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Abstract

Few-shot learning aims to classify unseen classes with a few training examples. While

recent works have shown that standard mini-batch training with carefully designed

training strategies can improve generalization ability for unseen classes, well-known

problems in deep networks such as memorizing training statistics have been less ex-

plored for few-shot learning. To tackle this issue, we propose self-augmentation that

consolidates self-mix and self-distillation. Specifically, we propose a regional dropout

technique called self-mix, in which a patch of an image is substituted into other values

in the same image. With this dropout effect, we show that the generalization ability of

deep networks can be improved as it prevents us from learning specific structures of a

dataset. Then, we employ a backbone network that has auxiliary branches with its own

classifier to enforce knowledge sharing. This sharing of knowledge forces each branch

to learn diverse optimal points during training. Additionally, we present a local repre-

sentation learner to further exploit a few training examples of unseen classes by gen-

erating fake queries and novel weights. Experimental results show that the proposed

method outperforms the state-of-the-art methods for prevalent few-shot benchmarks

and improves the generalization ability.
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1. Introduction

Deep networks have achieved remarkable performance in recognition problems [1,

2, 3, 4, 5, 6] over hand-crafted features [7, 8, 9, 10, 11, 12]. Assuming a large-scale

training dataset is available, most studies focus on training deep networks on base

classes to test unseen images of trained classes. However, there is a growing interest in

mimicking human abilities such as generalizing a recognition system to classify classes

that have never been seen before [13, 14]. In particular, few-shot learning assumes only

a few training examples are available for unseen classes. This is a challenging problem

since it is highly possible that a few training examples will lead to network overfitting.

One paradigm for this challenge is meta-learning [13, 15, 16], where a large-scale

training set for base classes is divided into several subsets (typically called tasks) and

the network learns how to adapt to those tasks. In each task, only a few training exam-

ples are given for each class to mimic the environment of a test set for unseen classes.

Meanwhile, recent works have shown that a network trained with standard supervi-

sion can produce reasonable performance on unseen classes [17, 18, 19]. In the training

phase, this paradigm trains a network using a mini-batch sampled from a large-scale

training dataset. In the test phase, unseen classes with a few training examples are

evaluated using the same network. Thus, the goal is to develop a network that is gener-

alizable to unseen classes by fully utilizing the knowledge learned from base classes.

Both paradigms share commonalities in that they leverage a large annotated collec-

tion. However, the following notable difference exists: Meta-learning learns to adapt

quickly to new tasks by splitting base classes into several different tasks, whereas the

standard supervision constructs a parameter space in which the unseen classes can be

identified using only the information for classifying the base classes at once. While the

latter paradigm is closely related to classifying the unseen images belonging to the base

classes, only a few studies have taken advantage of lessons learned from the classical

classification problem [17, 18, 19].

To tackle this issue, we take a closer look at the generalization ability of deep

networks for few-shot learning. It is known that deep networks tend to have almost

zero-entropy distributions as the softmax output produces one peaked value for a class
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[20]. This overconfidence can occur even with randomly labeled training data as deep

networks are likely to just memorize the training statistics [21]. In our problem setting,

this memorization property directly affects the performance on unseen classes as we

rely heavily on the network ability trained on the dataset of base classes. The problem

even worsens as we cannot apply a simple transfer learning strategy given that we have

only a few training examples for unseen classes. Thus, to overcome the memoriza-

tion issues, it is important to induce uncertainty in predictions about input images and

regularize the posterior probability [22, 23, 24, 25].

With this in mind, we propose self-augmentation that incorporates regional dropout

and knowledge distillation to improve the generalization ability2 for few-shot leaning.

Here, we use the self-augmentation term as we use input and output resources of the

network itself to augment the generalization ability. Specifically, as one of the data

augmentation techniques, we employ regional dropout, which substitutes a patch of

an input image into other values such as zeros [23], a patch of another image [24],

and another patch of the input image. We call the last regional dropout “self-mix” as

it exchanges different patches of the input image itself. With this dropout effect, the

generalization ability is improved as it prevents us from learning specific structures of

a dataset. Furthermore, we found that an explicit regularization for the posterior prob-

ability is necessary to search for a proper manifold for unseen classes. To be specific,

we utilize a backbone network that has auxiliary branches with its own classifier to

enforce knowledge sharing. This sharing of knowledge forces each branch not to be

over-confident in its predictions, thus improving the generalization ability. Cooperat-

ing with regional dropout, the experimental results show that knowledge distillation

significantly boosts the performance on unseen classes.

