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Abstract

Deep learning based on deep neural networks of various structures
and architectures has been powerful in many practical applications,
but it lacks enough theoretical verifications. In this paper, we consider
a family of deep convolutional neural networks applied to approximate
functions on the unit sphere S

d−1 of Rd. Our analysis presents rates
of uniform approximation when the approximated function lies in the
Sobolev space W r

∞(Sd−1) with r > 0 or takes an additive ridge form.
Our work verifies theoretically the modelling and approximation abil-
ity of deep convolutional neural networks followed by downsampling
and one fully connected layer or two. The key idea of our spherical
analysis is to use the inner product form of the reproducing kernels
of the spaces of spherical harmonics and then to apply convolutional
factorizations of filters to realize the generated linear features.

Keywords: deep learning, convolutional neural networks, approximation the-
ory, spherical analysis, Sobolev spaces

1 Introduction

Deep learning has attracted tremendous attention from various fields of
science and technology recently. Wide applications including those in im-
age processing [9] and speech recognition [12] have received great successes.
Based on deep neural network structures, it has a strong capability of ob-
taining data features and distinguishes itself from classical machine learning
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methods. Though it is successful in practical applications, theoretical as-
surances are still lacking and need to be investigated. Many attempts have
been made trying to understand the practical power of deep neural networks
[3, 18].

The classical (shallow) neural networks to approximate functions or pro-
cess data on Rd take the form

fN(x) =

N∑

k=1

ckσ (〈wk, x〉 − bk) , x ∈ R
d, (1.1)

where N is the number of neurons called width, {wk ∈ Rd, ck ∈ R, bk ∈ R}Nk=1

are parameters corresponding to connection weights, biases, and coefficients,
〈wk, x〉 = wk · x is the inner product in Rd, and σ : R → R is an activation
function. Approximation of functions on subsets of Rd by shallow neural net-
works (1.1) was studied well around the late 1980s. See [19, 5] and references
therein. As a natural extension of shallow nets, fully connected deep neural
networks (DNNs) have been developed since the 1990s. A fully connected
DNN of input x = (x1, x2, . . . , xd) ∈ Rd with J hidden layers of neurons
{H(j) : Rd → Rdj} with width {dj} is defined iteratively by H(0)(x) = x with
d0 = d and

(
H(j)(x)

)
i
= σ(〈w(j)

i , H(j−1)(x)〉 − b
(j)
i ), i = 1, 2, . . . , dj,

where w
(j)
i ∈ Rdj−1 and b

(j)
i ∈ R are connection weights and biases in the

j-th layer. If we use w
(j)
i ∈ Rdj−1 with i = 1, . . . , dj as rows to form a

dj × dj−1 matrix F (j) and b
(j)
i to form a vector b(j) = (b

(j)
i )

dj
i=1, then by acting

σ componentwise on vectors, the DNN of depth J can be expressed as

H(j)(x) = σ
(
F (j) H(j−1)(x)− b(j)

)
, j = 1, 2, . . . , J. (1.2)

DNNs designed by convolutions are called deep convolutional neural

networks (CNNs) and have been very successful in image classification and
related applications [16]. Such a network is associated with a sequence of
convolutional filters w = {w(j) : Z → R}Jj=1, where w(j) is supported in{
0, · · · , S(j)

}
for some S(j) ∈ N called filter length. The convolution of such

a filter w supported in {0, · · · , S} with another sequence v = (v1, . . . , vD) is
a sequence w ∗ v given by

(w ∗ v)i =
∑

k∈Z

wi−kvk =
D∑

k=1

wi−kvk, i ∈ Z,
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which is supported in {1, · · · , D + S}. Then by restricting the convoluted
sequence onto its support, for input x = (x1, x2, . . . , xd) ∈ Rd, a deep
CNNs with J hidden layers of neurons {h(j) : R

d → R
dj} and widths{

dj = dj−1 + S(j)
}
is defined iteratively by h(0)(x) = x and

h(j)(x) = σ







dj−1∑

k=1

w
(j)
i−k

(
h(j−1)(x)

)
k




dj

i=1

− b(j)


 . (1.3)

By inducing a Toeplitz type convolutional matrix

Tw := (wi−k)i=1,...,D+S,k=1,...,D

associated with a filter w of filter length S and D ∈ N given explicitly by

Tw =




w0 0 0 0 · · · · · · 0
w1 w0 0 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

wS wS−1 · · · w0 0 · · · 0
0 wS · · · w1 w0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 wS · · · w1 w0

0 · · · 0 0 wS · · · w1
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 · · · 0 wS




∈ R
(D+S)×D, (1.4)

a deep CNN can be regarded as a special sparse form of a fully connected
DNNs with the full connection matrices F (j) in (1.2) replaced by the sparse

Toeplitz convolutional matrices T (j) := Tw(j)
with D = dj−1 and S = S(j) for

j = 0, 1, . . . , J . That is, (1.3) becomes

h(j)(x) = σ
(
T (j) h(j−1)(x)− b(j)

)
, j = 1, . . . , J. (1.5)

Compared with fully-connected DNNs, deep CNNs reduce the computational
complexity by using at each layer a Toeplitz matrix due to the sparsity and
convolutional nature. Throughout the paper we take an identical filter length
S(j) ≡ S ∈ N implying {dj = d+jS} and take the rectified linear unit (ReLU)
activation function

σ(u) = max{u, 0}, u ∈ R.

It was shown in [33] that the output layer of any fully-connected DNN can be
realized by a downsampled deep CNN with free parameters of the same order,
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and that deep CNNs can approximate ridge functions of the form g(ξ ·x) with
univariate functions g and unknown ξ ∈ Rd to the same accuracy with much
smaller number of free parameters. Universality of approximation by deep
CNNs was also established in [32] where rates of approximation were provided
for restrictions of functions from the Sobolev space Hr(Rd) with a regularity
index r > 2 + d/2. The regularity index r is large when d increases and is
essentially needed in the analysis there due to the function regularity on the
whole Euclidean space Rd. Note that the issue of approximating non-smooth
functions by fully connected DNNs has been studied in [28, 13]. Moreover,
the Sobolev space Hr(Rd) requires derivatives of various orders to belong to
the L2 space, while the approximation considered in [32] is measured in the
L∞ norm.

In this paper, we overcome the difficulty in the large regularity index and
the inconsistency of L2 and L∞ norms for the setting with data from the
unit sphere Sd−1 in Rd. With our novel analysis conducted with spherical
harmonic expansions, we can present rates of approximating functions from
the Sobolev space W r

∞(Sd−1) (to be defined below) on Sd−1, with any positive
index r, by downsampled deep CNNs defined in [33] followed by two fully
connected layers.

