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Abstract— Deep Convolutional Neural Networks (CNNs), such 

as Dense Convolutional Network (DenseNet), have achieved great 
success for image representation learning by capturing deep hi-
erarchical features. However, most existing network architectures 
of simply stacking the convolutional layers fail to enable them to 
fully discover local and global feature information between layers. 
In this paper, we mainly investigate how to enhance the local and 
global feature learning abilities of DenseNet by fully exploiting the 
hierarchical features from all convolutional layers. Technically, 
we propose an effective convolutional deep model termed Dense 
Residual Network (DRN) for the task of optical character recog-
nition. To define DRN, we propose a refined residual dense block 
(r-RDB) to retain the ability of local feature fusion and local re-
sidual learning of original RDB, which can reduce the computing 
efforts of inner layers at the same time. After fully capturing local 
residual dense features, we utilize the sum operation and several 
r-RDBs to construct a new block termed global dense block (GDB) 
by imitating the construction of dense blocks to adaptively learn 
global dense residual features in a holistic way. Finally, we use two 
convolutional layers to design a down-sampling block to reduce 
the global feature size and extract more informative deeper fea-
tures. Extensive results show that our DRN can deliver enhanced 
results, compared with other related deep models.  

Index Terms— Global dense block; fast dense residual network; 
down-sampling block; global dense residual learning; text image 
representation and recognition 

I. INTRODUCTION 

Deep CNNs with multiple layers have made significant progress 
and achieved great success in many vision tasks, such as image 
recognition, speech recognition and video person recognition, 
by learning deeper representations and hierarchical information 
[47-52]. This success has also been demonstrated by the optical 
character recognition (OCR) that reads the scene text in images 
and predicts a sequence of characters from the machine gener-
ated texts [12-14][33][36-38]. OCR has been widely applied in 
various applications, e.g., road sign recognition, identification, 
license plate recognition and assistive service for the blind.  

For the task of OCR, two crucial sub-tasks are text line de-
tection and text recognition [12-14]. The first task is to extract 
the text regions from images and the second one is to recognize 
the textual contents of the identified regions. In this paper, we 
mainly discuss the task of text recognition rather than text line 
detection. As different images have complicated backgrounds 

and complex contents, OCR is still a challenging task. To tackle 
this task, many OCR models have been proposed, e.g., arbitrary 
orientation network (AON) [2], end-to-end trainable scene text 
recognition system (ESIR) [1] and the convolutional recurrent 
neural network (CRNN) [3]. AON presented an arbitrary ori-
entation network to recognize the oriented texts arbitrarily and 
achieved impressing results on both irregular and regular texts 
from images. ESIR has designed a novel line-fitting transfor-
mation to estimate the pose of text lines in scenes and has de-
veloped an iterative rectification framework for the scene text 
recognition. CRNN is the combination of two prominent neural 
networks, i.e., CNNs and Recurrent Neural Networks (RNNs) 
[5-7]. More specifically, CNNs are used to extract information 
of images [46], RNNs are used to predict the label distribution 
of each frame and Connectionist Temporal Classification (CTC) 
module [8] is also used to transform these predictions into the 
final label sequence. Note that recent work also revealed that 
even without the recurrent layers, the simplified models can still 
achieve the promising results with higher efficiency [9][34]. As 
such, the framework of CNNs plus CTC is a feasible and effi-
cient solution. To extract features in convolutional layers, many 
existing convolution networks can be used, e.g., Dense Con-
volutional Network (DenseNet) [4], Residual Network (ResNet) 
[10] and Residual Dense Network (RDN) [11].  
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Fig. 1. The structures of (a) residual block, (b) dense block, (c) residual dense

block (RDB), and (d) our refined residual dense block (r-RDB).  
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It is noteworthy that the texts in images have different scales, 
angles of view and aspect ratios [11]. Although the hierarchical 
deep features extracted by a deep network could provide more 
clues for recognition, most existing CNNs based models usually 
neglect to use hierarchical features for recognition or only focus 
on learning local hierarchical features. For example, the dense 
block of DenseNet connects different inside layers tightly, so it 
has a strong ability in learning local features due to its intrinsic 
structures. However, like most existing CNN models, DenseNet 
also stacks the dense blocks [4][45] and transition blocks simply, 
which neglects the global properties of features. In addition, the 
way of combining features by concatenating them in DenseNet 
will bring about sharp increase in terms of the channel number 
of input features in each layer and huge computing efforts with 
dense block getting deeper, which will restrict the depth of the 
deep networks using the dense blocks. RDN proposed a residual 
dense block (RDB) [11] for image super-resolution. It should be 
noted that RDB has some obvious advantages compared with 
the residual block of ResNet and dense block. Specifically, the 
structure of RDB contains the dense connected layers, local 
feature fusion (LFF) and local residual learning (LRL) modules, 
which can fully capture local hierarchical features and learn the 
local residual dense features. However, RDB uses the standard 
dense blocks, so it will have the same disadvantages as the dense 
blocks in terms of higher computing efforts.  

