
DANTE: Deep AlterNations for Training nEural networks

Vaibhav B Sinhaa,1,2,∗, Sneha Kuduguntaa,1, Adepu Ravi Sankara, Surya Teja Chavalia, Purushottam Karb, Vineeth N
Balasubramaniana,

aDepartment of Computer Science and Engineering, Indian Institute of Technology Hyderabad, India
bDepartment of Computer Science and Engineering, Indian Institute of Technology Kanpur, India

Abstract

We present DANTE, a novel method for training neural networks using the alternating minimization principle. DANTE provides an
alternate perspective to traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an
adaptation of quasi-convexity to cast training a neural network as a bi-quasi-convex optimization problem. We show that for neural
network configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can
perform the alternations effectively in this formulation. DANTE can also be extended to networks with multiple hidden layers. In
experiments on standard datasets, neural networks trained using the proposed method were found to be promising and competitive
to traditional backpropagation techniques, both in terms of quality of the solution, as well as training speed.

Keywords: Neural nets, Deep Learning, Backpropagation, Machine Learning.

1. Introduction

For much of the recent march of deep learning, gradient-
based backpropagation methods, e.g. Stochastic Gradient De-
scent (SGD) and its variants, have been the mainstay of practi-
tioners. The use of these methods, especially on vast amounts
of data, has led to unprecedented progress in several areas of ar-
tificial intelligence in recent years. The intense focus on these
techniques has led to an intimate understanding of hardware
requirements and code optimizations needed to execute these
routines on large datasets in a scalable manner. Today, myriad
off-the-shelf and highly optimized packages exist that can churn
reasonably large datasets on GPU architectures with relatively
mild human involvement and little bootstrap effort.

However, this surge of success of backpropagation-based
methods in recent years has somewhat overshadowed the need
to continue to look for options beyond backpropagation to train
deep networks. Despite several advancements in deep learn-
ing with respect to novel architectures such as encoder-decoder
networks, generative adversarial models and transformer net-
works, the reliance on backpropagation methods remains. Sev-

∗Corresponding author
Email addresses: cs15btech11034@iith.ac.in (Vaibhav B Sinha),

snehakudugunta@google.com (Sneha Kudugunta),
cs14resch11001@iith.ac.in (Adepu Ravi Sankar),
chavali2@wisc.edu (Surya Teja Chavali), purushot@cse.iitk.ac.in
(Purushottam Kar), vineethnb@iith.ac.in (Vineeth N Balasubramanian)

1Authors contributed equally
2Currently at Department of Computer Science, University of Texas at

Austin, US
c©2020. This manuscript version is made available under the CC-BY-NC-

ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.

0/

DOI: https://doi.org/10.1016/j.neunet.2020.07.026

eral works have studied the limitations of SGD-based backprop-
agation, whether it be vanishing gradients, especially for certain
activation functions [1]; the tendency of SGD to face difficul-
ties with saddle points [2] - even for simple architectures [3]; or
even more subtle issues such as significant difference in train-
ing time for networks having same expressive power as seen in
[4]. Importantly, while existing backpropagation-based meth-
ods work, it is essential to continuously look for alternative
methods that can help train neural networks effectively.

Complementarily, there has been marked progress in recent
years in the broader area of non-convex optimization. Sev-
eral alternate algorithms with provable guarantees, such as it-
erative hard thresholding [5], alternating minimization [6], [7]
and [8]. In this work, we leverage recent developments in
optimization (quasi-convex, to be precise) to propose a non-
backpropagation strategy to train neural networks. Our method
is called DANTE (Deep AlterNations for Training nEural net-
works), and it offers an alternating minimization-based tech-
nique for training neural networks. There have been a few re-
lated efforts of late, which we review in Section 2.

DANTE is based on the simple but useful observation that the
problem of training a single hidden-layer neural network can
be cast as a bi-quasiconvex optimization problem (described in
Section 3.1). This observation allows us to use an alternating
optimization strategy to train the neural network, where each
step involves solving relatively simpler quasi-convex problems.
DANTE then uses efficient solvers for quasi-convex problems
such as stochastic normalized gradient descent [9] to train the
neural network using alternating minimization. The key origi-
nal contributions of this work can be summarized as:
• We show that the error in each layer of a neural network

can, in fact, be viewed as a quasi-convex function, thus
allowing us to treat a single hidden-layer neural network

Preprint submitted to Elsevier Neural Networks August 11, 2020

ar
X

iv
:1

90
2.

00
49

1v
3

 [
cs

.L
G

]
 9

 A
ug

 2
02

0

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neunet.2020.07.026

as a bi-quasi-convex optimization problem. Motivated by
recent work [9], this allows us to propose an alternat-
ing minimization strategy, DANTE , where each quasi-
convex optimization problem can be solved effectively (us-
ing Stochastic Normalized Gradient Descent (SNGD)).

• While earlier results on the effectiveness of SNGD for
solving a quasi-convex problem was restricted to a sim-
ple sigmoid Generalized Linear Model (GLM) with the
squared loss, we show that SNGD can converge in high
probability to an ε-suboptimal solution even in case of lay-
ers of a neural network. We also expand the scope to in-
clude Rectified Linear Units (ReLU) activation functions
and its variants by introducing a Generalized ReLU acti-
vation function. We also provide theoretical results in case
of networks using Cross Entropy as loss (all of which has
not been done before).

• We show DANTE can be extended to train deep neural
networks with multiple hidden layers.

• We empirically validate DANTE with both the gener-
alized ReLU and sigmoid activations and establish that
DANTE provides competitive or better performance on
several standard datasets, when compared to standard
mini-batch SGD-based backpropagation.

• While the high level idea of using the definition to prove
the quasi-convexity of functions is inspired by [9], we
would like to highlight that our proofs are more involved,
and use techniques that were not in [9] (to adapt to newer
activation functions, handle hidden layers, as well as mul-
tiple output neurons).

We now review earlier related efforts, before presenting details
of the proposed methodology.

2. Related Work

Backpropagation-based techniques date back to the early
days of neural network research [10, 11] but remain to this day,
the most commonly used methods for training a variety of neu-
ral networks including multi-layer perceptrons, convolutional
neural networks, autoencoders, recurrent networks and the like.

In recent years, Taylor et al. [12] and Choromanska et al.
[13] proposed methods to train neural networks which belong
to the broad framework of alternating-minimization. Although
both of these approaches use alternating-minimization, they are
fundamentally different from ours. Both of them use auxil-
iary variables and the minimization is done on these auxiliary
variables too, while our algorithm does not have any auxil-
iary variables and only minimizes on the weights of the net-
work, giving it significant advantages in space complexity and
training-time. Moreover, Taylor’s algorithm does not use gra-
dients unlike ours. Jaderberg proposed the idea of ‘synthetic
gradients’ in [14]. Although interesting, this work is more fo-
cused towards a more efficient way to carry out gradient-based
parameter updates in a neural network. More recently, Jagatap
and Hegde [15] proposed a method to train single hidden layer
ReLU networks using an alternating minimization technique.

Unlike our method, this method alternates between updating
weights, and state variables which indicate which ReLU activa-
tions are on, and so is very specific to ReLU activations.

In this work, we focus on an entirely new approach to train-
ing neural networks using alternating optimization inspired by
quasi-convexity (different from the abovementioned methods),
and show that this approach shows promising results to train
neural networks of different depths on a range of datasets. Al-
though alternating minimization has found much appeal in ar-
eas such as matrix factorization ([6]), to the best of our knowl-
edge, this is the one of the early efforts in using alternating prin-
ciples to train feedforward neural networks effectively.

Other efforts that are related to this work include target
propagation based methods, such as in [16], Difference Target
Propagation [17] and target propagation in a Bayesian setting
[18]. There are also efforts that use random feedback weights
such as feedback-alignment [19] and direct/indirect feedback-
alignment[20] where the weights used for propagation need not
be symmetric with the weights used for forward propagation.
We however do not focus on credit assignment in this work.
One could view the proposed method however as carrying out
‘implicit’ credit assignment using partial derivatives, but there
is no defined model for credit assignment which is not the focus
of this work. We now describe our methodology.

3. Deep AlterNations for Training nEural networks
(DANTE)

We begin by presenting the overall problem formulation.

3.1. Problem Formulation

Consider a neural network with L layers. Each layer l ∈
{1, 2, . . . , L} has nl nodes and is characterized by a linear op-
erator Wl ∈ Rnl−1×nl and a non-linear activation function defined
as φl : Rnl → Rnl . The activations generated by layer l are de-
noted by al ∈ Rnl . We denote by a0, the input activations and n0
to be the number of input activations i.e. a0 ∈ Rn0 . Each layer
uses activations being fed into it to compute its own activations
as al = φl〈Wl, al−1〉 ∈ Rnl , where φ〈., .〉 denotes φ(〈., .〉) for sim-
plicity of notation. A multi-layer neural network is formed by
nesting such layers to form a composite function f given as fol-
lows:

f (W; x) = φL〈WL, φL−1〈WL−1, · · · , φ1〈W1, x〉〉〉 (1)

where W = {Wl} is the collection of all the weights through
the network, and x = a0 contains the input activations for each
training sample.

Given m data samples {(xi, yi)}mi=1 from a distribution D and
a loss function J, the network is trained by tuning the weights
W to minimize the empirical risk associated with:

min
W

E(x,y)∼D[J(f (W; x), y)] (2)

For purpose of simplicity and convenience, we first consider
the case of a single hidden layer neural network, represented as
f (W; x) = φ2〈W2, φ1〈W1, x〉〉 to describe our methodology. We
later describe how this can be extended to multi-layer neural

2

networks. A common loss function used to train neural net-
works is the squared loss function which yields the following
objective (we later also study changing the loss function in this
work):

min
W

E(x,y)∼D‖ f (W; x) − y‖22 (3)

where:

‖ f (W; x) − y‖22 = ‖φ2〈W2, φ1〈W1, x〉〉 − y‖22 (4)

An important observation here is that if we fix W1, then Eq. (4)
turns into a set of Generalized Linear Model (GLM) problems
with φ2 as the activation function, i.e.

min
W2

E(x,y)∼D‖φ2〈W2, z〉 − y‖22 (5)

where z = φ1〈W1, x〉. In particular, a GLM with differen-
tiable activation functions such as sigmoid satisfy a property
called Strict Locally Quasi-Convexity (SLQC), which allows
techniques such as SNGD to solve the GLM problem effec-
tively, as pointed out in [9]. We exploit this observation, and
generalize this result in many ways: (i) we firstly show that a
GLM with non-differentiable activation functions such as Re-
LUs (and its variants) also satisfy the SLQC property; (ii) we
show that a set of GLMs, such as in a layer of a neural network,
also satisfy the SLQC property; and (iii) we leverage these gen-
eralizations to develop an alternating minimization methodol-
ogy to train neural networks; and (iv) we also move away from
the restriction of square loss and provide extensions for Cross-
Entropy Loss. Sections 3.2 and 3.3 describe these generaliza-
tions further.

Optimizing for W1 in Equation 4, unfortunately, cannot be
directly viewed as a set of SLQC GLMs. To this end, we pro-
vide a generalization of local quasi-convexity in Section 3.2 and
show that fixing W2 does indeed turn the problem below into
yet another SLQC problem, this time with W1 as the parameter
(note that φW2〈·〉 = φ2〈W2, φ1〈·〉〉):

min
W1

E(x,y)∼D‖φW2〈W1, x〉 − y‖22 (6)

Putting Equations 5 and 6 together gives us a single-layer neural
network setup, where each layer is individually SLQC, and can
be efficiently solved using SNGD. This allows us to propose
our alternating minimization strategy to train a neural network
in an effective manner. We now describe in detail each of the
above steps, beginning with the background and preliminaries
required to set up this problem.