Definition 1. The downsampling operator Dd : RD → R⌊D/d⌋ with a
scaling parameter d ≤ D is defined by

Dd(v) = (vid)
⌊D/d⌋
i=1 , v = (vi)

D
i=1 ∈ R

D, (1.6)

where ⌊u⌋ denotes the integer part of u > 0.

After the last CNN layer, we add two fully connected layers h(J+1), h(J+2)

with widths D1,D2 > 0, respectively, connection matrices F (J+1), F (J+2) and
bias vectors b(J+1), b(J+2), to be determined. Precisely,

h(J+1)(x) = σ
(
F (J+1)

Dd

(
h(J)(x)

)
− b(J+1)

)
(1.7)

and
h(J+2)(x) = σ

(
F (J+2)h(J+1)(x)− b(J+2)

)
. (1.8)

Such a network with many convolutional layers followed by downsampling
operations and very few fully connected layers is quite common in practical
applications [16, 9]. The hypothesis space of functions on Sd−1 induced by
our network is given by

HJ,D1,D2,S =
{
c(J+2) · h(J+2)(x)− A : c(J+2) ∈ R

D2, A ∈ R
}
. (1.9)
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2 Main Results on Rates of Approximation

Our target is to establish rates of approximating functions in W r
∞(Sd−1) by

those from the hypothesis space HJ,D1,D2,S defined by (1.9). Since the sums
of the rows in the middle of the Toeplitz type matrix (1.4) are equal, we
impose for the bias vectors {b(j)}Jj=1 of the convolutional layers a restriction

b
(j)
S+1 = . . . = b

(j)
dj−S, j = 1, . . . , J. (2.1)

For the two fully connected layers we take the widths

D1 = (2N + 3)⌊(d+ JS)/d⌋, D2 = ⌊(d+ JS)/d⌋ (2.2)

for some positive integer N ∈ N and connection matrices

F (J+1) = ΞD2,12N+3
, F (J+2) = ΞT

D2,ΘN
(2.3)

with 12N+3 = (1, 1, . . . , 1)T ∈ R2N+3 and ΘN = (θ1, . . . , θ2N+3)
T ∈ R2N+3.

Here the matrix ΞD2,~u takes a block form as

ΞD2,~u =




~u O O · · · O
O ~u O · · · O
...

. . .
. . .

...
O · · · O ~u


 ∈ R

(2N+3)D2×D2, ~u =




u1
...
u2N+3


 ∈ R

2N+3.

Our first main result, to be proved in Section 5, can be stated as follows.
A positive parameter τ (which can be arbitrarily small) is needed due to
the continuous embedding of the Sobolev space W s

2 (S
d−1) with s > d−1

2
into

C(Sd−1) found in Proposition 1 below.

Theorem 1. Let 2 ≤ S ≤ d, d ≥ 3, J ≥ d−1
S−1

, 0 < r 6= d − 1, and τ > 0
satisfy τ < r − (d− 1) when r > d− 1. Take

N =





⌊
⌊ (S−1)J+1

d
⌋ 1

2(d−1+τ)

⌋d+1

, if r < d− 1,⌊⌊
⌊ (S−1)J+1

d
⌋ 1

2r

⌋2+r
⌋
, if r > d− 1.

Then for any f ∈ W r
∞(Sd−1), there exists a deep neural network consisting of

J layers of CNNs with filters of length S and bias vectors satisfying (2.1) fol-
lowed by downsampling and two fully connected layers with widths (2.2) and
connection matrices (2.3) such that the hypothesis space HJ,D1,D2,S contains

a function f̂ satisfying
∥∥∥f − f̂

∥∥∥
∞

≤ Cr,d,τ,SJ
−min{ r

2(d−1+τ)
, 1
2
}‖f‖W r

∞
(Sd−1),
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where Cr,d,τ,S is a constant independent of J or f . Moreover, the total number
of free parameters N in the network can be bounded as

N ≤ (3S + 5)J + 4.

Remark 1. To achieve the approximation accuracy
∥∥∥f − f̂

∥∥∥
∞

≤ ǫ, we only

need to take

J =

⌈
max

{(
Cr,d,τ,S‖f‖W r

∞
(Sd−1)/ǫ

)max{ 2(d−1+τ)
r

,2}
,
d− 1

S − 1

}⌉
,

where we denote the smallest integer greater than or equal to u > 0 as ⌈u⌉.
When 0 < r < d − 1, we may set τ = 1 and see that the network achieving

the approximation accuracy ǫ has depth J = O
(
ǫ−

2d
r

)
and N = O

(
ǫ−

2d
r

)

free parameters. When r > d−1, we may set 0 < τ < r−(d−1) and find the
depth and the number of free parameters of this network are both of orders
O (ǫ−2), slightly better than that in [32].

Our second main result aims at further demonstrating the superiority
of deep CNNs over fully connected networks observed empirically in many
practical applications. Motivated by our earlier work [33] on approximating
ridge functions of type g(y · x) with y ∈ Rd, g : R → R, and additive models
(see, e.g., [4, 24]) in statistics of the form f(x) =

∑d
j=1 gj(xj) with univariate

functions {gj}dj=1, we consider a family of additive ridge functions of the
form

f(x) =
m∑

j=1

gj(yj · x) (2.4)

with yj ∈ Sd−1, gj : R → R for j ∈ {1, . . . , m}. The following theorem to be
proved in Section 5 is about approximating additive ridge functions by deep
CNNs followed by downsampling and one fully-connected layer. For 0 < α ≤
1, denote the space of Lipschitz-α functions on [−1, 1] as W α

∞([−1, 1]) with
the semi-norm | · |Wα

∞

being the Lipschitz-α constant.

Theorem 2. Let m ∈ N, d ≥ 3, 2 ≤ S ≤ d, J =
⌈
md−1
S−1

⌉
, and N ∈ N.

If f is an additive ridge function (2.4) with unknown {y1, . . . , ym} ⊂ Sd−1,
{g1, . . . , gm} ⊂ W α

∞([−1, 1]) for some 0 < α ≤ 1, then there exists a deep
neural network consisting of J layers of CNNs with filters of length S and
bias vectors satisfying (2.1) followed by downsampling and one fully con-
nected layer h(J+1) with width (2N + 3)⌊(d + JS)/d⌋ and connection ma-
trix F (J+1) = Ξ⌊(d+JS)/d⌋,12N+3

such that for some coefficient vector c(J+1) ∈
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R(2N+3)⌊(d+JS)/d⌋ there holds

∥∥f − c(J+1) · h(J+1)
∥∥
∞

≤
m∑

j=1

|gj|Wα
∞

N−α.

The total number of free parameters N in the network can be bounded as

N ≤ (3S + 2)

⌈
md− 1

S − 1

⌉
+m(2N + 2).

