outputs. Third, for multi-domain image

translation tasks, many existing methods learn an indi-

vidual mapping separately between only two domains

selected from all given domains. With n domains, this

needs
(
n
2

)
= Θ

(
n2
)

models to train. They are incapable

of jointly learning the mapping between all available

domains from different datasets. Several recent efforts

have been made to address these issues.

To tackle the paired training data limitation, many

works propose their unsupervised learning frameworks

for general-purpose image-to-image translation. Most

methods are inspired by the idea that the unpaired im-

ages from two domains should be consistent with their

reconstructions in a cyclic mapping (Zhu et al., 2017a)

or primal-dual relation (Yi et al., 2017). Superiority of

this cycle consistency loss has been demonstrated on

several tasks where paired training data hardly exist.
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Table 1 Feature-by-feature comparison of image-to-image translation methods. Our model achieves unsupervised multi-domain
multi-modal image-to-image translation with explicit domain-constrained disentanglement.

Method Pix2pix CycleGAN BicycleGAN StarGAN DosGAN MUNIT DRIT Ours

Unsupervised learning - X - X X X X X
Multi-modal - - X - - X X X
Multi-domain - - - X X - - X

Disentangled representation - - - - - X X X
Domain supervision - - - - X - - X

However, these methods fail to produce multi-modal

outputs conditioned on the given input image.

To capture the full distribution of possible outputs,

simply incorporating noise vectors as additional inputs

often lead to the mode collapsing issue and thus does

not increase the variation of the generation images. Zhu

et al. (2017b) tries to encourage the one-to-one relation-

ship between the output and the latent vector to gener-

ate diverse outputs. Nevertheless, the training process

of Zhu et al. (2017b) requires paired images. Very re-

cently, Lee et al. (2018) and Huang et al. (2018) propose

the disentangled representation framework to generate

diverse outputs with unpaired training data. These two

multi-modal unsupervised image-to-image translation

methods assume that the latent space of image can be

decomposed into a content latent space and a style la-

tent space, and the images in different domains vary

in the style but share a common content. Thus multi-

modality can be achieved by recombining the content

vector of an image from the source domain with a ran-

dom style vector in the target style latent space.

To simultaneously train multiple datasets with dif-

ferent domains within a single network, Choi et al. (2018)

uses a label (e.g., binary or one-hot vector) to represent

domain information. Instead of learning a fixed map-

ping for two domains, they input both images and their

corresponding domain information to the model, and

learn to flexibly translate the images from the source

domain to the target domain. By controlling domain

labels, an image can be translated into any desired

domain. Instead of representing domain characteristics

with multiple domain labels as in Choi et al. (2018),

Lin et al. (2019) treats domain information as explicit

supervision. They pre-train a classification network to

classify the domain of an image. Such features, together

with the latent content features of an image in the

source domain are used to generate an image in the

target domain. Such features extracted from this pre-

trained network can represent domain information, thus

can be called domain features and training with do-

main features is called Domain Supervision. However,

both methods produce a single output and are lack of

output diversity.

Many methods (Lee et al., 2018; Huang et al., 2018;

Liu et al., 2018) adapt disentangled representations for

unsupervised image-to-image translation, but we found

in experiments that implicit disentanglement learning

may confuse content with style in some cases. As shown

in Figure 3, if adapting Lee et al. (2018) for image de-

blurring task, the de-blurred images have different face

contour with original one, which means that the at-

tribute extractor has not only learned blur distortion

pattern but also recognize some content representations

like face contour as style. It can be attributed to the

ambiguous and implicit disentanglement of content and

style.

What’s more, domain information are under-exploited

in the area of image-to-image translation. For photo-to-

art translation, we can distinguish that the generated

image is either in the style of Pablo Picasso or in the

style of Isaac Levitan. Similarly, different weather like

sunny, foggy, rainy, snowy and cloudy should contain

specific modality, and the same is true for seasons. Style

itself could be learned in the collections of a unique

artist.

To the best of our knowledge, we are the first image-

to-image translation approach trying to handle fore-

mentioned challenges. In this paper, we propose the un-

supervised Multi-domain Multimodal Image-to-image

Translation with Explicit Domain-Constrained Disen-

tanglement (named DCM2IT). DCM2IT is a unified

framework for learning to generate diverse outputs with

unpaired training data and allow simultaneous training

of multiple datasets with different domains by a single

network. Furthermore, we investigate how to utilize do-

main information and explicitly constrain the disentan-

glement for unsupervised image-to-image translation.

To sum up, our key contributions can be summa-

rized as:

– We introduce the first image-to-image method that

achieves diverse outputs with simultaneous unsu-

pervised training of multiple datasets by a single

network.

– We propose disentanglement learning constraint with

domain supervision. We investigate how to extract

domain supervision information so as to learn ex-
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plicit disentangled representations of content and

style.

– Extensive qualitative and quantitative experiments

on multiple datasets show that the proposed method

outperforms or comparable with the state-of-the-art

methods.

2 Related work

We initially provide an overview of the recent advances

with Generative Adversarial Networks, then introduce

some existing image-to-image translation methods and

disentangled representations. We also give brief intro-

duction of style transfer and domain adaptation, which

are two tasks closely related with image-to-image trans-

lation.

2.1 Generative Adversarial Network

The Generative Adversarial Network (GAN) (Good-

fellow et al., 2014) framework has achieved excellent

results in many tasks such as image super-resolution

(Ledig et al., 2017), and image inpainting (Yu et al.,

2018a,b; Nazeri et al., 2019). GANs usually consist of a

generator G and a discriminator D. The training pro-

cedure for GANs is a minimax game between G and

D. D is trained to distinguish whether the input im-

age as real or fake, and G is trained to fool D with

generated samples. The ideal solution is the Nash equi-

librium where G and D could not improve their cost

unilaterally (Heusel et al., 2017).