In this paper, we propose a deep convolution network model 
with CTC, which can fully use and enhance the local and global 
hierarchical features from the text images and reduce the com-
puting efforts at the same time. In summary, the main contribu-
tions of this paper are presented as follows:   

(1) Technically, we propose a new effective deep representa-
tion learning and character recognition network, i.e., dense 
residual network (DRN). The proposed DRN can fully use 
all the local and global hierarchical features, and moreover 
enhance the global dense feature flow, while global features 
are usually ignored in existing models. That is, DRN can 
enhance the local and global feature learning by exploiting 
hierarchical features from all convolutional layers fully.  

(2) We also propose a RDB based refined residual dense block 
(r-RDB), which can clearly retain the ability of local feature 
fusion and local residual learning of the original RDB, but 

also reduce the computing efforts of inner layers by refining 
the structures of the representation block at the same time.  

(3) After learning the multi-level local residual dense features 
by r-RDB, we use the sum operation and several r-RDBs to 
construct a new global dense block (GDB). GDB is clearly 
designed by imitating the dense block, but it can adaptively 
learn global dense residual features by connecting features 
of all the r-RDBs tightly in the form of dense connection in 
a holistic way. Note that discovering global deep features is 
the major innovation of this paper, but has been ignored by 
the vast majority of existing deep networks.  

(4) We also design a down-sampling block with two convolu-
tional layers of stride 2 to reduce the size of global features 
and extract more informative deeper global features due to 
having more kernel channels in this block. This block can 
also avoid important feature information loss and make the 
parameters of the whole framework learnable. To further 
reduce the computing effort and improve the efficiency, we 
use the depth-wise separable convolution to replace the 
traditional convolution.  

The paper is outlined as follows. Section II briefly reviews 
the related models. In Section III, we introduce the r-RDB and 
global dense block (GDB). We present the deep framework of 
our fast dense residual network (DRN) in In Section IV. Section 
V shows the experimental setting and results. In Section VI, we 
describe the conclusion and future work.  

II. RELATED WORK 

In this section, we briefly introduce the residual block, dense 
block and residual dense block, which are closely related to our 
proposed global dense block and deep network model.  

Residual block in ResNet. ResNet mainly solves the prob-
lem of network degradation [10]. Fig.1(a) shows the structure of 
one residual block. Let x, F(x) and H(x) denote the input features, 
output features without and with short connections respectively, 
we can easily obtain the following formulas:  
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Fig. 2. The learning architecture of our proposed framework for text recognition from images.  
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where w1 and w2 are the weights for the convolutional layers, 
 1Re LU w x is the function of Rectified Liner Units (ReLU) 

[18]. The identical maps can be constructed in two cases that 
F(x) = x without short connections or F(x) = H(x) - x = 0 with 
short connections. The optimization with a short connection is 
easier in the process of training. In addition, the short connec-
tion in the residual block can also help enhance the feature flow, 
which improves the ability of fusing local features to a certain 
extent. However, from the aspect of global feature learning, the 
representation ability of ResNet will be limited.  

Dense block in DenseNet. DenseNet [4] mainly creates short 
paths between layers, which can alleviate the issue of gradient 
dis-appearance, strengthen feature flow and encourage feature 
reuse. In this process, a simple connectivity pattern called dense 
block is derived. To ensure maximum information flow between 
layers, all the layers with matching feature-map sizes in a dense 
block are connected directly with each other, and the related 
features are combined by concatenating them as follows:  

  0 1 1, ,...,i iX X X X  ,    (2) 

where Xi are features of the i-th layer, X0 are input features and 
    is the according function of convolutional layer. To pre-

serve the feed-forward nature, each layer obtains additional 
inputs from preceding layers and passes on its own feature-maps 
to the subsequent layers. Fig.1 (b) shows the layout of one dense 
block. Note that DenseNet uses many short connections to en-
hance the feature flow, thus it will have a strong feature learn-
ingability. As far as the local feature fusion is concerned, the 
designed dense block is innovative and the module has a strong 
ability of local feature fusion and learning. However, like the 
ResNet, DenseNet also fail to learn global features, since it also 
just stacks the dense blocks one by one. Besides, with the in-
crease of the number of convolutional layers in dense block, the 
computing efforts will increase dramatically, which will directly 
limit the depth of neural network.  