Remark 2. To achieve an accuracy ǫ > 0 for approximating an additive
ridge function (2.4) on Sd−1, we only need to take

N =




(
m∑

j=1

|gj|Wα
∞

)1/α

ǫ−
1
α



= O

(
ǫ−

1
α

)
.

The total number of free parameters of the achieving network is of orders

O
(
ǫ−

1
α

)
. This is the complexity required by the classical literature on fully-

connected networks to achieve an accuracy ǫ > 0 for approximating univariate
functions. This extends our earlier work [33] from the ridge case with m = 1
to an additive ridge case with m ∈ N and hints the superiority of deep CNNs
in approximating multivariate functions of special structures.

3 Spherical Analysis for Deep CNNs

In this section, we introduce ideas of our analysis before proving our main
results. We first give a brief review on relevant concepts from spherical
harmonic analysis and introduce some classes of functions. More details can
be found in [6, 29].

3.1 Spherical harmonics and Sobolev spaces on spheres

For 1 ≤ p ≤ ∞, we denote by Lp(S
d−1) = Lp(S

d−1, σd) the Lp-function space
defined with respect to the normalized Lebesgue measure σd on Sd−1, and
‖ · ‖p the norm of Lp(S

d−1).
A spherical harmonic of degree n ∈ Z+ on S

d−1 is the restriction to S
d−1

of a homogeneous and harmonic polynomial of total degree n defined on Rd.
Let Hd

n denote the set of all spherical harmonics of degree n on Sd−1. It can
be found in [6] the dimension of the linear space Hd

n is

N(n, d) =

(
n + d− 1

n

)
−
(
n + d− 3

n− 2

)
≤ Cd n

d−2, for n ∈ N, (3.1)

7



where Cd > 0 only depends on d. Note that L2(S
d−1) is a Hilbert space with

inner product 〈f, g〉2 :=
∫
Sd−1 f(x)g(x)dσd(x) for f, g ∈ L2

(
Sd−1

)
. The spaces

Hd
n, n ∈ Z+, of spherical harmonics are mutually orthogonal with respect to

the inner product of L2(S
d−1). Since the space of spherical polynomials is

dense in L2(S
d−1), each f ∈ L2(S

d−1) has a spherical harmonic expansion:

f =

∞∑

n=0

Projn f =

∞∑

n=0

N(n,d)∑

l=1

f̂n,lYn,l

converging in the L2(S
d−1) norm. Here and elsewhere, {Yn,l}N(n,d)

l=1 is an

orthonormal basis of Hd
n, f̂n,l is the Fourier coefficients of f given by

f̂n,l := 〈f, Yn,l〉L2(Sd−1) :=

∫

Sd−1

f(x)Yn,l(x)dσd(x), (3.2)

and Projn is the orthogonal projection of L2(S
d−1) onto the subspace Hd

k of
spherical harmonics, which has an integral representation:

Projn f(x) =

∫

Sd−1

f(y)Zn(x, y) dσd(y), x ∈ S
d−1,

where

Zn(x, y) =

N(n,d)∑

i=1

Yn,i(x)Yn,i(y), x, y ∈ S
d−1.

It can be readily shown that Zn(x, y) is the reproducing kernel of Hd
n inde-

pendent of the choice of {Yn,l}N(n,d)
l=1 . Furthermore, with λ = d−2

2
,

Zn(x, y) =
n+ λ

λ
Cλ

n (〈x, y〉) , x, y ∈ S
d−1, (3.3)

where Cλ
n(t) is the Gegenbauer polynomial of degree n with parameter λ >

−1/2, see, for instance, [6].
The spaces Hd

n of spherical harmonics can also be characterized as eigen-
function spaces of the Laplace-Beltrami operator ∆0 on Sd−1. Indeed,

Hd
n = {f ∈ C2(Sd−1) : ∆0f = −λnf},

where λn = n(n+ d− 2) and C2(Sd−1) denotes the space of all twice contin-
uously differentiable functions on Sd−1. As a matter of fact, we may define
the fractional power (−∆0 + I)α of −∆0 + I for α ∈ R in a distributional
sense by

Projn((−∆0 + I)αf) = (λn + 1)αProjn f,

8



which is a self-adjoint operator on L2(S
d−1) in the sense that

〈
(−∆0 + I)αf, g

〉
L2(Sd−1)

=
〈
f, (−∆0 + I)αg

〉
L2(Sd−1)

, ∀f, g ∈ L2(S
d−1).

Now we define the Sobolev space W r
p (S

d−1) to be a subspace of Lp(S
d−1),

1 ≤ p ≤ ∞, r > 0, with the finite norm

‖f‖W r
p (S

d−1) :=
∥∥(−∆0 + I)r/2f

∥∥
p

(3.4)

=

∥∥∥∥∥∥

∞∑

n=0

(1 + λn)
r
2

N(n,d)∑

l=1

f̂n,lYn,l

∥∥∥∥∥∥
p

. (3.5)

When p = 2 it is known that W r
2 (S

d−1) is a Hilbert space with the inner
product:

〈f, g〉W r
2 (S

d−1) =

∞∑

n=0

(1 + λn)
r

N(n,d)∑

l=1

f̂n,lĝn,l.

In addition, we have the following continuous embedding lemma, see [11] and
also [14, Eq. 14, p. 420]. By these lemmas, we know that the infinity norm
can be bounded by the Sobolev norm when r > d−1

p
.

Proposition 1. For d ≥ 3, 1 ≤ p ≤ ∞, and r > d−1
p
, the Sobolev space

W r
p (S

d−1) is continuously embedded into C(Sd−1), the space of continuous
functions on S

d−1, which implies

‖f‖∞ ≤ cr,d ‖f‖W r
p (S

d−1) , ∀f ∈ W r
p (S

d−1),

where cr,d is a constant independent of f .

3.2 Near-best approximation and discretization

The best approximation of a function by those from polynomial spaces of
various degrees might be nonlinear. A useful tool in spherical harmonic
analysis is a linear scheme Ln.

Definition 2. Given a C∞ ([0,∞)) function η with η(t) = 1 for 0 ≤ t ≤ 1
and η(t) = 0 for t ≥ 2, we define a sequence of linear operators Ln, n ∈ Z+,
on Lp(S

d−1) with 1 ≤ p ≤ ∞ by

Ln(f)(x) :=

∞∑

k=0

η

(
k

n

)
Projk(f)(x) =

∫

Sd−1

f(y)ln(〈x, y〉)dσd(y), x ∈ S
d−1,

(3.6)

9



where with λ = d−2
2
, ln is a kernel given by

ln(t) = ln,d(t) :=
2n∑

k=0

η

(
k

n

)
λ+ k

λ
Cλ

k (t), t ∈ [−1, 1]. (3.7)

It can be found in [6, Chapter 4] that Ln is near best, achieving the order
of best approximation for f ∈ W r

p (S
d−1).