Lastly, we present a fine-tuning method to exploit a few training examples given

for unseen classes. As we train a network on base classes, we have the opportunity to

improve the discriminative ability of the network for unseen classes using only 1 or 5

training examples.

2Henceforth, we denote the term “generalization” as the ability to adapt to unseen classes, given a network

trained on base classes.
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To sum up, our main contributions are as follows:

1) We present self-augmentation as a training framework to improve the general-

ization ability of deep networks. Specifically, we design consolidating regional

dropout and knowledge distillation, which are less explored in the few-shot

learning area.

2) We show that the newly proposed regional dropout, called self-mix, produces

state-of-the art results when cooperating with knowledge distillation.

3) Lastly, we present a novel fine-tuning method, called a local representation learner,

to exploit a few training examples of unseen classes, and show that the method

improves the performance for all the few-shot learning benchmarks.

2. Related Work

2.1. Few-Shot Learning

The literature on few-shot learning considers training and test datasets that are dis-

joint in terms of classes. Depending on how the training set is handled, we can catego-

rize it into two main branches: meta-learning and standard supervised learning.

Meta-learning approaches train a network by explicitly emulating the test environ-

ment for few-shot learning. Using a training dataset, n classes are randomly chosen

with k training examples, and T queries are also randomly picked. Then, learnable pa-

rameters are obtained from the n ·k training examples, and a loss is generated using the

T queries. A network is learned to reduce the loss by repeating this task several times.

As a result, meta-learning warms a network up to classify unseen classes with a few

examples. Three approaches exist for this paradigm: 1) Metric-learning to reduce the

distance among features of different classes [15, 13, 26, 27, 28], 2) optimization-based

approaches to initialize a parameter space so that a few training examples of unseen

classes can be quickly trained with the cross-entropy loss [16, 29, 30], and 3) weight

generation methods to directly generate classification weights used for unseen classes

[31, 32, 33].

In contrast, the standard supervised learning approaches train a network as usual

without splitting a training dataset into several tasks. In other words, this approach uti-
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lizes the training dataset as in the classical classification problem, but it aims to gener-

alize unseen classes. To achieve this, dense classification applies the classification loss

to all spatial information of an activation map to maximally exploit local information

[17]. A previous study used self-supervision and showed that the auxiliary loss with-

out labels can extract discriminative features for few-shot learning [18]. An ensemble

method using multiple networks was also proposed to resolve the high-variance issue

in few-shot learning [19].

2.2. Generalization

Many efforts have been made to understand the generalization performance of deep

learning [34, 35, 22, 36, 20, 37, 21, 25, 38]. Notably, it has been shown that deep net-

works easily adapt to random labels and are even well trained for images that appear

as nonsense to humans [34]. Along the same lines, many works have found that deep

networks produce overconfident classification predictions about an input, thus causing

loss in the generalization performance [22, 25, 39, 21]. To resolve this issue, recently,

regional dropout [23, 24] and mixing up of two images [40, 41] have been proposed as

data augmentation techniques. Other researchers showed that label smoothing [3] and

knowledge distillation [42, 25, 43, 44] effectively mitigate the overfitting problem by

regularizing the posterior probability. In this paper, we expand these findings and indi-

cate that perturbing input and output information should be extensively investigated for

few-shot leaning. To this end, we propose a training framework that consolidates re-

gional dropout and knowledge distillation, and further present a novel regional dropout

called self-mix. In addition, we show that a novel fine-tuning method can be used to

boost the performance of few-shot learning.

3. Methodology

3.1. General Framework

In this paper, we are interested in training a network on base classes to be general-

izable to unseen classes. Before elaborating on the proposed method, we introduce the

general framework for training and inference.

5



Query ��

A Few Training
Examples

Cosine 
Similarity

∁ � �� ; ��:�

score

feature

Feature 
Extractor
� ·; ��:�

Training Base Classes1

�(�)

feature score

���

���

���Feature 
Extractor
� ·; ��:�

A
u
x
3

A
u
x
2

Testing Unseen Classes2

Image 1

Image 2

Image 3

<Self-mix>

Figure 1: Overview of the proposed self-augmentation framework. The main network consists of three

classifiers, two of which are derived from intermediate layers of the main branch. In the training phase,

we first apply regional dropout to input images, which removes a part of the image by replacing it with

other values. All the classifiers try to learn a more generalizable parameter space by minimizing the cross

entropy loss and regularizing their prediction scores to have a similar distribution via the KL divergence. For

inference, we simply use the main classifier to evaluate images from unseen classes. The right figure shows

the case of 3-way 1-shot learning as an example.