Various improvement has been proposed to handle
challenges in GANs including model generalization and

training stability. Arjovsky et al. (2017) and Gulra-

jani et al. (2017) propose to minimize the Wasserstein

distance between model and data distributions. Berth-

elot et al. (2017) try to optimize a lower bound of the

Wasserstein distances between auto-encoder loss distri-

butions on real and fake data distributions. Mao et al.

(2017) propose a least square loss for the discrimina-

tor, which implicitly minimizes Pearson X 2 divergence,

leading to stable training, high image quality and con-

siderable diversity.

2.2 Image to image translation

Isola et al. (2017) propose the first general image-

to-image translation method (pix2pix) based on condi-

tional GANs. Wang et al. (2018a) propose an HD ver-

sion of pix2pix by utilizing a coarse-to-fine generator,

several multi-scale discriminators, and a feature match-

ing loss, which increase the resolution to 2048 × 1024.

Since it is usually time-consuming and expensive to

collect such an exquisite large-scale dataset with thou-

sands of image pairs, many studies have also attempted

to tackle the paired training data limitation. Zhu et al.

(2017a), Kim et al. (2017), Yi et al. (2017) and Liu et al.

(2017) leverage cycle consistency to regularize the unsu-

pervised training process. Many works aim to produce

diverse outputs, including Zhu et al. (2017b), Lee et al.

(2018) and Huang et al. (2018). Some other methods

like Choi et al. (2018), Lin et al. (2019), Liu et al. (2018)

and Anoosheh et al. (2018) are proposed to improve the

scalability of unsupervised image-translation methods.

Table 1 shows a feature-by-feature comparison among

some existing image-to-image translation methods.

2.3 Disentangled representations

There are many recent works on disentangled repre-

sentation learning. For example, Lu et al. (2019) try to

disentangle content from blur, Denton et al. (2017) sep-

arate time-independent and time-varying parts, John-

son et al. (2016) intend to iteratively optimize the image

by minimizing a content loss and a style loss, which can

also be regard as an implicit disentanglement of con-

tent and style. Zhu et al. (2017b) combine cLR-GAN

and cVAE-GAN to model the distribution of possible

outputs. Chen et al. (2016a) decompose representation

by maximizing the mutual information between the la-

tent factors and the synthesized images without utiliz-

ing paired training data. Some other works (Xiao et al.,

2018; Liu et al., 2018; Lee et al., 2018; Huang et al.,

2018) focus on disentanglement of content and style or

attribute. It is difficult to explicitly define content or

style and different works may adopt different defini-

tions due to their specific tasks. In our setting, we refer

to content as being visual elements that can be shared

across domains and style as domain-specific. We dis-

entangle an image into domain-invariant and domain-

specific representations to facilitate learning diverse cross-

domain mappings.

2.4 Style transfer

Gatys et al. (2016) introduce an impressive neural

algorithm that transfers a content image to the style of

another image, achieving so-called style transfer. The

original work of Gatys et al. (2016) iteratively updates

the image to minimize a content loss and a style loss by

a slow optimization process. Some methods (Johnson

et al., 2016; Li and Wand, 2016; Ulyanov et al., 2016a)

change this optimization to a feed-forward alternative
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Fig. 1 The pipeline of our method. To achieve image translation between two domains, images from different domains are
encoded as domain-invariant content representations c and domain-specific style representations s. Then swap the style codes
and use generator G to produce the translated output images. The second translation process constrains the image reconstruc-
tion with cycle consistency loss. Due to the disentangled representations, the style representations are constrained to match
the prior Gaussian distribution, so we can generate several possible outputs by random sampling from this prior. The domain
style representations are extracted from collection of a certain style and constrain the disentanglement of content and style.
The multi-domain simultaneous training is implemented by adding specific discriminative labels for each domain.

for acceleration. Ulyanov et al. (2017) propose a method

to improve the quality and diversity of the generated

samples. Chen and Schmidt (2016) introduce a feed-

forward method with style swap layers that can adapt

to arbitrary styles even for those not observed during

training.

Style transfer is closely related to image-to-image
translation. However, image-to-image translation could

not handle the tasks of example-guided style transfer,

in which the target style is defined by a single image.

When the target style is defined by a collection of im-

ages, image-to-image translation usually performs bet-

ter than classical style transfer approaches.

2.5 Domain adaptation

Domain adaptation is also similar with image-to-

image translation. These approaches mainly focus on

adapting a model trained in the source domain to an-

other target domain. The Adversarial Discriminative

Domain Adaptation (ADDA) (Tzeng et al., 2017) aims

to learn a discriminative feature subspace using the la-

beled source data. Then, it encodes the target data

to this learned subspace using an asymmetric trans-

formation through a domain-adversarial loss. The Do-

main Adversarial Neural Network (DANN) (Bousmalis

et al., 2016; Ganin et al., 2016; Tsai et al., 2018; Ganin

and Lempitsky, 2014) has focused on transferring deep

representations by matching the feature distributions

of different domains, aiming to learn domain-invariant

features. In this case, it is critical to first define a mea-

sure of distance between two distributions. There are

several different choices such as covariance (Sun and

Saenko, 2016), Kullback-Leibler (KL) divergence (Kull-

back and Leibler, 1951), and the non-parametric Max-

imum Mean Discrepancy (MMD) (Borgwardt et al.,

2006; Long et al., 2014, 2015; Bousmalis et al., 2017;

Zellinger et al., 2017).

3 Method

Our goal is to achieve unsupervised multi-domain multi-

modal image-to-image translation via disentangled rep-

resentations with a single model. The pipeline of our

method is shown in Figure 1. For multi-domain trans-

lation, we design an intra-domain and inter-domain su-

pervision mechanism, which is able to represent the

essence of different domains and translate images cross

different domains with only one single model. For multi-

modal generation between two domains, we regularize

the style codes in the training phase so that they can be

represented by a Gaussian distribution. By controlling

the parameters of style codes, multi-modality of gener-

ated images are possible. The model architecture and
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loss functions are also coherently designed for diverse

and realistic image-to-image translation.