Lemma 1. For n ∈ N, 1 ≤ p ≤ ∞ and f ∈ W r
p

(
Sd−1

)
, there holds

‖f − Ln(f)‖p ≤ cn−r ‖f‖W r
p (S

d−1) , (3.8)

where c is a constant depending only on the function η in defining Ln.

Note that since (−∆0 + I)−r/2 is self-adjoint, for x ∈ Sd−1,

Ln(f)(x) =
〈
f, ln(〈x, ·〉)

〉
L2(Sd−1)

=
〈
(−∆0 + I)r/2f, (−∆0 + I)−r/2ln(〈x, ·〉)

〉
L2(Sd−1)

=:

∫

Sd−1

Fr(y)ζn,r(〈x, y〉)dσ(y),

here and in what follows, we denote

Fr = (−∆0 + I)r/2f and ζn,r(〈x, ·〉) = (−∆0 + I)−r/2ln(〈x, ·〉).

In fact, ζn,r is a polynomial of degree at most 2n with expression

ζn,r(t) =
2n∑

k=0

(1 + λk)
−r/2η

(
k

n

)
λ+ k

λ
Cλ

k (t), t ∈ [−1, 1].

The novelty here using a fractional power of (−∆0 + I) caused by the reg-
ularity of f ∈ W r

∞(Sd−1) enables us to get an r-dependent error bound for
discretizing Ln(f): the larger the regularity index r, the smaller the bound.

To approximate the function Ln(f) by a neural network, we need a step-
ping stone, discretizing the integral form (3.6) to an empirical version

L̂y
n,m(f)(x) =

1

m

m∑

i=1

Fr(yi)ζn,r(〈x, yi〉), x ∈ S
d−1 (3.9)

given in terms of a sample y = {y1, . . . , ym} ⊂ Sd−1. The following estimate

for the error L̂y
n,m(f) − Ln(f) will be proved by a probability inequality in

Section 5. Such a probabilistic argument has been applied in [15].
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Lemma 2. Let d ≥ 3, r > 0, and τ > 0. If f ∈ W r
∞(Sd−1), then for any

n,m ∈ N, there exist y = {y1, y2, . . . , ym} ⊂ Sd−1 such that

∥∥∥L̂y
n,m(f)− Ln(f)

∥∥∥
∞

≤ Cr,d,τ

√
Λ2(d−1−r+τ)(n)√

m
‖f‖W r

∞
(Sd−1) , (3.10)

where for θ ∈ R and n ∈ N we denote

Λθ(n) =





nθ, if θ > 0,
log(n+ 1), if θ = 0,
1, if θ < 0,

and Cr,d,τ is a positive constant depending on r, d, τ but not on n,m or f .

3.3 Approximating ridge functions by deep CNNs

The last step in our spherical analysis of deep CNNs is to approximate the
ridge function L̂y

n,m(f) by functions from the network with a bound to be
proved in Section 5.

Lemma 3. Let 2 ≤ S ≤ d, d ≥ 3, r > 0, m,n,N ∈ N, f ∈ W r
∞(Sd−1), and

y = {y1, . . . , ym} ⊂ Sd−1. Let J ≥ ⌈md−1
S−1

⌉. Then there exists a deep neural
network consisting of J layers of CNNs with filters of length S and bias
vectors satisfying (2.1) followed by downsampling and two fully connected
layers with widths (2.2), connection matrices (2.3) and bias vectors given
explicitly in (5.6), (5.8) below involving two parameters B(J), B(J+2) ∈ R

such that the hypothesis space HJ,D1,D2,S contains a function f̂ satisfying

∥∥∥L̂y
n,m(f)− f̂

∥∥∥
∞

≤ c′r,d
n2Λd−1−r(n)

N
‖f‖W r

∞
(Sd−1), (3.11)

where c′r,d is a constant depending only on r and d. The total number of free
parameters N in the network can be bounded as

N ≤ J(3S + 2) +m+ 2N + 4.

4 Comparison with Related Work

In this section, we give a brief review of related work on rates of function
approximation by neural networks.

The fully connected shallow nets (1.1) or multi-layer nets (1.2) have
nice approximation properties due to the fully connected nature, which was

11



well studied in a large literature around 30 years ago. When the activa-
tion function is a C∞ sigmoidal type function, approximation rates were
obtained by many authors. In particular, in [1] rates were given for func-
tions in f ∈ L2(R

d) whose Fourier transforms f̂ satisfy a decay condition∫
Rd |w||f̂(w)|dw < ∞. Another typical result based on localized Taylor ex-
pansions asserts [19] that even for shallow nets (1.1), we have infck,wk,bk ‖fN − f‖C([−1,1]d) =

O(N−r/d) for f ∈ W r
∞([−1, 1]d), if for some b ∈ R and some integer ℓ ∈

N \ {1}, the C∞ activation function σ satisfies σ(k)(b) 6= 0 for all k ∈ Z+ and
limu→−∞ σ(u)/|u|ℓ = 0 and limu→∞ σ(u)/uℓ = 1. These conditions required
by the localized Taylor expansion approach are not satisfied by ReLU, so the
approximation theory developed 30 years ago does not apply to ReLU. The
difficulty was overcome in the recent deep learning literature and approxi-
mation properties of ReLU nets were established in [15] for ReLU shallow
nets and functions satisfying

∫
Rd |w||f̂(w)|dw < ∞, in [30, 2, 22, 20] for deep

nets and functions from W r
∞([−1, 1]d) with 0 < r ≤ 2, and in [25] for ap-

proximation on manifolds. These results are obtained for fully connected
nets.

Deep CNNs are different from fully connected nets. They have special
sparse convolutional connection matrices (1.4), which leads to sparsity and
reduces the computational complexity for structured data. Recently in [32],
for functions f on Ω ⊂ [−1, 1]d satisfying f = F |Ω with F ∈ W r

2

(
Rd
)

and an integer index r > 2 + d/2, it was shown that the approximation
accuracy ‖f − f̂‖∞ ≤ ǫ can be achieved by a deep CNN of depth 4⌈ 1

ǫ2
log 1

ǫ2
⌉

and at most ⌈75
ǫ2
log 1

ǫ2
⌉d free parameters. The linear increment of the free

parameter number with respect to d improves the bound in Theorem 1 of
[30] which requires at least 2dǫ−d/r free parameters and C0d

4
(log(1/ǫ)+d) fully

connected layers with C0 > 0 to achieve the same approximation accuracy ǫ.
Periodized deep CNNs with different architectures and connection matrices
different from the Toeplitz convolutional ones (1.4) were shown in [21, 23]
to be able to realize the output layer of any fully-connected DNN with free
parameters of the same order. The same result was shown for deep CNNs
(1.5) in [33].