Residual dense block (RDB) in RDN. The residual dense 
network (RDN) [11] aims to make full use of all the hierarchical 
features from images. The core idea of RDB is to utilize both 
residual learning and dense block to improve the feature learn-
ing ability by jointly enhancing the information flow, learning 
residual features and improving the local feature fusion. As such, 
RDB can fully learn local hierarchical features and obtain in-
formative residual dense features. Fig.1(c) illustrates the struc-
ture of one RDB. It should be noted that RDB also utilizes the 
concatenating operation similarly as the dense block to combine 
the features of former RDB and current layers, and use the re-
sidual outside dense block to enhance the representation learn-
ing. As such, RDB will also suffer from huge computing cost as 
the dense block. In addition to making full use of local features 
with RDB, RDN has also made its own work in global feature 
fusion learning. However, by comparing with the structures of 
the dense connection in RDB, RDN just simply combine all the 
features from different RDBs in the form of concatenating for 
the global feature fusion. As such, the global feature learning 
ability of the RDN is still not enough [11], where global infor-
mation flow between layers are not fully discovered.  

III. DENSE RESIDUAL NETWORK (DRN) FOR CHARACTER 

RECOGNITION 

We first describe the network architecture of our DRN in Fig.2, 
where it consists of three major parts, i.e., a global dense block 
(GDB), a down-sampling block and a transcription layer. It is 
noted that traditional CNN models usually neglect to use hier-
archical features for image representation or only focus on local 
hierarchical features. It should be noted that all the convolution 
operations in our DRN refer to an operation group including the 
batch normalization (BN) [17], rectified liner units (ReLU) [18] 
and the depth-wise separable convolution [19]. Note that the 
major reason why we put GDB before the downsampling mod-
ule is to make use of more abundant feature information as 
much as possible. As we know, downsampling will reduce the 
size of features. Although more channels can be set to increase 
the amount of information after convolution, a considerable 
amount of information will be lost for each channel feature. 
Next, we briefly introduce the global dense block (GDB), 
down-sampling block and transcription layer in our DRN.  

A. Global Dense Block (GDB) 

To enhance the global feature learning on the premise of fully 
learning local features, we define a fast RDB and a global dense 
block, which will be detailed in the next section.  

B. Down-sampling Block 

We first use GDB to compute the global dense residual features. 
After that, we use two convolution layers with stride 2 to reduce 
the global feature size. We also set more channels for the con-
volutional kernels in the down-sampling block to learn more 
informative global dense residual features. As such, we can find 
that the feature channels turn out more and more with gradually 
decreasing feature size in the down-sampling block in Fig.2.  

C. Transcription layer 

This layer is used to transform the prediction of each frame into 
the final label sequence, which includes the soft-max and CTC. 
The soft-max function [20] is utilized to output the predictions 
of the down-sampling block. CTC plays the role in transforming 
these predictions into the final label sequence. In our network, 
CTC needs to input data of each column of a picture containing 
text as a sequence and outputs the corresponding characters.  

IV. REFINED RESIDUAL DENSE BLOCK (R-RDB) AND GLOBAL 

DENSE BLOCK (GDB) 

We mainly introduce the refined residual dense block (r-RDB) 
and global dense block (GDB). In what follows, we show their 
definitions and also illustrate their structures.  