3.2. Background and Preliminaries
Let ‖ · ‖ denote the L2 (Euclidean) norm for vectors, and ‖ · ‖F

denote the Frobenius norm of a matrix. We sometimes drop the
subscript F from ‖ · ‖F for ease of reading (the appropriate norm
can be identified from the context). B(x, r) denotes a Euclidean
ball of radius r with x as center and B denotes B(0, 1). We
begin with the formal definitions of Local Quasi-Convexity and
Generalized Linear Model (GLM).
Definition 1 (Local-Quasi-Convexity [9]). Let x, z ∈ Rd, κ, ε >
0 and f : Rd → R be a differentiable function. Then f is said
to be (ε, κ, z)-Strictly-Locally-Quasi-Convex (SLQC) in x, if at
least one of the following applies:

1. f (x) − f (z) ≤ ε
2. ‖∇ f (x)‖ > 0, and ∀y ∈ B (z, ε/κ), 〈∇ f (x), y − x〉 ≤ 0

where B (z, ε/κ) is a ball centered at z with radius ε/κ.
Definition 2 (Idealized and Noisy Generalized Linear Model
[9]). In the idealized GLM setting, we are given m samples
{(xi, yi)}mi=1 ∈ B × [0, 1] and an activation function φ : R → R.
There exists w∗ ∈ Rd such that yi = φ〈w∗, xi〉∀i ∈ {1, · · · ,m}
where w∗ is the global minimizer of the empirical error func-
tion:

ˆerr(w) =
1
m

m∑
i=1

(yi − φ(〈w, xi〉))2

In the noisy GLM setting, we are given m samples {(xi, yi)}mi=1 ∈

Bd × [0, 1] drawn i.i.d. from an unknown distributionD. There
exists a w∗ ∈ Rd such that E(x,y)∼D[y| x] = φ(〈w∗, x〉), and w∗ is
the global minimizer of :

err(w) = E(x,y)∼D (y − φ(〈w, x〉))2

Hazan et al. showed in [9] that the idealized GLM problem
with the sigmoid activation function is (ε, e‖w

∗‖,w∗)-SLQC
in w, ∀w ∈ B(0, ‖w∗‖) and ∀ε > 0; and that if we draw
m ≥ Ω

(
exp(2‖w∗‖)

ε2 log 1
δ

)
i.i.d. samples fromD, the empirical er-

ror function ˆerr with sigmoid activation is (ε, e‖w
∗‖,w∗)-SLQC

in w for any w ∈ B(0, ‖w∗‖) with probability at least 1 − δ.
However, these results by themselves are not directly useful,
considering they are proved only for a single GLM (which can
be viewed as a neural network with no hidden layers and a
single output neuron), and which are non-trivial to extend to a
traditional multi-layer/feedforward neural network. Besides,
their proofs rely on properties of the sigmoid function, which
restricts us from using these (and any following) results to
contemporary neural networks which use other activation func-
tions such as the ReLU. We overcome all of these restrictions
in this work, and provide a new mechanism to use such a
theoretical result in practice.

3.2.1. SLQC-ness of a GLM with Non-Linear Activations
Before presenting our approach with multi-layer neural net-

works, we begin our description of the proposed methodology
by showing that a GLM with a ReLU activation function is also
SLQC ([9] already showed this for a GLM with sigmoid activa-
tion). This will later allow us to seamlessly extend our results
to both sigmoid and ReLU multi-layer neural networks. (We
note that tanh - which is simply a rescaled sigmoid - is also
subsumed in these definitions.) To this end, we introduce a new
generalized ReLU activation function, defined as follows:
Definition 3. (Generalized ReLU) The generalized ReLU
function f : R→ R, 0 < a ≤ b, a, b ∈ R is defined as:

f (x) =

{
ax x ≤ 0
bx x > 0

Note that this definition subsumes variants of ReLU such as
the Leaky ReLU [21] or PReLU [22]. This function is differ-
entiable at every point except 0. We define the function g that
provides a valid subgradient for the generalized ReLU at all x
to be:

g(x) =

{
a x < 0
b x ≥ 0

3

We now prove our first results using the above definition of
the generalized ReLU in idealized and noisy GLMs below.

Theorem 1. In the idealized GLM with generalized ReLU ac-
tivation, assuming ‖w∗‖ ≤ W, ˆerr(w) is

(
ε, 2b3W

a ,w∗
)
− S LQC

in w,∀w ∈ B(0,W) and ∀ε > 0.

Proof Sketch. We use Definition 1 to show this result. Consider
a point v, ε/κ-close to minima w∗ with κ = 2b3W

a . Throughout
the paper, we measure closeness in L2-norm. Let G represent
the subgradient of ˆerrm(w). We show that 〈G(w),w − v〉 ≥ 0,
which proves the result. To show this inequality, we exploit the
Lipschitzness of ReLU function, the bound on its derivative and
the fact that φ〈w∗, xi〉 = yi. The complete proof is presented in
Section 5.1 for ease of reading further at this time.

Theorem 2. In the noisy GLM with generalized ReLU activa-
tion, assuming ‖w∗‖ ≤ W, given w ∈ B(0,W), then with prob-
ability ≥ 1 − δ after m ≥ O(log(1/δ)/ε2) samples, ˆerr(w) is(
ε, 2b3W

a ,w∗
)
− S LQC in w.

Proof. Please see Section 5.3 for the proof.

The above theorems, in combination with the results in [9],
allow us to conclude that for a single-output no-hidden-layer
neural network with sigmoid or ReLU activation, the error func-
tion, ˆerr, is SLQC in w. This is however not directly useful for
neural networks, as stated earlier. To this end, we propose a
new extension of SLQC relevant to a set of GLMs, such as in
a layer of a neural network. We note that all of the following
sections are novel contributions, which did not exist earlier.

3.2.2. SLQC-ness of a Multi-Output Neural Network with No
Hidden Layers

We begin with a revised definition of Local Quasi-Convexity
for matrices using the Frobenius inner product.

Definition 4 (Local Quasi-Convexity for Matrices). Let x, z ∈
Rd×d′ , κ, ε > 0 and f : Rd×d′ → R be a differentiable function.
Then f is (ε, κ, z)-Strictly Locally Quasi-Convex (SLQC) in x,
if at least one of the following applies:

1. f (x) − f (z) ≤ ε
2. ‖∇ f (x)‖ > 0, and ∀y ∈ B (z, ε/κ), 〈∇ f (x), y − x〉F ≤ 0

where B (z, ε/κ) is a ball centered at z with radius ε/κ. (〈·, ·〉F
denotes the Frobenius inner product.)

We now show that the error, ˆerr(W), of a multi-output no-
hidden-layer neural network is also SLQC in W. (Note that
w.r.t. our problem setup in Equation 4, this is equivalent to
showing that the one-hidden layer neural network problem is
SLQC in W2 alone.) The empirical error function is now given
by:

ˆerr(W) =
1
m

m∑
i=1

‖yi − φ(〈W, xi〉)‖2

where xi ∈ Rd is the input, yi ∈ Rd′ is the corresponding cor-
rect output, W ∈ Rd×d′ is the matrix of weights and φ is ap-
plied element-wise in the multi-output no-hidden-layer neural
network. Let the global minimizer of ˆerr be W∗.

Theorem 3. Let an idealized single-layer multi-output neural
network be characterized by a linear operator W ∈ Rd×d′ =

[w1 w2 · · · wd′] and a generalized ReLU activation function
be applied element-wise φ : Rd′ → Rd′ . Let the output of the
layer be φ〈W, x〉 ∈ Rd′ where x ∈ Rd is the input. Assuming
‖W∗‖F ≤ W, ˆerr(W) is

(
ε, 2b3W

a ,W∗
)
− S LQC in W for all

W ∈ Bd(0,W) and ε > 0.

Proof Sketch. To show this result, we use Definition 4. Let V =

[v1 v2 · · · vd′] be a point ε/κ-close to minima W∗ with κ =
2b3W

a . Let G(W) be the subgradient of ˆerrm(W). Then we show
that 〈G(W),W − V〉F ≥ 0, thus proving the result. Section 5.5
presents the complete proof.

3.2.3. One Hidden Layer Networks with Single Output Neurons
Taking this further, we next consider a single-hidden-layer

neural network. While the outer layer (layer 2) of a single-
hidden-layer neural network can be directly viewed as a set
of GLMs (see section 5.4), the inner layer cannot be viewed
the same way (due to lack of expected outputs in the hidden
layer). We hence need to show that given a fixed w2, the error
ˆerr(W1,w2) is also SLQC in W1. In this case, the empirical

error function is:

ˆerr(W1,w2) =
1
m

m∑
i=1

‖yi − φ2〈w2, φ1〈W1, xi〉〉‖
2

where xi ∈ Rd is the input; yi ∈ R is the corresponding correct
output; and W1 ∈ Rd×d′ , w2 ∈ Rd′ are the weights of the inner
and outer layers respectively. Let the global minimizer of ˆerr be
(W∗

1,w
∗
2). This setting corresponds to the inner layer of single-

output single-hidden-layer neural network.

Theorem 4. Let an idealized two-layer neural network be
characterized by linear operators W1 ∈ Rd×d′ , w2 ∈ Rd′

and generalized ReLU activation functions φ1 : Rd′ → Rd′ ,
φ2 : R → R. Assuming ‖W∗

1‖F ≤ W1, ‖w∗2‖ ≤ W2, ˆerr(W1,w2)

is
(
ε,

(
a

4b5W2
2 W1
−

W1
ε

)−1
,W∗

1

)
− S LQC in W1,∀W1 ∈ B(0,W1)

and ∀ε > 0.

Proof Sketch. We again use Definition 4 to prove the re-
sult. Let V1 be a point ε

κ
close to minima. We show that

〈∇W1 ˆerr(W1,w2),W1 −V1〉F ≥ 0. As a consequence of Defini-
tion 4, this proves the result. See Section 5.7 for the complete
proof.

3.2.4. One Hidden Layer Networks with Multiple Output Neu-
rons

The above results together postulate that a single-hidden-
layer neural network is layer-wise SLQC. We use the above
result to show that error ˆerr(W1,W2) is SLQC in W1 for single-
hidden-layer neural network, even with multiple outputs. The
empirical error function in this setting is:

ˆerr(W1,W2) =
1
m

m∑
i=1

‖yi − φ2〈W2, φ1〈W1, xi〉〉‖
2

4

where xi ∈ Rd is the input, yi ∈ Rd
′′

is the corresponding correct
output, W1 ∈ Rd×d′ , W2 ∈ Rd

′
×d
′′

are the weights of the inner
and outer layers respectively. Let the global minimizer of ˆerr
be (W∗

1,W
∗
2). This setting corresponds to the inner layer of a

multi-output single-hidden-layer neural network.