The index r > 2 + d/2 required in [32] can be very large for processing
high dimensional data. Hence approximated functions are required to pos-
sess high regularity which is not the usual case in applications. The problem
happens because the approximation considered in [32] is measured in the L∞

norm, while the Sobolev space Hr(Rd) requires derivatives of various orders
to belong to the L2 space. This essentially causes the technical difficulty by
embedding W r

2 ([−1, 1]d) into W s
∞([−1, 1]d) which requires s < r − d/2. To

overcome the difficulty, we consider the case when the data is from the unit

12



sphere Sd−1. The restriction can be relaxed in this situation through apply-
ing spherical harmonic expansions to construct a near best approximation for
functions f ∈ W r

∞(Sd−1) in L∞ norm, while the Sobolev embedding theorem
is only used in discretizing integrals. In the literature, there have been some
other harmonic analysis approaches in dealing with approximation by fully
connected neural networks, using ridgelet transforms in [27], local Taylor
expansions in [30], and B-spline functions in [28]. Our spherical harmonic
analysis approach makes full use of the inner product nature (3.3) of the
reproducing kernel of Hd

n which, after discretizing the polynomial approxi-

mation Ln(f) to L̂y
n,m(f), enables us to represent the linear transformations

{〈yi, x〉} by deep CNNs with linearly increasing widths, an idea borrowed
from our earlier work [32]. A key consequence of our approach is to allow
the index r here to be an arbitrarily small positive number, which relaxes
the restriction in [32] for the regularity of the approximated function. While
the approximation of non-smooth functions is unified for r > 0 and the same
order O (ǫ−2) for the number of network free parameters to achieve an ap-
proximation accuracy ǫ > 0 is kept when r > d− 1, a parameter number of

order O
(
ǫ−

2d
r

)
is required when 0 < r < d− 1. This is due to our approach

of using a Hilbert space W s
2 (S

d−1) in our probabilistic estimate for the dis-
cretization, which makes our rate suboptimal compared with [30, 20, 24] for
r < d − 1. It would be interesting to derive optimal rates of approximating
by deep CNNs functions from W r

∞(Sd−1) with small r.
On the other hand, as stated in Remark 2, for an additive ridge func-

tion on Sd−1 in the family (2.4), deep CNNs followed by a fully connected
layer can extract linear features {yj}mj=1 and then approximate the function
efficiently, with the same order of network free parameters as that for approx-
imating a univariate function by fully connected DNNs. This demonstrates
the superiority of deep CNNs in approximating functions with structures. It
would be of great interest to explore other structures of multivariate functions
for which deep CNNs together with network architectures like pooling and
parallel channels may have super performance in function approximations
and representations. Applying deep CNNs to some practical or empirical
problems involving additive ridge functions (2.4) would also help understand
advantages of convolutional structures of deep learning in some practical
domains.

13



5 Proof of the Main Results

This section is devoted to the proof of our main analysis. Our analysis for
the error f − f̂ is carried out by means of the bounds for ‖f − Ln(f)‖∞ in

Lemma 1, ‖Ln(f)−L̂y
n,m(f)‖∞ in Lemma 2, and ‖L̂y

n,m(f)−f̂‖∞ in Lemma 3.

5.1 Proving the lemma on discretization

To complete our analysis, we first prove Lemma 2 and Lemma 3.
The proof of Lemma 2 is based on the following probability inequality for

random variables with values in a Hilbert space which can be found in [26].

Lemma 4. Let (H, ‖ · ‖) be a Hilbert space and ξ be a random variable on
(Y, ρ) with values in H. Assume ‖ξ‖ ≤ M < ∞ almost surely. Denote
σ2(ξ) = E

(
‖ξ‖2

)
. Let {yi}mi=1 be independent random drawers of ρ. Then

for any 0 < δ < 1, we have with confidence 1− δ,
∥∥∥∥∥
1

m

m∑

i=1

ξ(yi)− E(ξ)

∥∥∥∥∥
H

≤ 2M log(2
δ
)

m
+

√
2σ2(ξ) log(2

δ
)

m
.

Proof of Lemma 2. Recall that Ln(f) is defined by (3.6) with f ∈ W r
∞(Sd−1)

and τ > 0. In applying Lemma 4 we take the Sobolev space W s
2 (S

d−1) with
the smoothness index s = τ + d−1

2
to be the Hilbert space H and the random

variable ξ on
(
S
d−1, σd

)
with values in H given by

ξ(y) = Fr(y)
2n∑

k=0

(1 + λk)
−r/2η

(
k

n

)
Zk(y, ·) ∈ H, y ∈ S

d−1.

Then E(ξ) = Ln(f) and
1
m

∑m
i=1 ξ(yi) = L̂y

n,m(f).
To bound the norm ‖ξ‖ = ‖ξ‖W s

2
, we recall the norm of W s

2 (S
d−1) given

by (3.4) with p = 2 and find for y ∈ Sd−1,

‖ξ(y)‖W s
2 (S

d−1) =

∥∥∥∥∥Fr(y)
2n∑

k=0

(1 + λk)
s−r
2 η

(
k

n

)
Zk(y, ·)

∥∥∥∥∥
L2(Sd−1)

,

where λk = k(k + d− 2). Then by the orthogonality and reproducing prop-
erties,

‖ξ(y)‖2W s
2 (S

d−1) = (Fr(y))
2

2n∑

k=0

(1 + λk)
s−r η2

(
k

n

)
Zk(y, y)

= (Fr(y))
2

2n∑

k=0

(1 + λk)
s−r η2

(
k

n

)
N(k, d),
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where we have used the identity Zk(y, y) = N(k, d) found in [6] as Corollary
1.2.7 and N(k, d) is the dimension of spherical harmonics Hd

k. Notice that
for k ∈ N, k2 < 1 + λk ≤ dk2. We find (1 + λk)

s−r ≤ dmax{s−r,0}k2(s−r) for
either s− r ≥ 0 or s− r < 0. Since 0 ≤ η(t) ≤ 1 for t ∈ [0, 2], we can apply
(3.1) to estimate the summation as

2n∑

k=0

(1 + λk)
s−r η2

(
k

n

)
N(k, d) ≤ 1 +

2n∑

k=1

dmax{s−r,0}k2(s−r)c′dk
d−2

with a constant c′d depending only on d, while

2n∑

k=1

k2(s−r)+d−2 ≤ 1 +





32(s−r)+d−1

2(s−r)+d−1
n2(s−r)+d−1, if 2(s− r) + d− 2 > −1,

1 + log(n+ 1), if 2(s− r) + d− 2 = −1,
1

1−2(s−r)−d
, if 2(s− r) + d− 2 < −1.