A.   Refined residual dense block (r-RDB) 

We first describe the structure of r-RDB that is designed based 
on the RDBs. RDB includes a dense block, a 1*1 convolution 
layer and a sum operation for the residual learning. To design 
the structure of r-RDB, we clearly borrow the idea of reducing 
the computing efforts and weight size of the dense blocks by 
changing the way of combining inner features [16] into RDB, 
so that the computational cost and weight size can be greatly 
reduced while retaining the advantages of RDB in local feature 
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fusion and residual learning. Specifically, r-RDB is also con-
structed by redefining and designing the way of combining 
internal features of inner dense block as the refined dense block 
(r-DB) [16]. Generally, since the channel number of input 
features is more than that of the inner layers in dense blocks, we 
similarly reduce the computing cost by applying the sum op-
eration to combine features instead of concatenating for all the 
inner layers in the dense blocks, except for the input and output 
layer, which is performed as follows:   

 
 

1

1 1

=

+...+ , 1i i

F X

F F F i



  
, (3) 

where Fi represents features of the i-th layer, X represents the 
input features and    denotes the function used in the convo-
lutional layer. Since we construct output features by concate-
nating all features of different layers, we can fully utilize fea-
ture information of all layers and can also ensure that our fea-
ture maps have the same size and same number of channels as 
those of the original dense block in RDB. As such, we can find 
that the channel number of input features grows in the original 
dense blocks but keeps unchanged in r-RDB for those middle 
layers. According to [16], the lightweight version can clearly 
reduce the computing cost and weight size of each dense block 
to (1/L, 2/L), where L is the number of layers in dense block. 
Since the computation in RDB mainly depends on the inner 
dense blocks, while the 1*1 convolution kernels and sum op-
eration for the residual learning only takes a small share of the 
computation, so r-RDB can reduce the computation cost of the 
inner layers of RDB, similarly as r-DB. Moreover, r-RDB can 
also preserve the ability in residual dense feature learning of 
RDB effectively. Fig.1(d) shows the structure of a r-RDB, 
where it clearly contains fast dense block, local feature fusion 
and local residual learning, shown below:   

Local feature fusion. Similar to RDB, we use a 1×1 convo-
lution layer to adaptively control the output information, which 
can not only extract convolutional features from concatenated 
features, but also reduce the channel number of fused features 
for residual learning. The local fusion features are defined as 

  1 2 3, , ,c LF X F F F F ... ,   (4) 

which is obtained by implementing a 1*1 convolutional opera-
tion on the concatenated features from r-DB, L is the number of 
layers in r-DB,    is the according function of 1*1 convolu-
tional operation, and    is the concatenating operation.  

Local residual learning. To add the input features and fusion 
features, the sum operation is introduced for residual learning in 
our r-RDB similarly as RDB. This operation can help us further 
improve the information flow, improve the network representa-
tion ability and finally enhance performance. Since our r-RDB 
also does the residual learning on dense features, we call these 
output features as local residual dense features as well, denoted 
as resF that is defined as follows:   

 res cF X F .                                  (5) 

B.   Global Dense Block (GDB) 

We then describe the structure of GDB that is our core module, 
which is mainly designed to enhance the global feature learning 

on the premise of fully-learned local features. The structure of 
GDB is designed by imitating the dense block, but it can jointly 
extract the shallow features, ensure fast global dense residual 
feature flow and enable the global feature fusion. To be specific, 
GDB consists of three parts, including a shallow feature extrac-
tion layer that can extract the shallow features, a global dense 
residual feature flow layer that ensures the fast global dense 
residual feature flow and a global feature fusion layer that ena-
bles the global feature fusion.  

Shallow feature extraction layer. This layer aims to extract 
and learn shallow features from the original images containing 
texts. It also plays the role of down-sampling when encounter-
ing with large-size input features. The 5*5 conv in this layer of 
Fig.2 is a convolutional operation with kernel size being 5*5. 
The extracted shallow features Fs from input are defined as 

   s dwconv RELU BNF H H H X ,       (6) 

where  dwconvH  is depth-wise separable convolution operation, 
 BNH  is BN operation and  RELUH  is ReLU operation.  

Global dense residual feature flow layer. As claimed above, 
r-RDB can fully obtain the local residual dense features, then we 
can extract the global dense residual features by this GDB based 
layer. Like the dense block, all inner layers are connected di-
rectly with each other in GDB to ensure maximum information 
flow between layers. Besides, each layer in GDB obtains addi-
tional inputs from all the preceding layers and passes on its own 
features to all subsequent layers. To ensure the computing effi-
ciency of network, we take the sum operation to combine fea-
tures in GDB instead of concatenating operation.  