3.1 Problem formulation

Assuming there are n datasets of different domains

{D1,D2, · · · ,Dn}, our goal is to achieve unsupervised

multi-domain multimodal image-to-image translation with

domain-constrained disentanglement by single model.

For each image xi ∈ Di, the unique disentangled rep-

resentations of content latent code c ∈ C and the style

latent code si ∈ Si can be extracted from content en-

coder EcDi and style encoder EsDi . The generator Gi
can produce an image of certain style if given specific

style latent code and corresponding content code. Let

x1 ∈ D1 and x2 ∈ D2 be images from two different

domains, the content encoders Ec1 and Ec2 map images

onto a domain-invariant content space (Eci : Di → C)
and the style encoders Es1 and Es2 map images onto the

domain-specific style spaces (Esi : Di → Si). The gener-

ator Gi generates images conditioned on given content

codes and style codes (Gi : {C,Si} → Di). We postulate

that only the content latent part can be shared across

domains and the style is part is domain-specific.

3.2 Intra-domain and inter-domain supervision

To utilize domain information and explicitly con-

strain the disentanglement of content and style, we pro-

pose explicit domain-constrained disentanglement by

first introducing intra-domain and inter-domain super-

vision.

Let x1→2 be a sample produced by translating image

x1 to its counterpart x2 in domain D2 (similarly for

x2→1), then for a pair images (x1, x2), we have

x1 = G1(c, s1), x2 = G2(c, s2),

x1→2 = G2(c, s2), x2→1 = G1(c, s1).
(1)

Since s1 and s2 are domain-specific style codes ex-

tracted from single images x1 and x2, respectively, we

can call this translation as inter-domain translation.

The style code extracted from a single image contains

more information rather than only generalized style of

a collection of images. In the training phase, the model

may extracts incorrectly some content features as style

features as illustrated in Figure 3.

To alleviate this situation, we design an intra-domain

supervision to constrain the disentangled representa-

tion learning and represent the essence of different do-

mains. The main idea to achieve this is relatively sim-

ple: “Two images from the same domain exchange their

style codes, the generated images should be consistent

with themselves.” Different from style codes extracted

from a single image si ∈ Si, these style codes extracted

at domain level should be domain-specific and repre-

sent generalized domain style representations. For n do-

mains of datasets {D1,D2, · · · ,Dn}, we have n domains

style representations {SD1
,SD2

, · · · ,SDn}. We can call

this translation as intra-domain translation. As shown

in Figure 2, intra-domain and inter-domain translation

can be representation as

x1 =G1(c, s1), x2 = G2(c, s2),

x1→2 =G2(c, s2), x2→1 = G1(c, s1),

x1→1′ =G1(c,SD1
), x1′→1 = G1(c,SD1

).

(2)

The intra-domain translation aims to learn the essence

style of a domain, which means the learned style rep-

resentations of images from the same domain do not

vary to an unreasonable degree. Specifically, all images

converge to the “mean” style. After training on care-

fully selected images, this constraint helps the content

and style encoders learn explicit disentangled represen-

tations during inter-domain translation. We can readily

control its influence by changing the weight parameters.

3.3 Pre-training of domain style representation

extractor

Different from many previous works regarding mul-

tiple domains as different sources of images, we treat

each domain as explicit supervision. Similarly to Lin

et al. (2019), we pre-train a domain feature representa-

tion extractor for each domain as explicit domain su-

pervision.

For domain supervision, Lin et al. (2019) train a

classifier that tries to correctly distinguish images of dif-

ferent domains. Then they regard the output of second-

to-last layer of the classifier as the domain feature. Dif-

ferent from this ambiguous and implicit definition, we

try to learn the domain feature representations by intra-

domain translation.

Given images from n different domains, we train a

CNN network by switching style codes of images from

the same domain. The goal of this CNN network, which

we call domain representation extractor EsDi , is to learn

domain-specific style representations SD1
for domain Di

and to correctly classify the domain of an image. Then
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Fig. 2 Illustration of self translation, intra-domain translation and inter-domain translation. For better comprehension and
comparison, we follow the representations in Huang et al. (2018), i.e. (a) and (b). To avoid confusion, we change their
descriptions. Our model consists of two types of auto-encoders (denoted by red and blue arrows respectively), one for each
domain. Similar with Huang et al. (2018); Lee et al. (2018), the latent code of each auto-encoder is composed of a content
code c and a style code s. The model is trained with adversarial objectives (dotted lines) that ensure the translated images
to be indistinguishable from real images in the target domain, as well as bidirectional reconstruction objectives (dashed lines)
that reconstruct both images and latent codes.

Fig. 3 Translation results of Lee et al. (2018) for image de-
blurring task. (a) real image. (b) blurred version of (a). (c)
real blurred image. (d) deblurred version of (c). We can see
that if adapting Lee et al. (2018) for image de-blurring task,
the de-blurred images have different face contours from orig-
inal ones, which means that the attribute extractor has not
only learned blur distortion pattern but also recognized some
content representations such as face contour as attribute. It
might be attributed to the ambiguous and implicit disentan-
glement of content and style.

this pre-trained model EsDi is used as explicit domain

supervision for inter-domain translation.

3.4 Model

As aforementioned, the pipeline of our model is shown

in Figure 1. Similar to other unsupervised image-to-

image translation via disentangled representations (Liu

et al., 2018; Lee et al., 2018; Huang et al., 2018), our

model consists of a content encoder Eci , style encoder

Esi , decoder G and discriminator Di for each domain

Di(i = 1, 2, · · · , n). What’s more, in our experiment,

we have the domain classifier Dcls pre-trained together

with the domain style representation extractor EsDi .

As shown, to achieve image translation between two

domains {D1,D2}, images x1, x2 from different domains

are encoded as domain-invariant content representa-

tions c1 = Ec1 (x1), c1 = Ec2 (x2); and domain-specific

style representations s1 = E2
1 (x1), s2 = E2

s (x2). Then

swap the style codes and use G2 to produce the trans-

lated output image x1→2 = G2 (c1, s2).