Combining this with the definitions of the norm ‖f‖W r
∞
(Sd−1) and the function

Λτ (n), we know that ‖ξ(y)‖2W s
2
can be bounded as

‖ξ(y)‖2W s
2 (S

d−1) ≤ c2s,r,d‖f‖2W r
∞
(Sd−1)Λ2s−2r+d−1(n),

where cs,r,d is a positive constant independent of f or n. Thus the random
variable ξ satisfies the condition ‖ξ‖ ≤ M < ∞ in Lemma 4 with M =
cs,r,d‖f‖W r

∞
(Sd−1)

√
Λ2s−2r+d−1(n). So by Lemma 4 with δ = 1

2
and σ2(ξ) ≤

M2, we know from the positive measure of the sample set that there exists
a set of points y = {yi}mi=1 ∈ S

d−1 such that
∥∥∥∥∥
1

m

m∑

i=1

ξ(yi)−E(ξ)

∥∥∥∥∥
H

=
∥∥∥L̂y

n,m(f)− Ln(f)
∥∥∥
W s

2 (S
d−1)

≤ 6cs,r,d‖f‖W r
∞
(Sd−1)

√
Λ2s−2r+d−1(n)√

m
.

This verifies (3.10) by the embedding Proposition 1 with p = 2 and s =
τ + d−1

2
> d−1

2
.

5.2 Proving the lemma on ridge approximation

The proof of Lemma 3 about approximating the function L̂y
n,m(f) is con-

ducted by approximating the ridge functions ln(〈yi, x〉) in (3.9) with yi ∈
Sd−1 ⊂ Rd by deep CNNs. A key idea in our analysis is to use the inner
product form (3.3) of the reproducing kernel of Hd

n and then to apply convo-
lutional factorizations to realize the generated linear features, which enables
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us to conduct analysis after removing the restriction on large regularity in-
dex r. This idea might be applied to some other learning theory problems
[8, 10, 17, 34].

We first apply the following two lemmas proved in [32] implying that the
linear function 〈yi, x〉 = yi ·x can be realized by deep CNNs by factorizing yi
regarded as a sequence into convolutions of filters supported in {0, 1, . . . , S}.
Lemma 5. Let S ≥ 2 and W = (Wk)

∞
k=−∞ be a sequence supported in

{0, · · · ,M} with M ≥ 0. Then there exists a finite sequence of filters{
w(j)

}p
j=1

each supported in {0, · · · , S} with p ≤ ⌈ M
S−1

⌉ such that the fol-

lowing convolutional factorization holds true

W = w(p) ∗ w(p−1) ∗ · · · ∗ w(2) ∗ w(1).

Lemma 6. Let {w(k)}Jk=1 be a set of sequences supported in {0, 1, . . . , S}.
Then

T (J) · · ·T (2)T (1) = T (J,1) := (Wi−k)i=1,...,d+JS,k=1,...,d ∈ R
(d+JS)×d (5.1)

is a Toeplitz matrix associated with the filter W = w(J) ∗ · · · ∗ w(2) ∗ w(1)

supported in {0, 1, · · · , JS}.
We then construct a fully connected layer to approximate the univariate

function ln by continuous piecewise linear functions (splines) spanned by
{σ(· − ti)}Ni=1 with ti = −1 + i−2

N
, based on the following well known result

in approximation by splines which can be found in [7] and [31, Lemma 6].

Lemma 7. Given an integer N , let t = {ti}2N+3
i=1 be the uniform mesh on[

−1− 1
N
, 1 + 1

N

]
with ti = −1 + i−2

N
. Construct a linear operator Lt on

C[−1, 1] by

Lt(f)(u) =

2N+2∑

i=2

f(ti)δi(u), u ∈ [−1, 1], f ∈ C[−1, 1],

where δi ∈ C(R), i = 2, . . . , 2N + 2, is given by

δi(u) = N(σ (u− ti−1)− 2σ (u− ti) + σ (u− ti+1)). (5.2)

Then for g ∈ C[−1, 1], ‖Lt(g)‖C[−1,1] ≤ ‖g‖C[−1,1] and

‖Lt(g)− g‖C[−1,1] ≤ 2ω (g, 1/N)

where ω(g, µ) is the modulus of continuity of g given by

ω(g, µ) = sup
|t|≤µ

{
|g(v)− g(v + t)| : v, v + t ∈ [−1, 1]

}
.
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For the convenience of counting free parameter numbers, we introduce a
linear operator LN : R2N+1 → R2N+3 given for ζ = (ζi)

2N+1
i=1 ∈ R2N+1 by

(LN(ζ))i =





ζ2, for i = 1,

ζ3 − 2ζ2, for i = 2,

ζi−1 − 2ζi + ζi+1, for 3 ≤ i ≤ 2N + 1,

ζ2N+1 − 2ζ2N+2, for i = 2N + 2,

ζ2N+2, for i = 2N + 3.

(5.3)

An important property of the operator LN is to express the approximation
operator Lt on C[−1, 1] in terms of {σ (· − tj)}2N+3

j=1 as

Lt(f) = N
2N+3∑

i=1

(
LN

(
{f(tk)}2N+2

k=2

))
i
σ (· − ti) , ∀f ∈ C[−1, 1]. (5.4)

Proof of Lemma 3. For m ∈ N and y = {y1, . . . , ym} ⊂ Sd−1, we take W to
be a sequence supported in {0, · · · , md− 1} given by W(j−1)d+(d−i) = (yj)i
where j ∈ {1, · · · , m} and i ∈ {1, · · · , d}. By Lemma 5 with M = md − 1,

there exists a sequence of filters w =
{
w(j)

}J
j=1

supported in {0, · · · , S} with

J ≥ ⌈ M
S−1

⌉ satisfying the convolutional factorization W = w(J) ∗w(J−1) ∗ · · · ∗
w(2) ∗ w(1). Here for j = p + 1, . . . , J , we have taken w(j) to be the delta
sequence δ0 given by (δ0)0 = 1 and (δ0)k = 0 for k ∈ Z \ {0}. By Lemma 6,
we have

T (J)T (J−1) · · ·T (1) = T (J,1) = (Wi−k)i=1,...,d+JS,k=1,...,d ∈ R
(d+JS)×d,

where T (j) is the Toeplitz matrix with filter w(j) for j = 1, 2, . . . , J .
Now we construct bias vectors in the neural networks. We denote ‖w‖1 =∑∞

k=−∞ |wk|. Take b(1) = −
∥∥w(1)

∥∥
1
1d0 and

b(j) =
(
Πj−1

p=1

∥∥w(p)
∥∥
1

)
T (j)1dj−1

−
(
Πj

p=1

∥∥w(p)
∥∥
1

)
1dj−1+S, (5.5)

for j = 2, · · · , J . The bias vectors satisfy b
(j)
S+1 = . . . = b

(j)
dj−S. Observe that

‖x‖∞ ≤ 1 for x ∈ Sd−1. Denote ‖h‖∞ = max{‖hj‖∞ : j = 1, . . . , q} for a
vector of functions h : Sd−1 → Rq. We know that for h : Sd−1 → Rdj−1 ,

∥∥T (j)h
∥∥
∞

≤
∥∥w(j)

∥∥
1
‖h‖∞ .