Theorem 5. Let an idealized two-layer neural network be
characterized by linear operators W1 ∈ Rd×d′ , W2 ∈ Rd′×d

′′

and generalized ReLU activation functions φ1 : Rd′ → Rd′ ,
φ2 : Rd′′ → Rd′′ . Assuming ‖W∗

1‖F ≤ W1, ‖W∗
2‖F ≤

W2, ˆerr(W1,W2) is
(
ε,

(
a

4b5W2
2 W1
−

W1
ε

)−1
,W∗

1

)
− S LQC in

W1,∀W1 ∈ B(0,W1) and ∀ε > 0.

Proof Sketch. We use Theorem 4 to prove this result. The error
ˆerr(W1,W2) of a multi-output single-hidden layer network can

be seen as the sum of errors of d′′ single-output single-hidden
layer networks. This observation combined with Theorem 4
is used to prove the result. See Section 5.8 for the complete
proof.

While the above results have been shown with the general-
ized ReLU, each of these results also holds for sigmoid activa-
tion functions. Moreover, most other widely used error func-
tions such as cross-entropy loss are convex (and thus SLQC) as
well as Lipschitz. We believe that our results can be extended
to most commonly used error functions, and we present an ex-
tension to cross-entropy loss below in Section 3.3.

3.2.5. The ReLU Case
In an earlier subsection, we defined the Generalized ReLU

in Defn 3. Note that this definition does not cover the standard
ReLU (a = 0). We call the standard ReLU as ReLU in this sub-
section. We hence now provide additional results for networks
having ReLU as the activation function. These results are, natu-
rally, quite similar to the ones for Generalized ReLU. Note that
for ReLU as the activation function, the subgradient g would be
0 for x < 0 and b otherwise.

As in the previous subsection, consider first the case of a
network having no hidden layers and only one output neuron.
In this case we have the following corollary (to Theorem 1):

Corollary 1. In the idealized GLM with ReLU activation, as-
suming ‖w∗‖ ≤ W, ˆerr(w) is

(
ε, 2b2W,w∗

)
− S LQC in w,∀w ∈

B(0,W) and ∀ε > 0.
Proof Sketch. The proof is similar to the proof of Theorem 1.
See Section 5.2 for the complete proof.

Now consider the case with no hidden layer but multiple out-
put neurons. For this case, we have the following corollary (to
Theorem 3).

Corollary 2. Let an idealized single-layer multi-output neural
network be characterized by a linear operator W ∈ Rd×d′ =

[w1 w2 · · · wd′] and a standard ReLU activation function ap-
plied element-wise φ : Rd′ → Rd′ . Let the output of the
layer be φ〈W, x〉 ∈ Rd′ where x ∈ Rd is the input. Assuming
‖W∗‖F ≤ W, ˆerr(W) is

(
ε, 2b2W,W∗

)
− S LQC in W for all

W ∈ Bd(0,W) and ε > 0.

Proof Sketch. The proof is similar to the proof of Theorem 3,
Section 5.6 presents the complete proof.

The above results allow us to extend our results to the stan-
dard ReLU activation function. We leave the specifics of ex-
tending to the one-hidden layer network to the reader. We note,
however, that all of our experiments in this work are conducted
with the Leaky ReLU which satisfies the Generalized ReLU
definition in Defn 3, and hence is in line with the theorems
proved in earlier subsections.

3.3. Extension to Cross-Entropy Loss

We now present results for neural networks trained using the
Cross Entropy Error, −

∑
i(yi log(pi)) (where pi is the predicted

probability for the ith output class from the neural network, ob-
tained using the sigmoid function on a single output neuron, or
softmax function when there are multiple output neurons), as
loss instead of Mean Square Error. We first consider the case of
a network having no hidden layer and only neuron in the out-
put layer. This corresponds to use of J as binary cross-entropy
loss in Equation 2, with a sigmoid activation in the output layer.
(We wish to highlight that the proof techniques used in the re-
sults below are very different from those in [9].)

Theorem 6. In the idealized GLM like setting with sigmoid ac-
tivation and binary cross entropy loss, assuming ‖w∗‖ ≤ W,
ˆerr(w) is

(
ε, ε

(1−e−ε)2 ,w∗
)
− S LQC in w,∀w ∈ B(0,W) and

∀ε > 0.

Proof Sketch. To show this, we use Definition 1. With a point
v, ε/κ close to w∗, we show that 〈G(w),w − v〉 ≥ 0. Section 5.9
presents the complete proof.

We next consider the case of no hidden layers but multiple
output neurons. In this case, given cross-entropy error as the
loss function, the following result holds:

Theorem 7. Let an idealized single-layer multi-output neural
network be characterized by a linear operator W ∈ Rd×d′ =

[w1 w2 · · · wd′] and softmax activation function applied φ :
Rd′ → Rd′ . Let the output of the layer be φ〈W, x〉 ∈ Rd′

where x ∈ Rd is the input and the loss function, ˆerr, used
is Cross-Entropy Error. Assuming ‖W∗‖F ≤ W, ˆerr(W) is(
ε, εd′

(1−e−ε)2 ,W∗
)
− S LQC in W for all W ∈ Bd(0,W) and ε > 0.

Proof. See Section 5.10 for the proof.

The above results allow us to extend our results in Section 3.2
to the cross-entropy loss. We leave the specific statement of the
above result for one hidden-layer networks to the reader. We
however do experimentally study the use of cross-entropy loss
in our methodology, even for deep neural networks, in Section
4. Also, while the cross-entropy loss is more closely related to
sigmoid-activated neurons, we empirically also study the use of
leaky ReLU as activations in hidden layers in our experiments
(Section 4).

Given the above background of results, we now present our
methodology to train a multi-layer neural network effectively
using these results.

5

Algorithm 1 Stochastic Normalized Gradient Descent (SNGD)

Input: Number of iterations T , training data S =

{(xi, yi)}mi=1 ∈ Rd × R, learning rate η, minibatch size b, Ini-
tialization parameters w0
for t = 1 to T do

Select a random mini-batch of training points by sampling
{(xi, yi)}bi=1 ∼ Uniform(S)
Let ft(w) = 1

b
∑b

i=1(yi − φ〈w, xi〉)2

Let gt = ∇ ft(wt), and ĝ(t) =
gt
‖gt‖

wt+1 = wt − η · ĝt

end for
Output: Model given by wT

3.4. Methodology

As stated earlier, [9] showed that Stochastic Normalized Gra-
dient Descent (SNGD) converges with high probability to the
optimum for SLQC functions. We leverage this result to arrive
at a formal procedure to train neural networks effectively. To
this end, we begin by briefly reviewing the Stochastic Normal-
ized Gradient Descent (SNGD) method, and state the relevant
result.

3.4.1. Stochastic Normalized Gradient Descent (SNGD)
Normalized Gradient Descent (NGD) is an adaptation of tra-

ditional Gradient Descent, where the updates in each iteration
are based only on the direction of the gradients. This is achieved
by normalizing the gradients. SNGD is the stochastic version
of NGD, where weight updates are performed using individual
(randomly chosen) training samples, instead of the complete set
of samples. Mini-batch SNGD generalizes this by applying up-
dates to the parameters at the end of every mini-batch of sam-
ples, as does mini-batch Stochastic Gradient Descent (SGD).
In the remainder of this paper, we refer to mini-batch SNGD as
SNGD itself, as is common for SGD. Algorithm 1 describes the
SNGD methodology for a generic problem.

We now state the result showing the effectiveness of SNGD
for SLQC functions.

Theorem 8 ([9]). Let ε, δ,G,M, κ > 0, let f : Rd → R and
w∗ = arg minw f (w). Assume that for b ≥ b0(ε, δ,T), with prob-
ability ≥ 1 − δ, ft defined in Algorithm 1 is (ε, κ,w∗)-SLQC
∀w, and | ft | ≤ M∀t ∈ {1, · · · ,T } . If we run SNGD with

T ≥ κ2 ||w1−w∗ ||2
ε2 and η = ε

κ
, and b ≥ max

{
M2log(4T

δ)
2ε2 , b0(ε, δ,T)

}
,

with probability 1 − 2δ, f (w) − f (w∗) ≤ 3ε3.

Importantly, note that the convergence rate of SNGD depends
on the κ parameter. While the GLM error function with sigmoid
activation has κ = eW (stated earlier in the section), the gener-
alized ReLU setting introduced in this work has κ = 2b3W

a (i.e.
linear in W) for both GLMs and layers, which is an exponential
improvement for the SNGD procedure’s effectiveness. This is

3Replacing inner product with Frobenius inner product in the proof for this
result in [9] allows us to extend this result to our definition of SLQC for matri-
ces.

significant as the number of iterations T in Theorem 8 depends
on κ2. In other words, SNGD offers accelerated convergence
with the proposed generalized ReLU layers as compared to sig-
moid GLMs proposed earlier.

3.4.2. DANTE
We have thus far shown that each layer of the considered one-

hidden-layer neural network comprises of a set of SLQC prob-
lems, each independent in its parameters. Also, SNGD provides
an effective method for each such SLQC problem to converge
to its respective ε-suboptimal solution with high probability, as
shown in Theorem 8. This allows us to propose an alternating
strategy, DANTE , where each individual SLQC problem is ef-
fectively solved (or each individual layer is effectively trained)
using SNGD, which we now present. We note that although
DANTE uses stochastic gradient-style methods internally (such
as SNGD), the overall strategy adopted by DANTE is not neces-
sarily a descent-based strategy, but an alternating-minimization
strategy.

Consider the optimization problem below for a single hidden
layer network:

min
W

f (W1,W2) = Ex∼D‖φ2〈W2, φ1〈W1, x〉〉 − y‖22

As seen in Section 3.2, on fixing each of W1 and W2, we have
an SLQC problem. On fixing W1, we have the SLQC problem:

min
W

Ex∼D‖φ2〈W2, z〉 − y‖22,

where z = φ1〈W1, x〉. On fixing W2, we have the following
SLQC problem:

min
W

Ex∼D‖φW2〈W1, x〉 − y‖22,

DANTE optimizes the empirical risk associated with each of
these intermediate problems using SNGD steps by sampling
several mini-batches of data points and performing updates as
in Algorithm 1. Algorithm 2 provides the complete algorithm
for the proposed method. Note that the results from the last
two subsections hold for any weights and are not limited to the
initialized weights. For example if the network is initialized
with W0

1 and W0
2 and after training the layers once, we obtain

weights W1
1 and W1

2. The SNGD conditions would still hold
for this pair of weights, justifying the applicability of the algo-
rithm.

3.5. Extending to a Multi-Layer Neural Network
In the previous sections, we illustrated how a single hidden-

layer neural network can be cast as a set of SLQC problems and
proposed an alternating minimization method, DANTE. This
approach can be generalized to deep auto-encoders by consid-
ering a greedy layer-wise approach to training a neural network
[23]. Unlike earlier layer-wise training efforts where such train-
ing is used only as a pretraining step, no further finetuning is
necessary in our methodology; the layer-wise training directly
results in the final model.