Global feature fusion layer. Finally, we combine features of 
all layers of GDB by a sum operation. In this way, we can fully 
use shallow features and local residual dense features to obtain 
the final global features. Since r-RDB can extract local residual 
dense features that are placed in the way of dense connection, 
we can call the output features of GDB as global dense residual 
features. Let Fres, i (i=1,…,5) and Fglobal denote output features of 
each r-RDB and GDB, where resF have been shown in formula 5. 
Here, we present the formula of Fglobal as follows:  

5

,
1

global s res i
i

F F F


  .  (7) 

C.   Discussion 

In this section, we discuss the relations and differences between 
the feature leaning abilities of RDN and our DRN.  

Local feature learning. RDN designs the RDB to extract and 
learn local residual dense features, while r-RDB also introduces 
the idea of fast computation into RDB to further improve the 
efficiency and retain the representation ability of the local dense 
feature fusion and local residual learning.  

Global feature learning. How to fully discover and enhance 
the global feature learning ability is the major problem studied 
in this work and is also the biggest innovation of our DRN. As 
described above, most existing CNN models such as ResNet and 
DenseNet improved the ability of fusing local features, but they 
stacked their residual blocks and dense blocks one by one to 
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construct their global structures respectively. These will clearly 
result in the loss of the hierarchical features of each block in 
theoverall structures, which are in fact important clues for the 
image representation and recognition. Besides, RDN learns its 
global fusion features by concatenating features of all the RDBs 
to improve the performance. However, comparing to the struc-
tures of RDB that connects local hierarchical features of all the 
layers tightly, the overall architecture of RDN does not do well 
in integrating the global features. Different from other existing 
models, our DRN not only connects features of all the r-RDBs 
tightly in the form of dense connection imitating the design of 
the dense block, but also utilizes the sum operation to reduce the 
computing efforts. Further, we use two convolution layers with 
more channels to reduce the feature size and learn deeper global 
dense residual features. By this way, we can enhance the ability 
of learning global features for representation learning.  

V.  EXPERIMENTAL RESULTS AND ANALYSIS 

We evaluate the performance of our DRN for text image rep-
resentation and recognition. In this study, we mainly consider 
two recognition tasks: (1) recognizing the character strings in 
images; (2) recognizing the handwritten characters from images. 
For the first task, we compare the results of our DRN with those 
of several related deep network models, where the CPUs and 
GPUs of all the evaluated methods in the experiments are Xeon 
E3 1230 and 1080 Ti respectively and the used convolution 
architectures are based on the framework of Caffe [21]. A 
large-scale synthesis Chinese String dataset [22] is used for this 
evaluation. For the second task, we compare the recognition 
results with some popular methods on MNIST [23] and HASY 
[43] for character recognition. It is noteworthy to point out that 
CTC is required in the first task of character recognition, but is 
not needed in the second handwritten digits recognition task. 

Since the second task only needs to perform the single character 
recognition, we utilize the convolution parts of DRN, i.e., GDB 
and the down-sampling block is used to extract the deep dense 
residual features and then use the soft-max function as a classi-
fier to predict the labels of data samples.  

A. Handwritten Character Recognition 

(1) Experiments on MNIST 

We first evaluate DRN for recognizing the handwritten digits 
using the popular MNIST database. MNIST is a widely-used 
handwritten digit dataset, where the goal is to classify the im-
ages with 28×28 pixels as one of the 10 digital classes. MNIST 
dataset has 60,000 training samples and 10,000 testing samples. 
The results on MNIST can evaluate the feature extraction and 
representation learning ability of a learning model. In Fig.3, we 
show some image examples of the MNIST dataset.  

Implementation details. For MNIST, the batch size is set to 
128 and the epoch size is 200 in this study. The initial learning 
rate is set to 0.001, which will be adjusted to 0.0001 at interval 
between 50 and 100, and to 0.00001 after 100 epochs. Note that 
we add a fully-connected layer after down-sampling block in 
our DRN so that the output features can be transformed into the 
required form of soft-max. To prevent overfitting, we add three 
dropout layers after 5*5 conv, down-sampling block, and the 
fully connected layer, and set the value to 0.5, 0.5 and 0.7 in 
DRN. The performance of our DRN is compared with those of 
six popular deep models, such as Deep L2-SVM [24], Max-out 
Network [25], BinaryConnect [26], PCANet-1 [27], gcForest 
[28] and Simple CNN with BaikalCMA loss.  
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Fig. 4. Training curves of our DRN on MNIST.  