Hence the components of h(J)(x) satisfy

(
h(J)(x)

)
kd

= 〈yk, x〉+B(J), k = 1, . . . , m,
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where B(J) = ΠJ
p=1

∥∥w(p)
∥∥
1
. Applying the downsampling operator (1.6) leads

to

Dd

(
h(J)(x)

)
=




〈y1, x〉
...

〈ym, x〉
0
...
0




+B(J)1⌊(d+JS)/d⌋.

Denote d̂ = ⌊(d+ JS)/d⌋. Since J ≥ ⌈md−1
S−1

⌉, we have

d+ JS

d
≥ 1 +

md− 1

d

S

S − 1
> 1 +

md− 1

d
≥ m.

Hence d̂ ≥ m.
We turn to expressing the last two fully connected layers. Of them, h(J+1)

is given by
h(J+1)(x) = σ(F (J+1)

Dd(h
(J)(x))− b(J+1))

with the connection matrix F (J+1) = ΞD2,12N+3
stated in (2.3) and the bias

vector

b
(J+1)
(j−1)(2N+3)+i =

{
B(J) + ti, if j = 1, . . . , m, i = 1, . . . , 2N + 3,

B(J) + 1, if j > m,
(5.6)

where t := {t1 < · · · < t2N+3} is given in Lemma 7. Note that F (J+1) is a
determined matrix without free parameters. Then the first fully-connected
layer h(J+1)(x) ∈ R

d̂(2N+3) of the deep network is

(
h(J+1)

)
(j−1)(2N+3)+i

=

{
σ (〈yj, ·〉 − ti) , if j ≤ m, 1 ≤ i ≤ 2N + 3,
0, if j > m.

(5.7)

Write h(J+1)(x) ∈ Rd̂(2N+3) in a block form with d̂ blocks of equal size
2N + 3, then the j-th block is [σ (〈yj, x〉 − ti)]

2N+3
i=1 for j = 1, . . . , m, while

the other blocks are zero vectors.
Take the vector ΘN ∈ R2N+3 in the connection matrix F (J+2) = ΞT

D2,ΘN
of

the second fully-connected layer stated in (2.3) in terms of the linear operator
LN as

ΘN = LN

(
{ζn,r(ti)}2N+2

i=2

)
,
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then by the identity (5.4), for j = 1, . . . , m, the jth entry of the product
F (J+2)h(J+1)(x) equals

ΘT
N [σ (〈yj, x〉 − ti)]

2N+3
i=1 =

2N+3∑

i=1

(
LN

(
{ζn,r(ti)}2N+2

i=2

))
i
σ (〈yj, x〉 − ti)

=
1

N
Lt (ζn,r) (〈yj, x〉) .

The other entries of the product F (J+2)h(J+1)(x) vanish. Thus, by taking
B(J+2) = ‖ζn,r‖C[−1,1] and

b(J+2) =

[
−B(J+2)

N
1m

O

]
, (5.8)

we see from the homogenous property σ(u/N) = σ(u)/N that the last layer
h(J+2) is given by

h(J+2)(x) =
1

N

[ [
Lt (ζn,r) (〈yj, x〉) +B(J+2)

]m
j=1

O

]
.

For the coefficients we choose c(J+2) ∈ Rd̂ as

c
(J+2)
j =

{
N
m
Fr(yj), if j = 1, . . . , m,

0, otherwise

and A = B(J+2) 1
m

∑m
j=1 Fr(yj). Then we have that for x ∈ Sd−1,

∣∣∣L̂y
n,m(f)(x)− c(J+2) · h(J+2)(x)− A

∣∣∣

=

∣∣∣∣∣
1

m

m∑

j=1

Fr(yj)ζn,r(〈yj, x〉)−
1

m

m∑

j=1

Fr(yj)Lt (ζn,r) (〈yj, x〉)
∣∣∣∣∣

≤‖f‖W r
∞
(Sd−1)‖ζn,r − Lt(ζn,r)‖C[−1,1]. (5.9)

Since ζn,r is an algebraic polynomial of degree at most 2n, by Markov’s
inequality,

‖ζ ′n,r‖C[−1,1] ≤ (2n)2‖ζn,r‖C[−1,1].

Combining this with the bound ‖ζn,r‖C[−1,1] ≤ ∑2n
k=1 k

−rN(k, d) followed
from Corollary 1.2.7 of [6], we know that

‖ζ ′n,r‖C([−1,1]) ≤ cdn
2

2n∑

k=1

kd−2−r,
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where cd is a constant depending only on d. But

2n∑

k=1

kd−2−r ≤ 1 +





3d−1−r

d−1−r
nd−1−r, if d− 2− r > −1,

1 + log(n + 1), if d− 2− r = −1,
1

r+1−d
, if d− 2− r < −1,

which is bounded by c′′r,dΛd−1−r(n) with a positive constant c′′r,d depending

only on r and d. It follows that ω(ζn,r,
1
N
) ≤ cdc

′′
r,dn

2Λd−1−r(n)/N . Combining
this with (5.9), Lemma 7 and the embedding Proposition 1 yields

∥∥∥L̂y
n,m(f)(x)− c(J+2) · h(J+2)(x)− A

∥∥∥
∞

≤ c′r,d
n2Λd−1−r(n)

N
‖f‖W r

∞
(Sd−1),

where c′r,d is a constant depending only on r and d.
The total number of free parameters N in our network is the sum of

J(S+1) contributed by w, J(2S+1) by the bias vectors in the first J layers,
2N + 1 contributed by the vector {ζn,r(ti)}2N+2

i=2 in choosing ΘN , 2 by the
parameters B(J), B(J+2) in the fully-connected layers, and at most m+ 1 by
c(J+2) and A. So it can be bounded as

N ≤ J(S +1)+ J(2S +1)+ 2N +1+ 2+m+1 ≤ J(3S + 2)+m+ 2N +4.

This proves Lemma 3.

5.3 General error bounds

With the proved bounds for ‖f −Ln(f)‖∞ in Lemma 1, ‖Ln(f)− L̂y
n,m(f)‖∞

in Lemma 2, and ‖L̂y
n,m(f)− f̂‖∞ in Lemma 3, the following bounds for the

error f − f̂ follows immediately.