We now describe our approach. Consider for example a
three-hidden layer autoencoder as pictured in figure 1. Say the

6

Algorithm 2 Deep AlterNations for Training nEural networks
(DANTE)

Input: Stopping threshold ε, Number of iterations of alter-
nating minimization TAM , Number of iterations for SNGD
TS NGD, initial values W0

1 ,W
0
2 , learning rate η, minibatch size

b
t := 1
while | f (W t

1,W
t
2) − f (W t−1

1 ,W t−1
2)| ≥ ε or t < TAM do

W t
2 ← arg min

W
Ex∼D‖φ2〈W, φ1〈W t−1

1 , x〉〉 − y‖22 //use

SNGD

W t
1 ← arg min

W
Ex∼D‖φ2〈W t

2, φ1〈W, x〉〉 − y‖22 //use SNGD

t := t + 1
end while
Output: W t−1

1 ,W t−1
2

Algorithm 3 DANTE for a multi-layer auto-encoder

Input: Network with 2n − 1 hidden layers and weights
W1, . . .W2n

for l = 1 to n do
Consider the one-hidden layer network formed by Wl and
W2n−l+1.
Train Wl and W2n−l+1 using Algorithm 2

end for
Output: Trained W1, . . .W2n

weights in the network are W1,W2,W3 and W4 respectively
from the leftmost to the rightmost layer. In the first phase we
consider the one-hidden layer network obtained by the weights
W1 and W4 (the network of layer dimensions 5→ 3→ 5). We
train these two weights using our one-hidden layer DANTE al-
gorithm (section 3.4). Once these layers are trained, in the sec-
ond phase, we consider the one-hidden layer network obtained
by the weights W2 and W3 (a network of layer dimensions
3 → 2 → 3). We train these weights by the one-hidden layer
DANTE algorithm with the input and output being φ1〈W1, x〉
(the activations of the first hidden layer). This example demon-
strated the overall idea behind deep autoencoder training. For a
general deep autoencoder, we take pairs of weights symmetric
from the center and train them moving from the farthest pair
to the one formed by the center layers. Algorithm 3 summa-
rizes the proposed approach to use DANTE for a deep neural
network, and Figure 1 illustrates the approach.

Note that it is possible to use other schemes to use
DANTE for multi-layer neural networks such as a round-robin
scheme, where each layer is trained separately one after the
other in the sequence in which the layers appear in the net-
work. Our experiments found that both of these approaches
(Algorithm 3 and round-robin scheme) work equally well for
autoencoders. To train multi-layer neural networks we use the
round-robin scheme.

Following earlier efforts on alternating optimization for neu-
ral networks [12][15], we note that proving convergence for al-
ternating minimization methods that train neural networks is
not straightforward and a significant effort by itself, and hence

(a) Phase - 1

(b) Phase - 2

Figure 1: An illustration of the proposed multi-layer DANTE (best viewed in
color). In training phase 1, the outer pairs of weights (shaded in gold) are
treated as a single-hidden-layer neural network and trained using single-layer
DANTE . In phase 2, the inner pair of weights (shaded in gold) are treated as a
single-hidden-layer neural network and trained using single-layer DANTE .

is left as an important direction of future work. We focus this
work on identifying this alternating minimization procedure,
which is derived from a sound understanding of the individual
problems underneath (we believe this is a contribution by itself
when looking for alternatives to backpropagation), and show-
case its empirical effectiveness.

4. Experiments and Results

We validated DANTE by training feedforward neural net-
works, as well as autoencoders, on standard datasets including
MNIST, Kuzushiji-MNIST (KMNIST) [24], SVHN, CIFAR-10
and Tiny ImageNet. The Tiny-Imagenet dataset has 200 classes
while the others have 10 classes each. We followed the bench-
mark training and evaluation protocols established for each of
these datasets. We studied the training and test loss as well as
the test accuracy on all our experiments. We used vanilla SGD-
based backpropagation (henceforth, called SGD in the exper-
iments) as the baseline method. In order to ensure fair com-
parison between SGD and DANTE , we tried different learning
rates and picked the best ones individually for both methods.
We show the comparative results with these best learning rates.
We also show results later in this section using adaptive learning
rate methods on both learning schemes.

Note that in all the presented results (unless explicitly stated
otherwise), the X-axis is the number of weights updated. We
choose this as the reference instead of number of epochs to be
fair to DANTE as it updates fewer weights than SGD in any
given epoch (where only one pair of layers is updated). In
graphs comparing SGD and DANTE, the blue curve is always
DANTE and the green one is SGD.

4.1. Feedforward Neural Networks

This subsection presents the comparative performance of
SGD and DANTE on feedforward neural networks. To ensure

7

an exhaustive comparison, we used multiple datasets and var-
ied network widths and depths in our experiments. Our initial
experiments use Leaky ReLU as the activation function, with
a = 0.01 and b = 1, as well as sigmoid activation, and Mean
Square Error as the loss function (we later show results with
cross-entropy error).

Both MNIST and KMNIST datasets consist of grayscale im-
ages of size 28 × 28. The input layer hence has dimension 784.
For both these datasets, we use one-hidden layer networks hav-
ing 100, 250, 400 and 600 neurons in the hidden layer, as well
as a two hidden-layer network (784 −→ 400 −→ 200 −→ 10), a
three hidden-layer network (784 −→ 400 −→ 200 −→ 100 −→ 10)
and a five hidden-layer network (784 −→ 600 −→ 400 −→ 200 −→
100 −→ 50 −→ 10). The results are presented in Figure 2.

Both CIFAR-10 and SVHN datasets have colored (3-
channel) images of size 3 x 32 x 32, thus the input layer for
these is of dimension 3072. For these datasets, we use a one
hidden-layer network (3072 −→ 512 −→ 10), a two-hidden layer
network (3072 −→ 512 −→ 64 −→ 10). and a five hidden-layer
network (3072 −→ 1024 −→ 512 −→ 256 −→ 128 −→ 64 −→ 10).
Figure 3 shows the results.

Tiny-Imagenet is a widely used subset of the original Ima-
genet dataset having 200 classes, and 500 images of each class
in the training set. We train three networks (12288 −→ 3072 −→
512 −→ 200, 12288 −→ 3072 −→ 1024 −→ 512 −→ 200, and
12288 −→ 3072 −→ 1536 −→ 768 −→ 384 −→ 200) using DANTE
and SGD on this dataset to compare the performance on a more
difficult task. Since the labels of the test set are not available, we
report the performance on the standard validation set (which has
50 images of each class) in Figure 4. (Both SGD and DANTE
do not achieve high accuracies on this dataset as the network
considered is a simple MLP. Considering our objective in this
work was to prove the feasibility of this approach with MLPs,
studying extension of DANTE on convolutional layers, LSTMs
and other variants are important directions of our future work.)

The results clearly show the effectiveness of using
DANTE for training neural networks - DANTE obtains lower
training/test loss and higher test accuracy. Even in cases where
the final losses of DANTE and SGD are almost equal, DANTE
always minimizes the loss faster than SGD.

Feedforward Neural Networks with Sigmoid Activations.
We now present the comparative performance of SGD and
DANTE on feedforward neural networks with sigmoid activa-
tions and Mean Square Error loss function. We show our results
with MNIST and KMNIST datasets. We use the same architec-
tures as in the previous subsection, except that we use sigmoid
activation instead of Leaky ReLU. The results are presented in
Figure 5. It is apparent from the results that DANTE performs
better than SGD in this case too.

Feedforward Neural Networks with Cross-Entropy Loss.
To compare DANTE with SGD on networks with cross-entropy
loss, we experiment with sigmoid and Leaky ReLU actiav-
tions on the MNIST dataset with the same network architec-
tures as before, but with cross-entropy as loss function. Figure
6 presents the results of these experiments.

Algorithm Parameter Loss
DANTE LR = 0.001 0.030775

SGD LR = 0.001 0.031126
SGD+Adam 0.0001 0.021704

SGD+Adagrad 0.0001 0.021896
SGD+RMSProp 0.0001 0.021953

SGD+Momentum MP=0.9 0.021497
DANTE +Momentum MP=0.0005 0.020816

Table 1: Loss on using various adaptive learning schemes with DANTE and
SGD. (LR = Learning Rate; MP = Momentum Parameter)

Algorithm Learning Rate Loss
DANTE 0.001 0.030775

SGD 0.001 0.031126
SGD+AltMin 0.001 0.032912
SGD+AltMin 0.0001 0.044911
SGD+AltMin 0.0005 0.035567

Table 2: Loss on using SGD+AltMin to learn the MNIST dataset.

4.2. Ablation Studies

4.2.1. Impact of Adaptive Learning Rate Methods
As stated earlier, in all of the abovementioned experiments,

we chose the best learning rates for both SGD and DANTE in
each experiment. To go further, we also studied the use of sev-
eral adaptive learning schemes with both SGD and DANTE .
The results, the final test loss at the end of training, in
these studies on the MNIST dataset are presented in Table 1.
DANTE with some momentum is able to outperform SGD with
all the popular adaptive learning rate schemes.

4.2.2. Using SGD in Alternating Minimization
A natural question one could ask is the relevance of SNGD to

train each layer of the proposed methodology. To study this em-
pirically, we compared our algorithm to an analogous algorithm
that uses SGD for each inner loop of DANTE . Table 2 presents
these results, the test loss at the end of training. Although we
allowed different learning rates for the SGD variant, DANTE
provides a better performance than any of these variants.

4.2.3. Effect of the T Parameter
DANTE alternatively optimizes over each layer using

SNGD. An important parameter for SNGD which can affect
performance is the number of epochs for which SNGD algo-
rithm runs for each layer (parameter T in Algorithm 1). We
vary T and compare how the performance of DANTE varies
when compared to SGD. The results are presented in Figure 7.
We observe that DANTE is fairly robust to changes in T . The
network used for the presented result was (784 −→ 100 −→ 10)
with the MNIST dataset. Observing the performance of this
experiment, we chose T = 5 for all our experiments.

8

Figure 2: (Best viewed in color) Comparative Performance of SGD (Green) and DANTE (Blue) on MNIST and KMNIST datasets. The rows correspond to
networks (784 −→ 100 −→ 10), (784 −→ 250 −→ 10), (784 −→ 400 −→ 10), (784 −→ 600 −→ 10), (784 −→ 400 −→ 200 −→ 10), (784 −→ 400 −→ 200 −→ 100 −→ 10) and
(784 −→ 600 −→ 400 −→ 200 −→ 100 −→ 50 −→ 10) in order from top to bottom, all with Leaky ReLU activations. The first three columns correspond to MNIST, and the
last three correspond to KMNIST. The first and fourth columns show training loss; second and fifth columns show test accuracy; third and sixth columns show test
loss. For all the plots, X axis is the number of weights updated.

9

Figure 3: (Best viewed in color) Comparative performance of SGD (Green) and DANTE (Blue) on CIFAR-10 and SVHN datasets. The rows correspond to networks
(3072 −→ 512 −→ 10), (3072 −→ 512 −→ 64 −→ 10) and (3072 −→ 1024 −→ 512 −→ 256 −→ 128 −→ 64 −→ 10) in order from top to bottom, all with Leaky ReLU activations.
The first three columns correspond to CIFAR-10, and the last three correspond to SVHN. The first and fourth columns show training loss; second and fifth columns
show test accuracy; third and sixth columns show test loss. For all the plots, X axis is the number of weights updated.

Figure 4: (Best viewed in color) Comparative performance of SGD (Green) and
DANTE (Blue) on Tiny Imagenet. The rows correspond to networks (12288 −→
3072 −→ 512 −→ 200), (12288 −→ 3072 −→ 1024 −→ 512 −→ 200) and (12288 −→
3072 −→ 1536 −→ 768 −→ 384 −→ 200) in order from top to bottom, all with
Leaky ReLU activations. The first column shows training loss, second shows
validation accuracy and third shows validation loss. For all plots, X-axis is the
number of weights updated.