3.5 Network architecture

Figure 4 shows the network architecture of our model.

It consists of a content encoder, a style encoder and a

decoder.

Content encoder. The content encoder consists of sev-

eral convolutional layers to down-sample the input im-

ages to get high-dimension features and several basic

blocks for further processing. There are many choices

for basic block such as residual block (He et al., 2016),

residual dense block (Zhang et al., 2018b), residual in

residual dense block (Wang et al., 2018b). Here we use

the traditional residual block for simplicity and replace

Batch Normalization (BN) (Ioffe and Szegedy, 2015)

layer with Instance Normalization (IN) (Ulyanov et al.,

2016b). For diversity, we add noise in the last two basic

blocks as in Lee et al. (2018).

Style encoder. The style encoder includes several strided

convolutional layers, followed by an adaptive average

pooling layer and a convolutional layer. We do not use

IN layers in the style encoder, as IN removes the original

feature mean and variance which represent important

style information.

Decoder. The decoder generates images from their con-

tent codes and style codes. For multi-domain transla-

tion, we also add domain class as input. Specifically, the

domain class and style codes are concatenated by chan-

nel and then fed into a multi-layer perceptron (MLP).

The the content codes and outputs generated by the

MLP are further processed via several concatenation
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Fig. 4 Network architecture. For more details, refer to Section 3.

blocks. We equip the residual blocks with Adaptive In-

stance Normalization (AdaIN) (Huang and Belongie,

2017) layers whose parameters are dynamically gener-

ated by the MLP from the style codes (Huang and Be-

longie, 2017; Ghiasi et al., 2017).

AdaIN(z, γ, β) = γ

(
z − µ(z)

σ(z)

)
+ β (3)

Discriminator and domain classifier. The architecture

of discriminator is similar with Choi et al. (2018). The

domain classifier is built on top of the discriminator, as

shown in Figure 5. It consists of six convolution layers

with kernel size 4× 4 and stride 2, following two sepa-

rated convolutional branches that are implemented for

discriminative output and domain class.

Domain style representation extractor. The domain style

representation extractor shares the same architecture

with style encoder. Specifically, it consists of one con-

volution layer with kernel size 4 × 4 and stride 1; six

convolution layers with kernel size 4 × 4, stride 2 and

ReLU followed by an adaptive average pooling layer

and a convolutional layer with kernel size 1 × 1, stride

1.

3.6 Loss function

The loss functions are designed for unsupervised

multi-domain multi-modal image-to-image translation.

For unsupervised training, we adapt image reconstruc-

tion loss and latent reconstruction loss based on cy-

cle consistent loss. We also add constraints to improve

the representations of content and style codes by self-

reconstruction loss. For multi-modality, we introduce a

distribution matching loss to make the style codes ex-

tracted by content encoder close to a prior Gaussian

distribution. By doing this, we are able to sample style

codes from prior Gaussian distribution at testing phase.

Since the sampled style codes are random and stochas-
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Fig. 5 Discriminator and domain classifier.

tic, the decoder can produce diverse samples sharing

the same content. For simultaneous training of multi-

ple different domains, we adapt a domain classification

loss.

Self reconstruction loss. Given an image from a certain

domain, we should be able to reconstruct itself after en-

coding and decoding. Thus the self reconstruction loss

Lsr can be written as

Lx1
sr = Ex1∼p(x1) [‖G1 (Ec1 (x1) , Es1 (x1))− x1‖1] . (4)

Image reconstruction loss. Given an image sampled from

the data distribution, we should be able to reconstruct

it after encoding and decoding. The image reconstruc-

tion loss Lcc is adapted in two stages. In the pre-training

of domain representations, we use image reconstruction

loss to obtain a domain-specific style representation ex-

tractor EsDi during the process of image reconstruction.

Lxcc = Ex∼p(x)
[∥∥G1

(
Ec1 (x) , EsDi (x′)

)
− x
∥∥
1

]
, (5)

where x and x′ are from the same domain.

In inter-domain translation, image reconstruction

loss Lcc is used for the style from a single image. The

image reconstruction loss can be represented as:

Lxcc = Ex,y [‖G1 (Ec2(y′), Es1(x′))− x‖1] ,

Lycc = Ex,y [‖G2 (Ec1(x′), Es2(y′))− y‖1] ,
(6)

where

x′ =G1 (Ec2(y)) , Es1(x)),

y′ =G2 (Ec1(x)) , Es2(y)).
(7)

Disentanglement constrained loss. To utilize domain in-

formation and explicitly constrain the disentanglement,

we propose the disentanglement loss. For style from

domain style representation, the disentanglement con-

strained loss Ldc can be represented as

Lxdc = Ex,y [‖y′ − y′′‖1] , (8)

where y′′ = G2 (Ec2(x),SY), SY is extracted domain

style.

Latent reconstruction loss. Given a latent code (style

and content) sampled from the latent distribution at

translation time, we should be able to reconstruct it

after decoding and encoding.

Lc1lr = Ec1∼p(c1),s2∼q(s2) [‖Ec2 (G2 (c1, s2))− c1‖1] ,

Ls2lr = Ec1∼p(c1),s2∼q(s2) [‖Es2 (G2 (c1, s2))− s2‖1] .

(9)

Distribution matching loss. We adapt a distribution match-

ing loss to make the style codes close to a prior Gaussian

distribution. At testing phase, we are able to sample

stochastically from prior Gaussian distribution and re-

gard it as style code. As demonstrated in Section 2, the

measure of distance between two distributions can be

covariance, MMD or KL divergence. Instead of imple-

menting KL divergence as in Huang et al. (2018) and

Lee et al. (2018), here we choose the Maximum-Mean

Discrepancy (MMD). We will illustrate the reasons in

Section 4.