Theorem 3. Let 2 ≤ S ≤ d, d ≥ 3, r > 0, τ > 0, m,n,N ∈ N and
f ∈ W r

∞(Sd−1). Let J ≥ ⌈md−1
S−1

⌉, D1 = (2N + 3)⌊(d + JS)/d⌋ and D2 =
⌊(d + JS)/d⌋. Then for the network constructed in Lemma 3 there exists a
function f̂ ∈ HJ,D1,D2,S such that

∥∥∥f − f̂
∥∥∥
∞

≤ C ′
r,d,τ

(
n−r +

√
Λ2(d−1−r+τ)(n)√

m
+

n2Λd−1−r(n)

N

)
‖f‖W r

∞
(Sd−1),

(5.10)
where C ′

r,d,τ is a constant depending only on r, d, τ . Moreover, the total num-
ber of free parameters N in the network can be bounded as

N ≤ J(3S + 2) +m+ 2N + 4.

20



5.4 Proving the main results

We are in a position to derive our main results from the general error bounds
in Theorem 3.

Proof of Theorem 1. Since J ≥ d−1
S−1

, we know that (S−1)J+1
d

≥ 1. Take m =

⌊ (S−1)J+1
d

⌋. Then m ∈ N and md − 1 ≤ (S − 1)J . Hence the requirement
J ≥ ⌈md−1

S−1
⌉ in Theorem 3 is valid.

Now we take n,N as

{
n = ⌊m 1

2(d−1+τ) ⌋ and N = nd+1, if 0 < r < d− 1,

n = ⌊m 1
2r ⌋ and N = ⌊n2+r⌋, if 0 < τ < r − (d− 1).

Then we know by Theorem 3 that with D1 = (2N + 3)⌊(d + JS)/d⌋ and
D2 = ⌊(d+JS)/d⌋, there exists a network constructed in Lemma 3 containing
a function f̂ ∈ HJ,D1,D2,S such that

∥∥∥f − f̂
∥∥∥
∞

≤
(
2r+2 + 1

)
C ′

r,d,τm
−min{ r

2(d−1+τ)
, 1
2}‖f‖W r

∞
(Sd−1).

But m ≥ (S−1)J+1
2d

> (S−1)J
2d

. So we have

∥∥∥f − f̂
∥∥∥
∞

≤ Cr,d,τ,SJ
−min{ r

2(d−1+τ)
, 1
2}‖f‖W r

∞
(Sd−1).

with the constant

Cr,d,τ,S :=
(
2r+2 + 1

)
C ′

r,d,τ (2d/(S − 1))min{ r
2(d−1+τ)

, 1
2} .

This yields the desired error bound.
Observe that m = ⌊ (S−1)J+1

d
⌋ ≤ S

d
J ≤ J and

N ≤
{

m
d+1

2(d−1+τ) ≤ J
d+1

2(d−1+τ) , if 0 < r < d− 1,

n2+r ≤ m
2+r
2r ≤ J

1
2
+ 1

r , if 0 < τ < r − (d− 1).

But d ≥ 3 implies d+1
2(d−1+τ)

< 1. In the case 0 < τ < r− (d−1) which implies

r > d − 1 + τ > 2, we also have 1
2
+ 1

r
< 1. So the total number of free

parameters N in the network can be bounded as

N ≤ (3S + 5)J + 4.

The proof of Theorem 1 is complete.
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Remark 3. When r = d − 1, from the above proof, we can see by taking
N = ⌊nd+1 log(n + 1)⌋ that the statement of Theorem 1 still holds except
that the bound for the number of free parameters should be replaced by N ≤
(3S + 3)J+2J

d+1
2(d−1+τ) log(J+1)+4. Note that N = O(J). So to achieve the

approximation accuracy ǫ > 0, the depth and the number of free parameters

of the network are of orders O
(
ǫ−2− 2

d−1
τ
)
.

Proof of Theorem 2. We follow the proof of Lemma 3 and construct deep
CNNs of depth J =

⌈
md−1
S−1

⌉
with them features {yj ∈ Sd−1}mj=1 in the additive

ridge form (2.4) of the approximated function f , followed by downsampling

and one fully-connected layer which produces h(J+1)(x) ∈ R
d̂(2N+3) expressed

by (5.7). Then by making use of the univariate functions {gj}mj=1 in the
additive ridge form (2.4) of the approximated function f , we choose the

coefficient vector c(J+1) ∈ Rd̂(2N+3) by means of the linear operator LN as
{(

c(J+1)
)
(j−1)(2N+3)+i

}2N+3

i=1
= NLN

(
{gj(ti)}2N+2

i=2

)
, j = 1, . . . , m

and
(
c(J+1)

)
(j−1)(2N+3)+i

= 0 for j > m. Then by the identity (5.4), we have

c(J+1) · h(J+1)(x) = N

m∑

j=1

2N+3∑

i=1

(
c(J+1)

)
(j−1)(2N+3)+i

σ (〈yj, x〉 − ti)

=
m∑

j=1

Lt (gj) (〈yj, x〉) .

Combining this with the additive ridge form (2.4) of f and Lemma 7, we
know that for x ∈ Sd−1,

∣∣f(x)− c(J+1) · h(J+1)(x)
∣∣ =

∣∣∣∣∣

m∑

j=1

gj(〈yj, x〉)−
m∑

j=1

Lt (gj) (〈yj, x〉)
∣∣∣∣∣

≤
m∑

j=1

‖gj − Lt(gj)‖C[−1,1] ≤
m∑

j=1

|gj|Wα
∞

N−α.

Then the desired error bound is verified.
The total number of free parameters N in the network is the sum of

J(S+1) contributed by w, J(2S+1) by the bias vectors in the first J layers,
1 by the parameter B(J) in the fully-connected layer, and 2N+1 by the vector
{gj(ti)}2N+2

i=2 in choosing the coefficient vector c(J+1). So it can be bounded
as

N ≤ J(S + 1) + J(2S + 1) + 1 +m(2N + 1) ≤ J(3S + 2) +m(2N + 2).

This proves Theorem 2.
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6 Conclusion and Discussion

In this paper spherical harmonic analysis is conducted rigorously for the
approximation theory of deep CNNs followed by downsampling and one fully
connected layer or two on spheres. Our analysis provides rates of uniformly
approximating functions f ∈ W r

∞(Sd−1) with r > 0 by deep CNNs followed by
two fully connected layers. To approximate a Lipschitz function in a special
additive ridge form, a network with one fully connected layer can be as fast
as one for approximating a univariate Lipschitz function, which demonstrates
the super power of deep CNNs in approximating or representing functions
with special structures. Our spherical analysis relies on a special property
of the reproducing kernel of Hd

n on the sphere. It would be interesting to
extend our technique to approximation of non-smooth functions on [−1, 1]d

and to Lp approximation with 1 ≤ p < ∞.
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