4.3. Other Empirical Studies

4.3.1. Comparative Study
We have compared DANTE to other Alternating-

Minimization approaches for training neural networks:
Choromanska’s [13] AM-Adam (which was their best per-
forming variant) and Taylor’s [12] ADMM approach, from
the codes provided by the corresponding authors. The results
of comparison between DANTE , AM-Adam and ADMM on
MNIST are presented in figure 8. Taylor’s ADMM algorithm
peaked at an accuracy of about 81% for both the networks.
Note that Taylor’s method seems to show significant instability
when trained on well-known datasets over a longer period.
Our proposed method does not suffer from this issue. As is
clear of the graphs and results, DANTE outperforms both the
AM-Adam and Taylor’s ADMM algorithm.

4.3.2. Regression Tasks
All the above-mentioned experiments were done for the clas-

sification task. We hence also studied the performance of
DANTE on standard regression datasets from the UCI repos-
itory. Table 3 presents the final test error values at the end
of training. We followed The standard benchmark evalua-
tion setup of each of the datasets, as specified in the reposi-
tory. These results further support the promise of the proposed
method.

4.3.3. Training Autoencoder Models
Going further, we conducted experiments to study the effec-

tiveness of the feature representations learned using the autoen-
coder models trained using DANTE and SGD. After training,
we passed the datasets (from UCI repository) through the au-
toencoder, extracted the hidden layer representations, and then

10

Figure 5: (Best viewed in color) Comparative performance of SGD (Green) and DANTE (Blue) on MNIST and KMNIST datasets. The rows correspond to networks
(in order) (784 −→ 100 −→ 10), (784 −→ 250 −→ 10), (784 −→ 400 −→ 10), (784 −→ 600 −→ 10), (784 −→ 400 −→ 200 −→ 10) and (784 −→ 400 −→ 200 −→ 100 −→ 10)
having sigmoid activations. The first three columns correspond to MNIST, and the last three correspond to KMNIST. The first and fourth columns show training
loss; second and fifth columns show test accuracy; third and sixth columns show test loss. For all the plots, X-axis is the number of weights updated.

11

Figure 6: (Best viewed in color) Comparative performance of SGD (Green) and DANTE (Blue) on the MNIST dataset with cross-entropy loss. The rows correspond
to networks (in order) (784 −→ 100 −→ 10), (784 −→ 250 −→ 10), (784 −→ 400 −→ 10), (784 −→ 600 −→ 10), (784 −→ 400 −→ 200 −→ 10), (784 −→ 400 −→ 200 −→ 100 −→ 10)
and (784 −→ 600 −→ 400 −→ 200 −→ 100 −→ 50 −→ 10). The first three columns correspond to networks with Leaky ReLU activations; the last three correspond to
networks with sigmoid activations. The first and fourth columns show training loss; second and fifth columns show test accuracy; third and sixth columns show test
loss. For all the plots, X-axis is the number of weights updated.

12

Figure 7: (Best viewed in color) Comparative performance of SGD (Green)
and DANTE (Blue) with varying parameter T on MNIST dataset. The network
used in the top three plots is (784 −→ 100 −→ 10) and the bottom three plots
is (784 −→ 600 −→ 400 −→ 200 −→ 100 −→ 50 −→ 10). The first column shows
training loss; the second shows test accuracy; and third shows test loss. For all
plots, X-axis is the number of weights updated.

Figure 8: (Best viewed in color) Comparative performance of DANTE (Blue),
Choromanska’s AM-Adam (red) and Taylor’s ADMM based algorithm (cyan)
on MNIST dataset. The network used in the top three plots is (784 −→ 100 −→ 10)
and the bottom three plots is (784 −→ 100 −→ 100 −→ 100 −→ 10). The first column
shows training loss; the second shows test accuracy; and third shows test loss.
For all plots, X-axis is the number of parameters updated.

DANTE SGD
Air-Foil 0.066852 0.069338

Fires 0.024988 0.029008
CCPP 0.000283 0.0003009

Table 3: Test error on UCI regression datasets with DANTE and SGD.

DANTE SGD
MNIST 93.6% 92.44%

Ionosphere 92.45% 96.22%
SVMGuide4 87.65% 70.37%

USPS 90.43% 89.49%
Vehicle 77.02% 74.80%

Table 4: Classification accuracies using ReLU autoencoder features on different
datasets.

trained a linear SVM. The classification accuracy results us-
ing the hidden representations are given in Table 4. The table
clearly highlights the improved performance of DANTE on this
task. In case of the SVMGuide4 dataset, DANTE showed a
significant improvement of over 17% on the classification ac-
curacy.

Figure 9 shows some of the best reconstructions obtained by
trained models for the autoencoder with the ReLU activation on
MNIST in both cases (SGD and DANTE). The model trained
using DANTE shows qualitatively better reconstructions, when
compared to reconstructions obtained using a model trained by
SGD under the same settings.

5. Proofs

5.1. Proof of Theorem 1
Proof. Consider w ∈ B(0,W), ‖w‖ ≤ W such that ˆerrm(w) =
1
m

∑m
i=1(yi − φ〈w, xi〉)2 ≥ ε, where m is the total number of

samples. Also let v be a point ε/κ-close to minima w∗ with
κ = 2b3W

a . Let g be the subgradient of the generalized ReLU
activation and G be the subgradient of ˆerrm(w). (Note that as
before, g〈., .〉 denotes g(〈., .〉).) Then:

〈G(w),w − v〉

=
2
m

m∑
i=1

g〈w, xi〉 (φ〈w, xi〉 − yi) 〈xi, (w − v)〉

=
2
m

m∑
i=1

g〈w, xi〉 (φ〈w, xi〉 − φ〈w∗,xi〉)[
〈xi,w − w∗〉 + 〈xi,w∗ − v〉

] (Step 1)

Figure 9: Reconstructions using the autoencoder models with ReLU activation.
Top: Model trained using SGD; Bottom: Model trained using DANTE.

13

≥
2
m

m∑
i=1

g〈w, xi〉
[
b−1 (φ〈w, xi〉 − φ〈w∗,xi〉)

2

+ (φ〈w, xi〉 − φ〈w∗,xi〉) 〈xi,w∗ − v〉
] (Step 2)

≥
2
m

m∑
i=1

g〈w, xi〉
[
b−1 (φ〈w, xi〉 − φ〈w∗,xi〉)

2

− |φ〈w, xi〉 − φ〈w∗,xi〉|‖xi‖‖w∗ − v‖
]

≥
2
m

m∑
i=1

ab−1 (φ〈w, xi〉 − φ〈w∗, xi〉)
2

−
2
m

m∑
i=1

b|φ〈w, xi〉 − φ〈w∗,xi〉|‖xi‖‖w∗ − v‖

(Step 3)

≥
2
m

m∑
i=1

ab−1 (φ〈w, xi〉 − φ〈w∗, xi〉)
2

−
2
m

m∑
i=1

b2‖〈w, xi〉 − 〈w∗,xi〉‖
ε

κ
‖xi‖

(Step 4)

≥ 2ab−1ε −
aε

bWm

m∑
i=1

‖〈w, xi〉 − 〈w∗,xi〉‖‖xi‖

≥ 2ab−1ε −
aε

bWm

m∑
i=1

‖w − w∗‖‖xi‖
2

≥ ab−1ε(2 −
1
W
‖w − w∗‖) (Step 5)

≥ 0 (7)

In the above proof, we first use the fact (in Step 1) that in
the GLM, there is some w∗ such that φ〈w∗, xi〉 = yi. Then,
we use the fact (in Steps 2 and 4) that the generalized ReLU
function is b-Lipschitz, and the fact that the minimum value of
the quasigradient of g is a (Step 3). Subsequently, in Step 5,
we simply use the given bounds on the variables xi,w,w∗ due
to the setup of the problem (w ∈ B(0,W), and xi ∈ B(0, 1), the
unit d-dimensional ball, as defined earlier in this section).

5.2. Proof of Corollary 1

Proof. Similar to the previous proof, consider w ∈ B(0,W),
‖w‖ ≤ W such that 1

m
∑m

i=1,〈w,xi〉>0(yi − φ〈w, xi〉)2 ≥ ε, where
m is the total number of samples. Also let v be a point ε/κ-
close to minima w∗ with κ = 2b2W. Let g be the subgradient
of the generalized ReLU activation and G be the subgradient of
ˆerrm(w).

Note here that since φ is ReLU, if 〈w, xi〉 ≤ 0, then φ〈w, xi〉 =

0 and g〈w, xi〉 = 0. Then:

〈G(w),w − v〉

=
2
m

m∑
i=1

g〈w, xi〉 (φ〈w, xi〉 − yi) 〈xi, (w − v)〉

=
2
m

m∑
i=1

g〈w, xi〉 (φ〈w, xi〉 − φ〈w∗,xi〉)[
〈xi,w − w∗〉 + 〈xi,w∗ − v〉

] (Step 1)

≥
2
m

m∑
i=1

g〈w, xi〉
[
b−1 (φ〈w, xi〉 − φ〈w∗,xi〉)

2

+ (φ〈w, xi〉 − φ〈w∗,xi〉) 〈xi,w∗ − v〉
] (Step 2)

=
2
m

m∑
i=1

〈w,xi〉>0

g〈w, xi〉
[
b−1 (φ〈w, xi〉 − φ〈w∗,xi〉)

2

+ (φ〈w, xi〉 − φ〈w∗,xi〉) 〈xi,w∗ − v〉
] (Step 3)

≥
2
m

m∑
i=1

〈w,xi〉>0

b
[
b−1 (φ〈w, xi〉 − φ〈w∗,xi〉)

2

− |φ〈w, xi〉 − φ〈w∗,xi〉|‖xi‖‖w∗ − v‖
]

≥
2
m

m∑
i=1

〈w,xi〉>0

b
[
b−1 (φ〈w, xi〉 − φ〈w∗, xi〉)

2

− b‖〈w, xi〉 − 〈w∗,xi〉‖
ε

κ
‖xi‖

] (Step 4)

=
2
m

m∑
i=1

〈w,xi〉>0

(φ〈w, xi〉 − φ〈w∗, xi〉)
2
−

2
m

m∑
i=1

〈w,xi〉>0

b2‖〈w, xi〉 − 〈w∗,xi〉‖
ε

κ
‖xi‖

(Step 5)

≥ 2ε −
2
m

m∑
i=1

〈w,xi〉>0

b2‖w − w∗‖
ε

κ
‖xi‖

2 (Step 6)

= 2ε −
2
m

mb2‖w − w∗‖
ε

κ
(Step 7)

≥ ε(2 −
1
W
‖w − w∗‖)

≥ 0

The proof uses similar arguments as the proof in Theorem 1.
In Step 3, we use the fact that g〈w, xi〉 = 0 if 〈w, xi〉 ≤ 0 and b
otherwise. For Step 7, we observe that there at most m i’s.