TABLE I 
COMPARISON RESULTS OF EVALUATED DEEP MODELS ON THE MNIST 

HANDWRITTEN DIGIT DATABASE. 
Evaluated Frameworks Accuracy (%) 

Deep L2-SVM  99.13% 
Maxout Network  99.06% 
BinaryConnect  98.71% 
PCANet-1  99.38% 
gcForest  99.26% 
Simple CNN with BaikalCMA loss 99.47% 
DRN (ours) 99.67% 

   

Our 
model

 
Fig. 5. Distribution of the original MNIST dataset (left) and deep features of 

MNIST by our DRN (right).  
 

. 
Fig. 3. Illustration of some image examples in MNIST.  
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 Recognition results. The handwritten recognition results in 
terms of accuracy on MNIST are described in Table I. We see 
that DRN can obtain the enhanced results and the recognition 
accuracy reaches 99.67 and is about 0.2%-0.54% improvement 
compared with baseline, which implies that the proposed r-RDB 
and DRN have strong representation and recognition abilities.  

Visualization of training process. We also show the training 
curves of our DRN that is trained using the cross-entropy loss. 
The obtained training curves are shown in Fig.4, where the top 
figure is the curve of the cross-entropy loss and the bottom one 
shows the recognition accuracy. We see that the cross-entropy 
loss is well fitted, which implies that DRN has a strong ability 
for representation learning and handwritten recognition.  

Visualization of the data distribution. To further observe 
the performance of our model, we use t-distributed stochastic 
neighbor embedding (t-sne) [39] to reduce the dimension of the 
original MNIST and its features from the last layer of our DRN, 
so that we can see their distributions. We see from Fig.5 that the 
learned features by our DRN have enhanced inter-class separa-
tion and intra-class compactness, which also proves that our 
network has a strong representation learning ability.  

(2) Experiments on HASY 

We then evaluate each deep model for recognizing the hand-
writings of HASY [43]. HASY is a public dataset of single 
symbols but  more challenging, because the number of classes in 
HASY is more than that in MNIST and there are many similar 
classes in HASY, i.e., it has 168,233 instances with 369 classes. 
HASY includes two challenges: a 10-fold cross-validation task 
for classification and a verification task. This paper focuses on 
the classification task. Some examples are shown in Fig.6.  

Implementation details. In the task of handwritten classifi-
cation with 10-fold cross-validation, the data of HASY is di-
vided into training set and test set in the proportion of 9:1, and 
10 datasets which are divided into different images in the same 
proportion are provided. In the experiment of each dataset, the 

batch size is set to 64, and the epoch size is set to 20. The initial 
learning rate is set to 0.001 and will be adjusted to 0.0001 be-
tween 10 and 20. A fully-connected layer is added after the 
down-sampling block in DRN. To prevent the over-fitting, a 
dropout layer [44] is added after the fully connected layer, and 
the parameter value is set to 0.5. Average the convergence re-
sults of each dataset to obtain the final classification accuracy.  

Recognition results. We compare our model with five pop-
ular deep models, i.e., random forest [40], multi-layer percep-
tron (MLP) [41], linear discriminant analysis (LDA) [42], 
CNN-3/4/4A [43] and (CNN-3/4/4A) + displacement features 
[44]. The random forest uses a large number of decision trees in 
the integrated classifier; LDA is a linear classifier; MLP is a 
fully- connected forward neural network; CNN-3/4/4A is a 
multi-layer CNN model; (CNN-3/4/4A)+ displacement features 
is a multi-layer CNN model by using displacement features.  It 
can be seen from TABLE II that our proposed DRN outperforms 
other competitors by delivering better recognition results and 
the improvement is about 2.7%-22.6% by comparing with other 
compared methods, which once again implies that the proposed 
model have stronger representation and recognition abilities.  

B. Character String Recognition in Images 

In this section, we evaluate each deep framework for recogniz-
ing the texts in images using the synthetic Chinese string dataset. 
This dataset is generated from Chinese corpus, including news 
and classical Chinese and by changing fonts, sizes, gray levels, 
blurring, perspective and stretching [22]. The dictionary has 
about 5990 characters, including Chinese, punctuation, English 
and numbers. Each sample is fixed to 10 characters, and char-
acters are randomly intercepted from the corpus. The resolution 
of the pictures is unified to 280×32. A total of about 3 million 
600 thousand images are generated, which are divided into a 
training set and a test set according to 9:1. Fig.7 shows some 
image examples of the Chinese string dataset.  