The distribution matching loss Ldm described by

MMD can be written as

Ldm = E [DMMD (z|N(0, 1))] , (10)

where

DMMD(q|p) = Ep(z),p(z′) [k (z, z′)]− 2Eq(z),p(z′) [k (z, z′)]

+ Eq(z),q(z′) [k (z, z′)]

(11)

k(·, ·) can be any positive definite kernel, such as Gaus-

sian k (z, z′) = e−
‖z−z′‖2

2σ2 .

Domain classification loss. To achieve simultaneous train-

ing of multiple domains with a single model, we assign

a unique class label for each domain as in Choi et al.

(2018). While translating given input images x1 with

domain class c1 to x2 with c2, the auxiliary domain
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classifier tries to distinguish images from different do-

mains. The corresponding domain classification loss can

be defined as

Lrealcls =Ex,c′ [− logDcls (c′|x)] ,

Lfakecls =Ex,c [− logDcls(c|G(x, c))] ,
(12)

where Dcls (c′|x) represents a probability distribution

over domain labels calculated by D. The goal of this

term is that D can correctly classify a real image x to

its original domain c′ and G tries to generate images

that can be recognized as target domain c by D.

This auxiliary domain classifier is build on top of

discriminator D. In training phase, the domain classifi-

cation loss of real images is used to optimize parameters

of discriminator D and the domain classification loss of

fake images is used to optimize G.

In our experiment, the domain classifier Dcls is pre-

trained together with the domain style representation

extractor EsDi .

Adversarial loss. For high image quality, stable train-

ing and considerable diversity as discussed in Section 2,

we use the least-squares GAN proposed by Mao et al.

(2017). Thus Ladv can be formulated as:

min
D1

Ladv (D1) =
1

2
Ex∼p(x)

[
(D1(x)− b)2

]
+

1

2
Ez∼pz(z)

[
(D1 (G1(z))− a)

2
]

min
G1

Ladv (G1) =
1

2
Ez∼pz(z)

[
(D1 (G1(z))− c)2

]
.

(13)

Overall training loss. The total training loss functions

of the encoder E, decoder G and discriminator D are

defined as follows:

Ltotal
E◦G = Ladv + λsrLsr + λccLcc + λdcLdc

+ λdmLdm + λlrLlr + λclsLfakecls , (14)

Ltotal
D = Ladv + λclsLrealcls , (15)

where hyper-parameters λsc, λcc, λdl, λdm, λlr and λcls
are weights to control the importance of each term.

The overall process. The overall process is summarized

in Algorithm 1. The training process consists of two

phase: the domain style representation extractor train-

ing and cross-domain translation training. Both phases

share almost the same network architecture and loss

functions except the following differences. Since we want

to learn domain style representation from each domain

and adapt it to cross-domain translation as domain su-

pervision, we select images from the same domain and

Algorithm 1: Training process.

1 Input: N different domains Dk ∀k ∈ [N ], batch size N ,
learning rate η;

Stage 1: domain style representation extractor

training
2 Randomly initialize the parameters ΘE of domain

representation extractor EsD;
3 Randomly select one domain Dk, k ∈ [N ]. Get a

mini-batch of data Dk satisfying Dk ⊂ Dk and
|Dk| = K;

4 Update the network as follows:
ΘE◦G ← ΘE◦G − η∇ΘΘE◦G`totalE◦G (DS)
ΘD ← ΘD − η∇ΘD `

total
D (DS)

5 where `totalE◦G (DS) and `totalD (DS) are defined in Eqn.
16 and Eqn. 17, respectively.

6 Repeat step 3 and step 4 until convergence.
Stage 2: cross-domain translation training

7 Randomly initialize the parameters ΘE◦G of content
encoder Ec, style encoder Es, decoder G and
parameters θG of discriminator D;

8 Randomly select two different domains
DA,DB , A,B ∈ [N ] . For each selected domain Dl
where l ∈ {A,B}, get a minibatch of data Dl
satisfying Dl ⊂ Dl and |Dl| = K.

9 if Training then
10 Update the parameters as follows:

ΘE◦G ← ΘE◦G − η∇ΘΘE◦G`totalE◦G (DA)
ΘD ← ΘD − η∇ΘD `

total
D (DA)

11 where `totalE◦G (DA) and `totalD (DA) are defined in Eqn.
14 and Eqn. 15, respectively.

12 Repeat step 7 and step 10 until convergence.

swap their style codes. Ideally, the style-exchanged im-

ages should be consisted with the original ones. Only

one-step translation is required to get the domain style

representation. So the loss function of the domain style

representation extractor training can be defined as:

Ltotal
E◦G = Ladv + λsrLsr + λdmLdm + λclsL

fake
cls , (16)

Ltotal
D = Ladv + λclsLrealcls , (17)

where hyper-parameters λsc, λdm, λcls are weights to

control the importance of each term.

Thus we get the domain style representation extrac-

tor EsDi . It mainly used in image reconstruction loss to

constrain feature disentanglements.

4 Experiment

4.1 Experiment Settings

For training, we adapt Adam optimizer with a batch

size 8, a learning rate of 0.0001 with exponential decay

rates β1 = 0.5, β2 = 0.999. We resize all input images

into 216×216 in experiments. The hyper-parameters are

set as λsr = 10, λcc = 10, λdm = 0.01, λlr = 10. And
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Fig. 6 Samples from datasets. We mainly use three multi-domain datasets for experiments: Art, Season and Weather. Each
contains four domains.

λcls of G is 5.0, λcls of D is 1.0. We don’t implement

domain supervision if training data are paired.

4.2 Datasets

We use three multi-domain datasets for experiments:

art, weather, season. Notice that all images in these

datasets are not paired.

Art: This dataset contains four domains: real im-

ages, Monet, Ukiyo-e and Van Gogh. These art images

can be download from Wikiart 1 and the real photos are

from Flickr with tags landscape and landscapephotogra-

phy. We use the monet2photo, vangogh2photo, ukiyoe2photo

and cezanne2photo datasets collected by Zhu et al. (2017a).