5.3. Proof of Theorem 2
Proof. Here, ∀i, yi ∈ [0, 1], the following holds:

yi = φ〈w∗, x〉 + ξi (8)

where {ξi}
m
i=1 are zero mean, independent and bounded random

variables, i.e. ∀i ∈ [m], ||ξi|| ≤ 1. Then, ˆerrm(w) may be written
as follows (expanding yi as in Eqn 8):

ˆerrm(w) =
1
m

m∑
i=1

(yi − φ〈w, xi〉)2

14

=
1
m

(m∑
i=1

(φ〈w∗, xi〉 − φ〈w, xi〉)2

+

m∑
i=1

2ξi(φ〈w∗, xi〉 − φ〈w, xi〉) +

m∑
i=1

ξ2
i

)
Therefore, we also have (by definition of noisy GLM in Defn
2):

ˆerrm(w) − ˆerrm(w∗) =
1
m

m∑
i=1

(φ〈w∗, xi〉 − φ〈w, xi〉)2

+
1
m

m∑
i=1

2ξi(φ〈w∗, xi〉 − φ〈w, xi〉)

Consider ||w|| ≤ W such that ˆerrm(w) − ˆerrm(w∗) ≥ ε. Also,
let v be a point ε/κ-close to minima w∗ with κ = 2b3W

a . Let g
be the subgradient of the generalized ReLU activation and G be
the subgradient of ˆerrm(w), as before. Then:

〈G(w),w − v〉

=
2
m

m∑
i=1

g〈w, xi〉 (φ〈w, xi〉 − yi) 〈xi, (w − v)〉

=
2
m

m∑
i=1

g〈w, xi〉 (φ〈w, xi〉 − φ〈w∗, xi〉 − ξi)[
〈xi,w − w∗〉 + 〈xi,w∗ − v〉

] (Step 1)

≥
2b−1

m

m∑
i=1

g〈w, xi〉(φ〈w∗, xi〉 − φ〈w, xi〉)2

−
2
m

m∑
i=1

g〈w, xi〉ξi(〈w, xi〉 − 〈w∗, xi〉)

+
2
m

m∑
i=1

g〈w, xi〉

· (φ〈w, xi〉 − φ〈w∗, xi〉 − ξi)〈w∗ − v, xi〉

(Step 2)

≥
2b−1

m

m∑
i=1

g〈w, xi〉(φ〈w∗, xi〉 − φ〈w, xi〉)2

−
2
m

m∑
i=1

g〈w, xi〉ξi(〈w, xi〉 − 〈w∗, xi〉)

− 2
εb2

κ
(||w − w*|| +

1
m

m∑
i=1

|ξi|)

(Step 3)

=
2b−1

m

m∑
i=1

a[(φ〈w∗, xi〉 − φ〈w, xi〉)2

− 2ξi(φ〈w, xi〉 − φ〈w∗, xi〉)]

−
2
m

m∑
i=1

[g〈w, xi〉(ξi(〈w, xi〉 − 〈w∗, xi〉))

− 2ab−1ξi(φ〈w, xi〉 − φ〈w∗, xi〉)]

− 2
εb2

κ
(||w − w*|| +

1
m

m∑
i=1

|ξi|)

(Step 4)

≥ 2ab−1ε − 2
εb2

κ
(||w − w*|| +

1
m

m∑
i=1

|ξi|)

+
1
m

m∑
i=1

ξiλi(w) (Step 5)

≥ 2ab−1ε − ab−1W−1ε(||w − w*|| +
1
m

m∑
i=1

|ξi|)

+
1
m

m∑
i=1

ξiλi(w) (Step 6)

≥ 2ab−1ε − ab−1ε(1 + W−1) +
1
m

m∑
i=1

ξiλi(w) (Step 7)

≥ −ab−1εW−1 +
1
m

m∑
i=1

ξiλi(w) (Step 8)

Here, λi(w) = 2g〈w, xi〉(〈w, xi〉 − 〈w∗, xi〉) − 4ab−1(φ〈w, xi〉 −

φ〈w∗, xi〉), and
|ξiλi(w)| ≤ 2b(|〈w, xi〉− 〈w∗, xi〉|+ 4ab−1|φ〈w, xi〉−φ〈w∗, xi〉|) ≤
2b(3|〈w, xi〉 − 〈w∗, xi〉|) ≤ 2b(6W) = 12bW

The above proof uses arguments similar to the proof for the
idealized GLM (please see the lines after the proof of Theorem
1, viz. the b-Lipschitzness of the generalized ReLU, and the
problem setup). Now, when

1
m

m∑
i=1

ξλi(w) ≥ ab−1W−1ε

our model is SLQC. By simply using the Hoeffding’s
bound, we get that the theorem statement holds for m ≥
288b4W4

a2 log(1/δ)/ε2.

5.4. Viewing the Outer Layer of a Neural Network as a Set of
GLMs

Given an (unknown) distribution D, let the layer be charac-
terized by a linear operator W ∈ Rd×d′ and a non-linear activa-
tion function defined by φ : R → R. Let the layer output be
defined by φ〈W, x〉, where x ∈ Rd is the input, and φ is used
element-wise in this function.

Consider the mean squared error loss, commonly used in
neural networks, given by:

min
W

err(W) = min
W

Ex∼D‖φ〈W, x〉 − y‖22

= min
W

Ex∼D‖

d′∑
i=1

φ〈W:,i, x〉 − yi‖
2
2

= min
W

d′∑
i=1

Ex∼D‖φ〈W:,i, x〉 − yi‖
2
2

=

d′∑
i=1

min
W

Ex∼D‖φ〈W:,i, x〉 − yi‖
2
2

Each of these sub-problems above is a GLM, which can be
solved effectively using SNGD as seen in Theorem 8, which we
leverage in this work.

15

5.5. Proof of Theorem 3
Proof. Consider W ∈ B(0,W), ‖W‖ ≤ W such that ˆerrm(W) =
1
m

∑m
i=1(yi − φ〈W, xi〉)2 ≥ d′ε, where m is the total number of

samples. Also let V = [v1 v2 · · · vd′] be a point ε/κ-close to
minima W∗ with κ = 2b3W

a . Let g be the subgradient of the gen-
eralized ReLU activation, G(W) be the subgradient of ˆerrm(W)
and G(w j) be the subgradient of ˆerrm(w j). (Note that as before,
g〈., .〉 denotes g(〈., .〉).) Then:

〈G(W),W − V〉

=

d′∑
j=1

〈G(wj),wj − vj〉F

(By definition of Frobenius inner product)

=
2
m

m∑
i=1

d′∑
j=1

(
φ〈wj, xi〉 − yi j

)
〈
∂(φ〈wj, xi〉)

∂wj
, (wj − vj)〉

(Step 1)

=
2
m

m∑
i=1

d′∑
j=1

g(wj, xi)
(
φ〈wj, xi〉 − yi j

)
[〈xi,wj − w∗j 〉 + 〈xi,w∗j − vj〉]

(Step 2)

≥
2
m

m∑
i=1

d′∑
j=1

g〈wj, xi〉
[
b−1

(
φ〈wj, xi〉 − φ〈w∗j , xi〉

)2

+
(
φ〈wj, xi〉 − φ〈w∗j xi〉

)
〈xi,w∗j − vj〉

] (Step 3)

≥
2
m

m∑
i=1

d′∑
j=1

g〈wj, xi〉
[
b−1

(
φ〈wj, xi〉 − φ〈w∗j ,xi〉

)2

− |φ〈wj, xi〉 − φ〈w∗j ,xi〉|‖xi‖‖w∗j − vj‖
] (Step 4)

≥
2
m

m∑
i=1

d′∑
j=1

[
ab−1

(
φ〈wj, xi〉 − φ〈w∗j , xi〉

)2

− b|φ〈wj, xi〉 − φ〈w∗j ,xi〉|‖xi‖‖w∗j − vj‖
]

≥
2
m

m∑
i=1

d′∑
j=1

[
ab−1

(
φ〈wj, xi〉 − φ〈w∗j , xi〉

)2

− b2‖〈wj, xi〉 − 〈w∗j ,xi〉‖
ε

κ
‖xi‖

] (Step 5)

≥ 2ab−1d′ε −
ad′ε
bWm

m∑
i=1

‖〈w, xi〉 − 〈w∗,xi〉‖‖xi‖ (Step 6)

≥ ab−1d′ε(2 −
1

Wm

m∑
i=1

‖w − w∗‖‖xi‖
2) (Step 7)

≥ ab−1d′ε(2 −
1
W
‖w − w∗‖) ≥ 0

In Step 6, ‖〈w, xi〉 − 〈w∗,xi〉‖ = max
j
‖〈wj, xi〉 − 〈w∗j ,xi〉‖ To

simplify from Step 7 we use the fact that ‖W∗‖ ≤ W =⇒

‖w∗‖ ≤ W. The remainder of the proof proceeds precisely as in
Theorem 1.

5.6. Proof of Corollary 2
Proof. Let all the variables be the same as in the proof for Theo-
rem 3 except that 1

m
∑m

i=1
∑d′

j=1,〈w j,xi〉>0(yi j−φ〈w j, xi〉)2 ≥ d′ε and

κ = 2b2W. Again note here that since φ is ReLU, if 〈w, xi〉 ≤ 0,
then φ〈w, xi〉 = 0 and g〈w, xi〉 = 0. Using the results from
previous proof, we continue from Step 4,

〈G(W),W − V〉

≥
2
m

m∑
i=1

d′∑
j=1

g〈wj, xi〉
[
b−1

(
φ〈wj, xi〉 − φ〈w∗j ,xi〉

)2

− |φ〈wj, xi〉 − φ〈w∗j ,xi〉|‖xi‖‖w∗j − vj‖
]

(Step 4, Borrowed)

≥
2
m

m∑
i=1

d′∑
j=1

〈wj,xi〉>0

b
[
b−1

(
φ〈wj, xi〉 − φ〈w∗j , xi〉

)2]

−
2
m

m∑
i=1

d′∑
j=1

[
b|φ〈wj, xi〉 − φ〈w∗j ,xi〉|‖xi‖‖w∗j − vj‖

]
(Step 5)

≥ d′ε(2 −
1
W
‖w − w∗‖) ≥ 0

Simplification from Step 5 to last step follows from similar ar-
guments as last proof.

5.7. Proof of Theorem 4
Proof. In this case, the prediction of the network on x is
f (W1; w2; x).
Consider W1 ∈ B(0,W1), ‖W1‖ ≤ W1, ‖w2‖ ≤ W2 such that
ˆerr(W1,w2) ≥ ε. Let V1 be a point ε

κ
close to minima W1,

where κ =

(
a

4b5W2
2 W1
−

W1
ε

)−1
.

Let ‖ f (W1; w2; x) − y‖22 = ‖φ2〈w2, φ1〈W1, x〉〉 − y‖22 and 〈·〉F be
the Frobenius inner product.