Implementation details. We use the stochastic gradient de-
scent (SGD) algorithm [28] to train the model and take Tensor-
flow and Keras as our experiment architectures. The training of 
the deep network is implemented on TITAN Xp. The batch size 
of DRN is set to 64. The epoch size is 10. The initial learning 
rate is set to 0.001, which will be adjusted at each epoch with 
algorithm of 0.005*0.4**epoch, where “**” is power calcula-
tion. The weight decay is set to 0.0001. We add a dropout layer 
after down-sampling block and set the dropout rate to 0.2 to 
prevent overfitting. We use the value of test loss as a metric, and 
the training process stops when the loss values do not descend. 
The weights are kept when the training of each epoch finishes. 

Character string recognition results. We show the recog-
nition results of DRN and other compared methods in Table III, 
where “Accuracy” refers to the correct proportion of whole 
string and statistics on the test set. For each model, the results 
are based on the frameworks of CRNN/CNN+CTC. More spe-
cifically, the frameworks with the suffix "res-blstm" denotes the 
models with blstm [29] in a form of residuals, the frameworks 
with the suffix "no-blstm" means that there is no LSTM layer. 
“DenseNet-sum-blstm-full-res-blstm” has two changes com-
pared with “Densenet-res-blstm”: (1) the approach of combin-
ing the two lstms into blstm changes from concat to sum; (2) 

 

Fig. 6. Illustration of some image examples in HASY.  

TABLE II 
COMPARISON RESULTS OF EVALUATED DEEP MODELS ON HASY.  

Evaluated Frameworks Accuracy (%) 
Random Forest  62.4% 
MLP 62.2% 
LDA  46.8% 
CNN-3  78.4% 
CNN-4   80.5% 
CNN-4A 81.0% 
CNN-3+ displacement features 78.8% 
CNN-4+ displacement features 81.4% 
CNN-4A+ displacement features 82.3% 
DRN (ours) 85.0% 
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both layers of blstm are connected by residual way. “Dense-
Net-no-blstm-vertical-feature” removes the pooling operation 
[30] of 1x4 to “Densenet-no-blstm” relatively. “DenseNet-UB” 
denotes the DenseNet framework with an up-sampling block, 
where bilinear interpolation is used to construct the up-sampling 
block [34]. We see that our proposed DRN delivers higher ac-
curacy and efficiency, compared with the other methods, and the 
improvement is about 0.42%-7.09%. The results once again 
show that DRN can deliver better recognition results. The used 
dataset and most compared methods are publicly available at 
https://github.com/senlinuc/caffe_ocr.  

Visualization of recognized texts in images. In addition to 
the above quantitative results, we also visualize some recog-
nized texts in images using our DRN in Fig.8. To visualize the 
recognized texts, we employ the Connectionist Text Proposal 
Network (CTPN) [35] to extract the key text lines from the test 
images. We can see that our network can output high-quality 
recognition results. Note that for some identified sentences, 
there have some deviations in text positions, which is due to the 
fact that CTPN has no layout analysis function making it fail to 
produce accurate text alignment when detecting text lines.  

VI. CONCLUSION AND FUTURE WORK 

In this paper, we investigated the representation learning prob-
lem that towards local residual dense learning to global dense 
residual learning. Technically, we propose a new dense residual 
network (DRN) for text image representation and recognition. 
The refined residual dense block (r-RDB) and the global dense 
block serve as the basic modules of our DRN, where r-RDB can 
not only retain the advantages of residual dense block , i.e., local 
feature fusion and residual learning, but also refines the block 
structures to reduce the computing cost of inner layers. To en-
sure maximum global information flow between blocks, GDB 
learns the global dense residual features fully. We also use two 
convolution layers with stride 2 and more channels to reduce the 
global feature size and extract more informative deeper features.  

We evaluated the performance of DRN for character string 
and handwritten character recognition. From the investigated 
cases, although enhanced performance have been obtained by 
DRN, compared with other related deep models, some issues are 
still worthy of exploring. For example, more efficient ways to 
reduce the computing cost and weight size of network, and more 
effective ways to explore global features are highly-desired to 
be studied. It is also interesting to use the presented r-RDB and 
GDB for other popular deep convolutional networks or evaluate 
DRN for other popular low-level or high-level vision tasks, for 
instance image restoration and object tracking [31-32]. Besides, 
how to design an end-to-end text line extraction and recognition 
framework will also be investigated in our future work.  
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