Weather: This dataset contains four domains: sunny,

cloudy, snowy, and foggy, which is randomly selected

from the Image2Weather (Chu et al., 2017).

Season: This dataset consists of approximately 6, 000

images of the Alps mountain range scraped from Flickr.

The original dataset collected by Anoosheh et al. (2018)

categorizes photos individually into four seasons based

on the provided timestamp of when it was taken. But

this lead to many misclassifications. We revise each cat-

egory by deleting ambiguous images or removing mis-

classified images to the right category to make them

more distinguishable.

Since Zhu et al. (2017b) need paired data for train-

ing, we evaluate multi-modality on edges→ shoes and

1 https://www.wikiart.org/

Table 2 Features of each datasets.

Art Num. Weather Num. Season Num.

Photos 2853 Sunny 70601 Spring 1382
Monet 1074 Cloudy 45662 Summer 1512

Van Gogh 401 Foggy 357 Autumn 1606
Ukiyo-e 1433 Snowy 1252 Winter 993

edges → handbags. The edges → shoes dataset con-

tains 50k training images from UT Zappos50K dataset

(Yu and Grauman, 2014). The edges→ handbags dataset

contains 137K Amazon Handbag images from Zhu et al.

(2016). Edges are computed by HED edge detector (Xie

and Tu, 2015) and post-processing. Both datasets can

be downloaded at CycleGAN (Zhu et al., 2017a) web-

site2.

Samples from these three datasets are visually demon-

strated in Figure 6 to describe their styles. And Table 2

describes domain information and corresponding num-

ber of training data.

4.3 Baselines

We perform the evaluation on the following baseline

approaches:

BicycleGAN. BicycleGAN (Zhu et al., 2017b) is

the first image-to-image translation model that aims to

generate continuous and multi-modal output images.

However, it needs paired images for training.

2 https://github.com/junyanz/pytorch-CycleGAN-and-
pix2pix
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DRIT (Lee et al., 2018) and MUNIT (Huang et al.,

2018) propose to simultaneously generate diverse out-

puts given the same input image without requirement

of pair supervision via disentangled representations. It’s

designed for translation between two domains.

StarGAN. StarGAN (Choi et al., 2018) aim to

handle scalability of unsurprised image-to-image trans-

lation problems. It uses one generator and discrimina-

tor in common for all domains by adding domain labels.

The generator requires images and the desired domain

label specifying the target domain as inputs, and the

discriminator is trained to classify the domain labels of

generated images and judge whether it’s real or fake.

By doing this, it’s able to take any number of domains

as input. However, the model was just applied on task

of face attribute translation in original paper. It didn’t

validate on datasets with various categories. Further-

more, it didn’t pay attention on the problem of multi-

modality.

DosGAN. DosGAN (Lin et al., 2019) share the

similar idea of (Choi et al., 2018) to achieve simulta-

neous training for multi-domains. It farther introduce

the domain supervision, which uses domain-level infor-

mation as supervision and pre-trains a classifier to pre-

dict which domain an image is from. The authors be-

lieve that the classifier should carry rich domain signal.

Therefore, the output of the second-to-last layer of this

classifier can be leveraged to extract the domain fea-

tures of an image. Still, it follows the same drawback

to diversity with Choi et al. (2018).

ComboGAN. Different from Choi et al. (2018) and

Lin et al. (2019), Anoosheh et al. (2018) don’t use do-

main labels to achieve simultaneous training for multi-

domains. Instead, it uses n generators and discrimina-

tors for translations among n domains. Specifically, it

divides each generator network in half, labeling each

one as encoders and decoders, respectively, and then

assigns an encoder and decoder to each domain.

Since that those methods are designed for differ-

ent purposes, we conduct comparisons on two crite-

rions. For simultaneous training, we compare our ap-

proach with Choi et al. (2018), Lin et al. (2019) and

Anoosheh et al. (2018). For multi-modality, we com-

pare our method with Zhu et al. (2017b), Lee et al.

(2018) and Huang et al. (2018).

4.4 Evaluation Metrics

We use the Fréchet Inception distance and LPIPS

Distance to evaluate the quality and diversity of the

generated images.

LPIPS Distance. Similar to Zhu et al. (2017b), we

use Learned Perceptual Image Patch Similarity (LPIPS)

metric (Zhang et al., 2018a) to measure translation di-

versity. LPIPS Distance is calculated by a weighted L2

distance between deep features of randomly-sampled

translation results from the same input. It has been

shown to correlate well with human perceptual similar-

ity.

FID score. Fréchet Inception distance (FID) (Heusel

et al., 2017) is a measure of similarity between two

datasets of images. It was shown to correlate well with

human judgement of visual quality and is most often

used to evaluate the quality of samples of Generative

Adversarial Networks. FID is calculated by computing

the Fréchet Inception distance between two Gaussians

fitted to feature representations of the Inception net-

work.

4.5 Qualitative evaluation

We conduct comparisons on two criterions. For si-

multaneous training, we compare our approach with

Choi et al. (2018), Lin et al. (2019) and Anoosheh et al.

(2018) on season dataset. For multi-modality, we com-

pare our method with Zhu et al. (2017b), Lee et al.

(2018) and Huang et al. (2018) on edges → shoes and

edges → handbags datasets. Qualitative comparison of

simultaneous multi-domain translation with baselines

on Season dataset are demonstrated in Figure 9. The

results produced by Choi et al. (2018) all have obvi-

ous artifacts. Lin et al. (2019) generate fewer artifacts

than Choi et al. (2018). However, the results are still

unpleasing and lack diversity for different seasons. In

most cases, the translated spring and summer images

are almost indistinguishable. All four translated season

images are even nearly the same in the last row of Lin

et al. (2019). Anoosheh et al. (2018) generate better

results in both realism and diversity than the afore-

mentioned two methods. However, it needs 8 genera-

tors and4 discriminators to achieve conversion of four

seasons between any two.