〈∇W1 ˆerr(W1,w2),W1 − V1〉F

=
2
m

m∑
i=1

(φ2〈w2, φ1〈W1, xi〉〉 − yi)

〈
∂(φ2〈w2, φ1〈W1, xi〉〉)

∂W1
, (W1 − V1)〉F

(Step 1)

Using chain rule, we can simplify ∂(φ2〈w2,φ1〈W1,x〉〉)
∂W1

as[
∂(φ2〈w2, φ1〈W1, x〉〉)

∂W1

]T

=
∂(φ2〈w2, φ1〈W1, x〉〉)
∂〈w2, φ1〈W1, x〉〉

·

[
∂〈w2, φ1〈W1, x〉〉
∂φ1〈W1, x〉

T

·
∂φ1〈W1, x〉
∂〈W1, xi〉

T]T

·

[
∂〈W1, x〉
∂W1

]T

= g2(W1,w2, x) · g1(W1, x) · w2 · xT (Let)

Continuing from Step 1:

=
2
m

m∑
i=1

g2(W1,w2, xi) (φ2〈w2, φ1〈W1, xi〉〉 − yi)

〈xiwT
2 g1(W1, xi)T , (W1 − V1)〉F

16

=
2
m

m∑
i=1

g2(W1,w2, xi) (φ2〈w2, φ1〈W1, xi〉〉 − yi)

[〈xiwT
2 g1(W1, xi)T ,W1〉F

− 〈xi(w∗2)T g1(W∗
1, xi)T ,W∗

1〉F

+ 〈xi(w∗2)T g1(W∗
1, xi)T ,W∗

1〉F

− 〈xiwT
2 g1(W1, xi)T ,V1〉F]

=
2
m

m∑
i=1

g2(W1,w2, xi) (φ2〈w2, φ1〈W1, xi〉〉 − yi)

[Tr(g1(W1, xi)w2xT
i W1) − Tr(g1(W∗

1, xi)w∗2xT
i W∗

1)

+ Tr(g1(W∗
1, xi)w∗2xT

i W∗
1) − Tr(g1(W1, xi)w2xT

i V1)]
(Step 2)

In order to convert the above terms into a more familiar form,
we begin with the following observation:

〈w2, φ1〈W, x〉〉F = Tr(g1(W, x)w2xT (W))

Also, note that g1(W, x) is a diagonal d′ × d′ matrix consisting
of a’s and b’s on the diagonal:

〈w2, φ1〈W1, x〉〉 − 〈w∗2, φ1〈W, x〉〉

= Tr(g1(W1, x)w2xT W1) − Tr(g1(W, x)w∗2xT W)

Therefore, on setting W = W∗
1 and using the fact that the

generalized ReLU is b-Lipschitz and monotonically increasing,
we have:

(φ2〈w2, φ1〈W1, x〉〉 − φ2〈w∗2, φ1〈W∗
1, x〉〉)

2

≤ b(φ2〈w2, φ1〈W1, x〉〉 − φ2〈w∗2, φ1〈W∗
1, x〉〉)

· (〈w2, φ1〈W1, x〉〉 − 〈w∗2, φ1〈W∗
1, x〉〉)

= b(φ2〈w2, φ1〈W1, x〉〉 − φ2〈w∗2, φ1〈W∗
1, x〉〉)

· (Tr(g1(W1, x)w2xT W1) − Tr(g1(W∗
1, x)w∗2xT W∗

1))

Plugging this result into Step 2:

≥
2
m

m∑
i=1

g2(W1,w2, xi)

[b−1(φ2〈w2, φ1〈W1, xi〉〉 − φ2〈w∗2, φ1〈W∗
1, xi〉〉)2

+ (φ2〈w2, φ1〈W1, xi〉〉 − yi)

· (Tr(g1(W∗
1, xi)w∗2xT

i W∗
1) − Tr(g1(W1, xi)w2xT

i V1))]

≥ 2ab−1ε +
2
m

m∑
i=1

g2(W1,w2, xi) (φ2〈w2, φ1〈W1, xi〉〉 − yi)

· [Tr(g1(W∗
1, xi)w∗2xT

i W∗
1) − Tr(g1(W1, xi)w2xT

i V1)]

≥
2a
b
ε −

2
m

m∑
i=1

g2(W1,w2, xi) · | (φ2〈w2, φ1〈W1, xi〉〉 − yi) |

|Tr(g1(W∗
1, xi)w∗2xT

i W∗
1) − Tr(g1(W1, xi)w2xT

i V1)|
(Step 3)

First consider the term |Tr(g1(W∗
1, xi)w∗2xT

i W∗
1) −

Tr(g1(W1, xi)w2xT
i V1)|. Note that ‖V1 − W∗

1‖ ≤
ε
κ
. From

triangle inequality, ‖V1‖ ≤ ‖V1 −W∗
1‖ + ‖W∗

1‖.

|Tr(g1(W∗
1, xi)w∗2xT

i W∗
1) − Tr(g1(W1, xi)w2xT

i V1)|

≤ |Tr(g1(W∗
1, xi)w∗2xT

i W∗
1)| + |Tr(g1(W1, xi)w2xT

i V1)|
≤ b · ‖w∗2‖‖xi‖‖W∗

1‖ + b · ‖w2‖‖xi‖‖V‖
≤ 1 · b ·W2[‖W∗

1‖ + ‖V1‖]
≤ b ·W2[2 · ‖W∗

1‖ + ‖V1 −W∗
1‖]

≤ b ·W2[2 · ‖W∗
1‖ +

ε

κ
]

Now consider the term |φ2〈w2, φ1〈W1, xi〉〉−φ2〈w∗2, φ1〈W∗
1, xi〉〉|

appearing in Step 3. We have,
|φ2〈w2, φ1〈W1, xi〉〉 − φ2〈w∗2, φ1〈W∗

1, xi〉〉|

≤ |φ2〈w2, φ1〈W1, xi〉〉| + |φ2〈w∗2, φ1〈W∗
1, xi〉〉|

≤ b
[
|〈w2, φ1〈W1, xi〉〉| + |〈w∗2, φ1〈W∗

1, xi〉〉|
]

≤ b
[
‖w2‖ · ‖φ1〈W1, xi〉‖ + ‖w∗2‖ · ‖φ1〈W∗

1, xi〉‖
]

≤ b ·W2·
[
‖φ1〈W1, xi〉‖ + ‖φ1〈W∗

1, xi〉‖
]

≤ b ·W2·
[
b‖〈W1, xi〉‖ + b‖〈W∗

1, xi〉‖
]

≤ b2 ·W2·
[
‖W1‖‖xi‖ + ‖W∗

1‖‖xi‖
]

≤ b2W2 · [‖W1‖ + ‖W∗
1‖]

≤ 2 · b2 ·W2 ·W1

Using these and the fact that |g2(W1,w2, xi)| ≤ b in Step 3

≥
2a
b
ε − 2b · 2b2W2W1 · bW2[2 · ‖W∗

1‖ +
ε

κ
]

≥
2a
b
ε − 4b4W2

2 W1 ·W1 − 4b4W2
2 W1

ε

κ

=
2a
b
ε − 4b4W2

2 W1 ·W1 − 4b4W2
2 W1ε

 a
4b5W2

2 W1
−

W1

ε


=

a
b
ε ≥ 0

The idea of the proof is similar to that of previous theorems.
The proof uses the fact that the minimum value of the quasigra-
dient of g is a.
5.8. Proof of Theorem 5
Proof. Consider W1 ∈ B(0,W1), ‖W1‖ ≤ W1, ‖W2‖ ≤ W2 such
that ˆerr(W1,W2) ≥ ε. Let V1 be a point ε

κ
close to minima W1,

where κ =

(
a

4b5W2
2 W1
−

W1
ε

)−1

Let W2 ∈ Rd′×d
′′

= [w2
1,w

2
2, . . .w

2
d′′].

Note here that,

∇W1 ˆerr(W1,W2)

= ∇W1

1
m

m∑
i=1

‖yi − φ2〈W2, φ1〈W1, xi〉〉‖
2

= ∇W1

1
m

d′′∑
j=1

m∑
i=1

‖yij − φ2〈w2
j , φ1〈W1, xi〉〉‖

2

=

d′′∑
j=1

∇W1

1
m

m∑
i=1

‖yij − φ2〈w2
j , φ1〈W1, xi〉〉‖

2

17

=

d′′∑
j=1

∇W1 ˆerr(W1,w2
j)

Now,

〈∇W1 ˆerr(W1,W2),W1 − V1〉F

=

d′′∑
j=1

〈∇W1 ˆerr(W1,w2
j),W1 − V1〉F

Observe here that ‖W2‖ ≤ W2 =⇒ ‖w2
j‖ ≤ W2∀ j. Us-

ing this and the result from theorem 4 we get that each term
〈∇W1 ˆerr(W1,w2

j),W1 − V1〉F ≥
a
b ε. Hence, we get that:

〈∇W1 ˆerr(W1,W2),W1 − V1〉F ≥
a
b
εd′′ ≥ 0

5.9. Proof of Theorem 6

Proof. Consider w ∈ B(0,W), ‖w‖ ≤ W such that
ˆerri(w) = −(yi log(φ〈w, xi〉)) + (1 − yi)(1 − log(φ〈w, xi〉)) ≥ ε

(=⇒ ˆerrm(w) = 1
m

∑m
i=1 −(yi log(φ〈w, xi〉) + (1 − yi)(1 −

log(φ〈w, xi〉))) ≥ ε, where m is the total number of samples).
Also let v be a point ε/κ-close to minima w∗ with κ = ε

(1−e−ε)2 .
Consider the case when yi = 1. In this case ˆerri(w) =

− log(φ〈w, xi〉) ≥ ε. Using − log p ≥ ε. =⇒ (1 − p)2 ≥

(1 − e−ε)2, we get that (yi − φ〈w, xi〉)2 ≥ (1 − e−ε)2. In the other
case when yi = 0, ˆerri(w) = − log(1 − φ〈w, xi〉) ≥ ε. Here
using − log(1 − p) ≥ ε =⇒ (p)2 ≥ (1 − e−ε)2, we get that
=⇒ (yi − φ〈w, xi〉)2 ≥ (1 − e−ε)2. Combining these we get,
(yi − φ〈w, xi〉)2 ≥ (1 − e−ε)2 for all i. Then:

〈∇err(w),w − v〉

=
1
m

m∑
i=1

(φ〈w, xi〉 − yi)〈xi,w − v〉 (Step 1)

=
1
m

m∑
i=1

(φ〈w, xi〉 − φ〈w∗, xi〉)(〈xi,w − w∗〉 + 〈xi,w∗ − v〉)

(Step 2)

≥
1
m

m∑
i=1

(φ〈w, xi〉 − φ〈w∗, xi〉)

[(〈w, xi〉 − 〈w∗, xi〉) − ‖xi‖‖w∗ − v‖]
(Step 3)

≥
1
m

m∑
i=1

4(φ〈w, xi〉 − φ〈w∗, xi〉)2

− |φ〈w, xi〉 − φ〈w∗, xi〉|‖xi‖‖w∗ − v‖
(Step 4)

≥ 4(1 − e−ε)2 −
ε

κ
(Step 5)

= 3(1 − e−ε)2 > 0

Step 2 uses the fact that yi = φ〈w∗, xi〉. In Step 4 we use the
fact that sigmoid is 1

4 Lipschitz and so (φ(z) − φ(z′))(z − z′) ≥
4(φ(z) − φ(z′))2. In Step 5 we use |φ〈w, xi〉 − φ〈w∗, xi〉| ≤ 1 and
‖w∗ − v‖ ≤ ε

κ
.

5.10. Proof of Theorem 7

Proof. Consider W ∈ B(0,W), ‖W‖ ≤ W such that for all i,
ˆerri(W) =

∑d′
j=1 −(yi j log(φ〈w j, xi〉)) ≥ ε

(=⇒ ˆerri(W) = 1
m

∑m
i=1

∑d′
j=1 −(yi j log(φ〈w j, xi〉)) ≥ ε, where

m is the total number of samples.) Also let V = [v1 v2 · · · vd′]
be a point ε/κ-close to minima W∗ with κ = εd′

(1−e−ε)2 . Let G(W)
be the subgradient of ˆerrm(W) and G(w j) be the subgradient of
ˆerrm(w j).

Let for xi, the correct label be t, then yit = 1 and yi j = 0,
for any j , t. The error for this one data-point would
be

∑d′
j=1 −(yi j log(φ〈w j, xi〉)) = − log(φ〈wt, xi〉) ≥ ε. Using

− log p ≥ ε =⇒ (1 − p)2 ≥ (1 − e−ε)2, we get that
(yit − φ〈wt, xi〉)2 ≥ (1 − e−ε)2.