3.1.1. Training

We define a classifier as C
(
f
(
·; Θ1:B

))
, where f(·; Θ1:B) is a feature extractor.

Here, we denote the parameters from Block 1 to B as Θ1:B , assuming that we use a

block-wise network such as ResNet [4]. For the classifier, we use the cosine similarity

that has been exploited for few-shot learning [31, 33]. Thus, the k-th output of the

classifier for a training example xi can be defined as

Ck

(
f
(
xi; Θ1:B

))
= softmax

(
τ f̄Ti wk

)
, (1)

where f̄i is the L2 normalized feature for xi and wk is the L2 normalized weight for

the k-th class. τ is used as a scale parameter for stabilized training [31, 45]. Based

on the definition, CBase is denoted as the classifier using base weights, and similarly

CNovel is denoted using novel weights.

Then, we consider the mini-batch training with Nbs examples and the cost function

for our training method is expressed as

J(Θ) =
1

Nbs

Nbs∑
i=1

`
(
C
(
f
(
x̃i; Θ1:B

))
; ỹi
)

+R, (2)
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where there exist three components: (a) the virtual training example x̃i and label ỹi, (b)

a loss function ` and (c) a regularizer R. We sequentially elaborate on the components

in the following subsections.

3.1.2. Inference

After training base classes, we report the classification performance on unseen

classes that have only a few training examples. We consider that a test dataset has

CN classes, which are disjoint to CB classes for a training dataset. Thus, this infer-

ence process measures how well the network trained on base classes is generalized to

unseen classes. For this measurement, we randomly sample n classes fromCN classes,

and pick k examples from each class. The typical numbers for few-shot learning are

n = 5 and k = 1 or 5. This setting is called n-way k-shot classification.

After the sampling process, we generate the weight of the j-th unseen class as

follows:

wN
j =

1

k

k∑
i=1

fi,j , (3)

where fi,j is the feature of the i-th example given for the j-th unseen class. Then, a

query xq is classified as

argmax
k

CNovel
k

(
f
(
xq; Θ1:B

))
, (4)

where CNovel
k is defined in Eq. (1) with the above novel weights. We iterate these

sampling and inference processes several times to obtain the 95% confidence interval.

3.2. Self-Augmentation

To improve the generalization performance, we propose a training framework called

self-augmentation, which consolidates self-mix and knowledge distillation. Self-mix

randomly picks a region of an input image and substitutes the pixels of the region into

other values of same image. We incorporate the self-mix in the few-shot learning prob-

lem and show that the generalization performance can be significantly boosted when

collaborating with knowledge distillation. The overall architecture of the proposed

method is shown in Fig. 1.
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3.2.1. Self-Mix

Self-mix is applied to a raw input image to produce a transformed virtual example

as follows:

x̃ = T (xi) ,

where T : xi[P1] → xi[P2] denotes by the abuse of notation, the patch P1 of xi is

replaced by the patch P2 of xi. To be specific, we firstly sample a cropping region P1 =

(ra1
, rb1 , rw, rh) from an image. The x-y coordinates (ra1

, rb1) is sampled randomly

and (rw, rh) is set to a predefined size. If the patch exceeded the image boundary, we

crop it. Then, a patchP2 is sampled with the fixed (rw, rh) and (ra2 , rb2) (6= (ra1 , rb1))

randomly chosen by ensuring not exceeding the image boundary.

3.2.2. Self-Distillation

Knowledge distillation has been studied to mitigate the overfitting problem by reg-

ularizing the posterior probability [42, 25, 43, 44]. Although a recent work showed

that knowledge distillation among multiple networks can ease off the high-variance

characteristic in few-shot learning [19], this method requires 20 networks for the best

performance. Thus, we incorporate self-distillation into our training framework, which

employs auxiliary classifiers [43, 44]. The concept is to create independent predictions

for an input image and share the information that has been learned by each classi-

fier. To ensure that the auxiliary classifiers share their own information, we apply the

Kullback–Leibler (KL) divergence as a regularizer R [44]. In summary, the general

form in Eq. (2) can be modified for our training framework as follows:

J(Θ) =
1

Nbs

Nbs∑
i=1

Ncls∑
j=1

`
(
CBase

j

(
f
(
x̃i; Θ1:l−1 ∪Θl:B

j

))
; ỹi
)

+
1

2Ncls

Ncls∑
i=1

Ncls∑
j=1,
j 6=i

DKL

(
CBase

i ||CBase
j

)
. (5)

Here, Ncls is the number of auxiliary classifiers, and for mathematical simplicity we

regard the main classifier as one of the auxiliary classfiers. We use the cross-entropy

loss for `. Θ1:l−1 ∪ Θl:B
j means that the parameters before the l-th block are shared
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among the auxiliary classifiers and the l : B blocks are learned independently for the

j-th classifier.