Compared with baseline methods, our approach gen-

erates high-quality images which are more photo-realistic

and diverse. The green blocks in Figure 9 represent real

input images. Those real images can still be easily told

apart from the generated ones translated by Anoosheh

et al. (2018). In terms of realism,the real input images

are indistinguishable from the four images generated by

our method while in terms of diversity, the four season

images can be easily classified into corresponding cat-

egory. More results of our method on art, season and

weather translation can be found in Figure 7, Figure 8

and Figure 10.

Figure 10 shows the results of our methods con-

ducted on weather dataset. The images in the first row
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Fig. 7 Multi-domain multi-modal image translation results on Art. The Art dataset contains four domain: real image, Monet,
Van Gogh and Ukiyoe. Better look by zooming in.

Fig. 8 Multi-domain multi-modal translation result on Season. The Season dataset contains four domain: spring, summer,
autumn and winter. Notice that all these image are generated via one training process. Better look by zooming in.

demonstrate that our method can handle images with

complex and elaborate structures. The rest images show

its potential capacities to the image defogging tasks.

Figure 11 shows the results of qualitative compari-

son on edges → shoes and edges → handbags.

4.6 Quantitative evaluation

We conduct the quantitative evaluation on the re-

alism and diversity of season cross-domain translation

(Anoosheh et al., 2018).
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Fig. 9 Results of StarGAN, DosGAN, ComboGAN and ours on Season dataset. Images in the first column are input images
randomly selected from the four seasons. Following are results generated by ours, StarGAN, DosGAN and ComboGAN. For
each method, the four columns are arranged successively as spring, summer, autumn and winter. Better look by zooming in.
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Fig. 10 Weather result. The images in the first row demon-
strate that our method can handle images with complex and
elaborate structures. The rest images show its potential ca-
pacities to the image defogging tasks. Better look by zooming
in.

Fig. 11 Qualitative comparison on edges → shoes and edges
→ handbags. The first column shows the input and ground
truth image. Each following column shows three random pos-
sible outputs from corresponding method. Better look by
zooming in.

For realism, we conduct a user study using pairwise

comparisons. Given a pair of images sampled from real

images and translation outputs generated from different

methods, users need to answer two questions: “Which

image of this pair is more realistic?” and “Which sea-

son is this image?” They are given unlimited time to

select their preferences. For each comparison, we ran-

domly generate 100 questions and each question is an-

swered by 30 different persons. Table 4 show the re-

sults of fooling rate and season classification accuracy.

Anoosheh et al. (2018) get the highest fooling rate of

47.33% and ours rank the second highest. Notice that

Anoosheh et al. (2018) use several encoders and de-

coders to achieve this and our method only use one

model. For season classification accuracy, since many

images in Season dataset are too ambiguity to classify

it into a certain season, the classification accuracy of

the real images is like random guess, 48.9%. But the

image-to-image translation methods tend to learn the

Table 3 Perfomance as the LPIPS and FID on the Season
dataset. The best and second best results are highlighted in
each column. For details refer to Section 4.

Method LPIPS FID

Choi et al. (2018) 0.4273 221.7
Lin et al. (2019) 0.2503 145.3

Anoosheh et al. (2018) 0.4349 109.99
Ours 0.4810 73.47

general properties, the generated images are endowed

with more distinguishable properties of certain season.

Lin et al. (2019) and Anoosheh et al. (2018) get higher

classification accuracy that real images, i.e., 54.2% and

55.6%. And ours achieve the highest accuracy of 65.8%,

which means the domain-specific styles are better cap-

tured by our proposed method. Figure 12 demonstrate

the realism preference results. We conduct another user

study to ask people to select a more realistic one be-

tween ours and Choi et al. (2018), Lin et al. (2019),

Anoosheh et al. (2018), real images. The number indi-

cates the percentage of preference on the pairwise com-

parisons. We use the season translation for this experi-

ment.

For diversity, similar to Zhu et al. (2017b), we use

the LPIPS metric to measure the similarity among im-

ages. Additionally, we implement FID to acquire per-

ceptual scores. We compute the distance between 1000

pairs of randomly sampled images translated from 100

real images. As shown in Table 3, our method achieves

the lowest FID scores, which means that our method

produces the best results in both high-level similar-

ity and perceptual judgement, and the highest LPIPS

scores, which means the most diverse results.

As Zhu et al. (2017b) need paired data for training,

we evaluate multi-modality on edges→ shoes and edges

→ handbags. We use the LPIPS and FID metric to

compare our method with the existing state-of-the-art

method, i.e., Zhu et al. (2017b); Lee et al. (2018); Huang

et al. (2018). As shown in Table 5, our method outper-

forms the supervised method (Zhu et al., 2017b) and

produce comparable results with other unsupervised

methods (Zhu et al., 2017b; Lee et al., 2018; Huang

et al., 2018).

4.7 Ablation study

The effect of domain supervision. As illustrated in Sec-

tion 3, the de-blurred images of Lee et al. (2018) have

different face contour with original ones, which means

that the attribute extractor has not only learned blur

distortion pattern but also recognize some content rep-

resentations such as face contour as attribute. It might

be caused by the ambiguous and implicit disentangle-
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Table 4 Perfomance as the Fooling Rate and Season Clas-
sification Accuracy on the Season dataset. We conduct the
user study to select results that are more realistic through
pairwise comparisons and distinguish which season of an im-
age is. The number indicates the percentage of preference on
that comparison pair. The best and second best results are
highlighted in each column. For details refer to Section 4.

Method Fooling Rate Accuracy

Real photos - 48.9%

Choi et al. (2018) 5.3% 41.3%
Lin et al. (2019) 27.2% 54.2%

Anoosheh et al. (2018) 47.33% 55.6%
Ours 37.8% 65.8%

Table 5 Diversity. We use the LPIPS and FID metric to mea-
sure the diversity of generated images on the edges → shoes
and edges → handbags. The best and second best results are
highlighted in each column.