Note that for any xi,
∑d′

j=1 φ〈w j, xi〉 = 1. Using this we get
that

∑d′
j=1, j,t φ〈w j, xi〉 = 1 − φ〈wt, xi〉 ≥ 1 − e−ε (The inequality

follows as − log p ≥ ε =⇒ 1 − p ≥ 1 − e−ε). Now using
Cauchy-Schwartz inequality, we get that

∑d′
j=1, j,t φ〈w j, xi〉

2 ≥

(1−e−ε)2/(d′−1). Adding this with (yit−φ〈wt, xi〉)2 ≥ (1−e−ε)2

and recollecting that yit = 1 and yi j = 0, for any j , t, we get
that

∑d′
j=1(yi j − φ〈w j, xi〉)2 ≥ (1 − e−ε)2 d′

d′−1 Then:

〈G(W),W − V〉

=

d′∑
j=1

〈G(wj),wj − vj〉F

(By definition of Frobenius inner product)

=
1
m

m∑
i=1

d′∑
j=1

(
φ〈wj, xi〉 − yi j

)
〈xi, (wj − vj)〉 (Step 1)

=
1
m

m∑
i=1

d′∑
j=1

(
φ〈wj, xi〉 − φ〈w∗j , xi〉

)
[〈xi,wj − w∗j 〉 + 〈xi,w∗j − vj〉]

(Step 2)

≥
1
m

m∑
i=1

d′∑
j=1

[
2
(
φ〈wj, xi〉 − φ〈w∗j , xi〉

)2

+
(
φ〈wj, xi〉 − φ〈w∗j xi〉

)
〈xi,w∗j − vj〉

] (Step 3)

≥
1
m

m∑
i=1

d′∑
j=1

[
2
(
φ〈wj, xi〉 − φ〈w∗j ,xi〉

)2

− |φ〈wj, xi〉 − φ〈w∗j ,xi〉|‖xi‖‖w∗j − vj‖
] (Step 4)

≥
1
m

m∑
i=1

d′∑
j=1

[
2
(
φ〈wj, xi〉 − φ〈w∗j , xi〉

)2
−
ε

κ
‖xi‖

]
(Step 5)

≥ 2(1 − e−ε)2 d′

d′ − 1
−

d′ε
κ

(Step 6)

≥ (1 − e−ε)2 d′ + 1
d′ − 1

> 0

Step 2 uses the fact that yi j = φ〈w∗j , xi〉. In Step 3, we use the
fact that softmax is 1

2 Lipschitz and so (φ(z) − φ(z′))(z − z′) ≥
2(φ(z)− φ(z′))2. In Step 5, we use |φ〈wj, xi〉 − φ〈w∗j ,xi〉| ≤ 1 and
‖w∗j − vj‖ ≤

ε
κ
.

18

6. Conclusion and Future Work

In this work, we presented a novel methodology, Deep Alter-
Nations for Training nEural networks (DANTE), to effectively
train neural networks using alternating minimization, thus pro-
viding a competitive alternative to standard backpropagation.
We formulated the task of training each layer of a neural net-
work (in particular, an autoencoder without loss of generality)
as a Strictly Locally Quasi-Convex (SLQC) problem, and lever-
aged recent results to use Stochastic Normalized Gradient De-
scent (SNGD) as an effective method to train each layer of the
network. While earlier work [9] simply identified the SLQC
nature of sigmoidal GLMs, we introduced a new generalized
ReLU activation, and showed that a multi-output layer satisfies
this SLQC property, thus allowing us to expand the applicabil-
ity of the proposed method to networks with both sigmoid and
ReLU family of activation functions. In particular, we extended
the definitions of local quasi-convexity in order to prove that a
one hidden-layer neural network with generalized ReLU activa-
tion is

(
ε, 2b3W

a ,W∗
2

)
− S LQC in W2 (the same result holds for a

GLM) and
(
ε,

(
a

4b5W2
2 W1
−

W1
ε

)−1
,W∗

1

)
−S LQC in W1, which im-

proves the convergence bound for SLQC in the GLM with the
generalized ReLU (as compared to a GLM with sigmoid). We
also showed how DANTE can be extended to train multi-layer
neural networks. We empirically validated DANTE with both
sigmoidal and ReLU activations on standard datasets as well as
in a multi-layer setting, and observed that it provides a compet-
itive alternative to standard backprop-SGD, as evidenced in the
experimental results.

Future Work and Extensions
DANTE can not only be used to train multi-layer neural net-

works from scratch, but can also be combined with back-prop
SGD, which can be used to finetune the network end-to-end pe-
riodically. Our future work will involve a more careful study
of the proposed method for deeper neural networks, as well as
in studying convergence guarantees of the proposed alternating
minimization strategy. In this paper, we focused on validating
the feasibility of DANTE for MLPs; however the ideas should
work for more advanced networks too. In our future work, we
plan to study the extensions of DANTE to convolutional layers,
LSTMs and other architectural variants.

Acknowledgements

This research was partially supported by the Department of
Science and Technology, Govt of India MATRICS program,
project MTR/2017/001047.

References

[1] S. Hochreiter, J. Schmidhuber, Long Short-term Memory, Neural Com-
putation 8 (9) (1997) 1735–1780.

[2] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio,
Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization, in: Advances in neural information processing
systems, 2014, pp. 2933–2941.

[3] Y. Tian, Symmetry-breaking convergence analysis of certain two-layered
neural networks with relu nonlinearity (2016).

[4] S. Shalev-Shwartz, O. Shamir, S. Shammah, Failures of gradient-based
deep learning, in: Proceedings of the 34th International Conference on
Machine Learning, 2017, pp. 3067–3075.

[5] T. Blumensath, M. E. Davies, Iterative Hard Thresholding for Com-
pressed Sensing, Applied and Computational Harmonic Analysis 27 (3)
(2009) 265–274.

[6] P. Jain, P. Netrapalli, S. Sanghavi, Low-rank Matrix Completion using
Alternating Minimization, in: 45th Annual ACM Symposium on Theory
of Computing (STOC), 2013.

[7] A. Anandkumar, R. Ge, Efficient Approaches for Escaping Higher Or-
der Saddle Points in Non-Convex Optimization, in: 29th Conference on
Learning Theory (COLT), 2016.

[8] E. Malach, S. Shalev-Shwartz, A provably correct algorithm for deep
learning that actually works, arXiv preprint arXiv:1803.09522 (2018).

[9] E. Hazan, K. Y. Levy, S. Shalev-Shwartz, Beyond Convexity: Stochas-
tic Quasi-Convex Optimization, in: 29th Annual Conference on Neural
Information Processing Systems (NIPS), 2015, pp. 1594–1602.

[10] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning Internal Repre-
sentation by Back-propagating Errors, Nature 323 (9) (1986) 533–536.

[11] Y. Chauvin, D. E. Rumelhart, Backpropagation: Theory, Architectures,
and Applications, Psychology Press, 1995.

[12] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, T. Goldstein, Training
Neural Networks Without Gradients: A Scalable ADMM Approach, in:
33rd International Conference on Machine Learning (ICML), 2016.

[13] A. Choromanska, B. Cowen, S. Kumaravel, R. Luss, M. Rigotti, I. Rish,
P. Diachille, V. Gurev, B. Kingsbury, R. Tejwani, D. Bouneffouf, Beyond
backprop: Online alternating minimization with auxiliary variables,
in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceedings of the 36th
International Conference on Machine Learning, Vol. 97 of Proceedings
of Machine Learning Research, PMLR, Long Beach, California, USA,
2019, pp. 1193–1202.
URL http://proceedings.mlr.press/v97/choromanska19a.

html

[14] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves,
K. Kavukcuoglu, Decoupled neural interfaces using synthetic gradients,
arXiv preprint arXiv:1608.05343 (2016).

[15] G. Jagatap, C. Hegde, Learning relu networks via alternating minimiza-
tion, arXiv preprint arXiv:1806.07863 (2018).

[16] Y. Bengio, How auto-encoders could provide credit assignment in deep
networks via target propagation, arXiv preprint arXiv:1407.7906 (2014).

[17] D.-H. Lee, S. Zhang, A. Fischer, Y. Bengio, Difference target propaga-
tion, in: Joint european conference on machine learning and knowledge
discovery in databases, Springer, 2015, pp. 498–515.

[18] Y. Bengio, D.-H. Lee, J. Bornschein, T. Mesnard, Z. Lin, Towards biolog-
ically plausible deep learning, arXiv preprint arXiv:1502.04156 (2015).

[19] T. P. Lillicrap, D. Cownden, D. B. Tweed, C. J. Akerman, Random feed-
back weights support learning in deep neural networks, arXiv preprint
arXiv:1411.0247 (2014).

[20] A. Nøkland, Direct feedback alignment provides learning in deep neural
networks, in: Advances in Neural Information Processing Systems, 2016,
pp. 1037–1045.

[21] A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities improve
neural network acoustic models, in: ICML, Vol. 30, 2013, p. 3.

[22] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in: ICCV, 2015, pp.
1026–1034.

[23] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise
training of deep networks, in: Advances in neural information processing
systems, 2007, pp. 153–160.

[24] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto,
D. Ha, Deep learning for classical japanese literature (2018). arXiv:

cs.CV/1812.01718.

19

http://proceedings.mlr.press/v97/choromanska19a.html
http://proceedings.mlr.press/v97/choromanska19a.html
http://proceedings.mlr.press/v97/choromanska19a.html
http://proceedings.mlr.press/v97/choromanska19a.html
http://arxiv.org/abs/cs.CV/1812.01718
http://arxiv.org/abs/cs.CV/1812.01718

	1 Introduction
	2 Related Work
	3 Deep AlterNations for Training nEural networks (DANTE)
	3.1 Problem Formulation
	3.2 Background and Preliminaries
	3.2.1 SLQC-ness of a GLM with Non-Linear Activations
	3.2.2 SLQC-ness of a Multi-Output Neural Network with No Hidden Layers
	3.2.3 One Hidden Layer Networks with Single Output Neurons
	3.2.4 One Hidden Layer Networks with Multiple Output Neurons
	3.2.5 The ReLU Case

	3.3 Extension to Cross-Entropy Loss
	3.4 Methodology
	3.4.1 Stochastic Normalized Gradient Descent (SNGD)
	3.4.2 DANTE

	3.5 Extending to a Multi-Layer Neural Network

	4 Experiments and Results
	4.1 Feedforward Neural Networks
	4.2 Ablation Studies
	4.2.1 Impact of Adaptive Learning Rate Methods
	4.2.2 Using SGD in Alternating Minimization
	4.2.3 Effect of the T Parameter

	4.3 Other Empirical Studies
	4.3.1 Comparative Study
	4.3.2 Regression Tasks
	4.3.3 Training Autoencoder Models

	5 Proofs
	5.1 Proof of Theorem 1
	5.2 Proof of Corollary 1
	5.3 Proof of Theorem 2
	5.4 Viewing the Outer Layer of a Neural Network as a Set of GLMs
	5.5 Proof of Theorem 3
	5.6 Proof of Corollary 2
	5.7 Proof of Theorem 4
	5.8 Proof of Theorem 5
	5.9 Proof of Theorem 6
	5.10 Proof of Theorem 7

	6 Conclusion and Future Work