Method
edges → shoes edges → handbags

LPIPS FID LPIPS FID

Zhu et al. (2017b) 0.2443 115.87 0.3180 184.56
Lee et al. (2018) 0.2631 62.67 0.3760 90.89

Huang et al. (2018) 0.2652 65.87 0.3820 91.43
Ours 0.2639 64.46 0.3759 89.19

Fig. 12 Realism preference results. We conduct a user study
to ask people to select a more realistic one between ours and
Choi et al. (2018), Lin et al. (2019), Anoosheh et al. (2018).
The number indicates the percentage of preference on the
pairwise comparisons. We use the season translation for this
experiment.

ment of content and style. Thus we introduce explicit

domain-constraint for disentanglement of content and

style to better utilize domain information and explicitly

constrain the disentanglement learning.

Figure 13 shows the style-swapped reconstruction

results of intra-domain translation. It only shows that

the pre-trained model could reconstruct style-swapped

images from the same domain but fail to proof the

domain supervision help the explicit disentanglement

learning of content and style. To further validate the ef-

fectiveness of domain supervision, we adapt our method

for image de-blurring task, and compare with the re-

sults of Lee et al. (2018) in Figure 3. The blurred im-

ages are generated using the same method as in Yu et al.

(2018c) and CUFS dataset (Wang and Tang, 2009). The

results of image de-blurring after adding proposed dis-

entanglement loss are shown in Figure 14. Compared

with Figure 3, the generated image are consistent with

the original except the blur distortion are removed.

Fig. 13 Results of intra-domain supervision. Better look by
zooming in.

Fig. 14 Results of adapting our method for image de-
blurring. Better look by zooming in.

Furthermore, we also found that perceptual loss (John-

son et al., 2016) can achieve similar disentangled con-

straint. The perceptual loss is based on perceptual sim-

ilarity, which is often computed as the distance of two

activated features in a pre-trained deep neural network

between the output and the reference image:

Lpercep = E

[∑
i

1

Ni
‖φi (Igt)− φi(Ipred)‖1

]
, (18)

where φi donates the feature maps of the pre-trained

VGG-19 network.

The perceptual loss and disentanglement restrained

loss constrain the learning of disentangled representa-

tions in different aspects. The former, which is image-

level, forces the generated images sharing the same con-

tent with the input ones. The latter, which is collection-

level, restrains the style encoder from learning any con-

tent of images.

The measure of distributions. Many criteria can be used

to estimate the distance between distributions. Kullback-

Leibler (KL) divergence may be the most widely used
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Table 6 Feature visualization.

Method Reconstruction loss Log likelihood

KL 0.04367 82.75
MMD 0.03605 80.76

in practice:

Ldm = E [DKL ((z) |N(0, 1))] , (19)

where DKL(p|q) = −
∫
p(z) log p(z)

q(z)dz.

However, researchers have noticed that KL diver-

gence might be too restrictive (Bowman et al., 2015;

Sønderby et al., 2016; Chen et al., 2016b; Bińkowski

et al., 2018). Sometimes it failed to learn any mean-

ingful latent representation. Several methods (Bowman

et al., 2015; Sønderby et al., 2016; Chen et al., 2016b)

try to alleviate this problem, but do not completely

solve the issue. Borgwardt et al. (2006) propose the

Maximum Mean Discrepancy (MMD) as a relevant cri-

terion for comparing distributions based on the Repro-

ducing Kernel Hilbert Space (RKHS). It’s a framework

to quantify the distance of two c by calculating all of

their moments. It can be efficiently adapted using ker-

nel trick.

DMMD(q‖p) = Ep(z),p(z′) [k (z, z′)]− 2Eq(z),p(z′) [k (z, z′)]

+ Eq(z),q(z′) [k (z, z′)] ,

(20)

where k(·, ·) can be any positive definite kernel, such

as Gaussian k (z, z′) = e−
‖z−z′‖2

2σ2 . Therefore, the dis-

tance between distributions of two samples can be well-

estimated by the distance between the means of the two

samples mapped into a RKHS.

To make this more intuitive, we conduct experiment

on MNIST dataset (LeCun et al., 1998). For visualiza-

tion, we make the latent code two dimensions. It can be

seen in Figure 15 that with KL qφ(z), the distribution

matches the prior Gaussian distribution p(z) poorly,

while with MMD qφ(z) matches significantly better.

And results in Table 6 also demonstrate that MMD

helps better reconstruction than KL.

5 Conclusion

In this paper, we propose a unified framework for learn-

ing to generate diverse outputs with unpaired train-

ing data and allow simultaneous training of multiple

datasets with different domains by a single network.

Furthermore, we also investigate how to better extract

domain supervision information so as to better utilize

Fig. 15 Comparing the prior Gaussian distribution p(z),
MMD qφ(z) and KL qφ(z). The red dots represent (0, 0).
It clearly demonstrates that with KL qφ(z), the distribution
matches the prior Gaussian distribution p(z) poorly, while
with MMD qφ(z) matches significantly better.

domain information and explicitly constrain the disen-

tanglement. Qualitative and quantitative experiments

on different datasets show that the proposed method

outperforms the state-of-the-art methods.
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T, Saminger-Platz S (2017) Central moment dis-

crepancy (cmd) for domain-invariant representation

learning. arXiv preprint arXiv:170208811

Zhang R, Isola P, Efros AA, Shechtman E, Wang O

(2018a) The unreasonable effectiveness of deep fea-

tures as a perceptual metric. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, pp 586–595

Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y (2018b)

Residual dense network for image super-resolution.

In: Proceedings of the IEEE Conference on Computer



DCM2IT 19

Vision and Pattern Recognition, pp 2472–2481
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6 Appendix

In this appendix, we show some additional cross-domain

translation results of art in Figure 16, season in Figure

17 and weather in Figure 18.
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Fig. 16 Art result. Better look by zooming in.
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Fig. 17 Season result. Better look by zooming in.

Fig. 18 Weather result. Better look by zooming in.
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