3.2.3. Discussion

Here, we further discuss the effectiveness of the proposed self-mix and the motiva-

tion of auxiliary classifiers as follows.

As regional dropout chooses a random region of an input image and replaces the

pixels for other values, it perturbs the data statistics. This prevents the network from

memorizing the data statistics of base classes and improves the generalization perfor-

mance for unseen classes. Meanwhile, there exist two present works [24, 23] as re-

gional dropout techniques and have its own disadvantages. Cutmix [24] exchanges two

randomly selected patches from two images, thus encouraging the network to learn two

labels simultaneously. However, it has been reported that such label smoothing impairs

the ability of knowledge distillation [39]. Considering that our proposed framework

employs knowledge distillation, it is less effective for cutmix to exploit the full capac-

ity of our framework. On the other hands, cutout [23] converts the pixels of the region

into zeros, which inherently leads to information loss. To solve these problems, we pro-

pose self-mix, which exchanges the locations of the patches of an input image itself.

Given that self-mix does not have any information loss and label smoothing issues, we

find that it generates a synergy effect with knowledge distillation.

Next, several works have found that deep networks are prone to over-confident

predictions, and this hinders a network from learning generalization [22, 25, 21]. In

other words, it is possible that an over-confident network results in a decision boundary

that is sharp [20] as highly optimized for the statistics of a training dataset. However,

unseen classes are not guaranteed to follow the distribution of training examples for

base classes, and a sharp boundary is likely to produce unstable predictions for two

slightly different examples of an unseen class. Thus, to alleviate the possible sudden

jumps, we employ auxiliary classifiers that share their own information. This helps an

optimizer to search for wide valleys [25]. Also, we found that the explicit regularization

about the softmax output produces better generalization ability than regional dropout

as an input perturbation.
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learned to generate a bias fB
i . The role of this bias term is to separate classes that are close to each other.
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3.3. Local Representation Learner

We have proposed how to train a network on base classes to produce global repre-

sentations, which can be generalizable to unseen classes. In the test stage, we have n-

way k-shot training examples and T queries for unseen classes. Thus, we now present

how to fine-tune the global representations to yield local representations adjusted for

the n · k examples. The overall concept is illustrated in Fig. 2.

3.3.1. Preliminary

For fine-tuning, random transformations are applied on training examples to pro-

duce novel weights and fake queries as follows:

{x1, x2, · · · , xn·k}
Random Transf.−−−−−−−−→

for Training
{x̃1, x̃2, · · · , x̃n·k}

{x1, x2, · · · , xn·k}
Random Transf.−−−−−−−−→
for Fake Queries

{x̃q1, x̃
q
2, · · · , x̃

q
n·k},

where x̃i is used to create a novel weight and x̃qi is used to induce a loss. It is worth

noting that we only have access to the n ·k examples, and we are never informed about

the real queries.
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3.3.2. Training

Our objective is not to destroy the well-learned global representations and we

promise to be more discriminative after fine-tuning. Thus, we clone the last block

of the pre-trained network and only fine-tune the cloned block. The features extracted

from the separate networks are denoted as

fGlobal
i := f

(
x̃i; Θ1:B

pre

)
fBias
i := f

(
x̃i; Θ1:B−1

pre ∪ΘB
)
,

where Θpre denotes the pre-trained parameters for the base classes. Local representa-

tion is defined as the sum of the above two features. Similarly, the features for queries

can be defined as fGlobal
i,q and fBias

i,q . Then, according to Eq. (3), the weight for the

j-th unseen class is produced by

wN
j =

1

k

k∑
i=1

(
fGlobal
i,j + fBias

i,j

)
. (6)

As we have formed novel weights and features for fake queries, a cost function can be

defined as

J(Θ) =
1

n · k

n·k∑
i=1

`
(
CNovel

(
fGlobal
i,q + fBias

i,q

)
; ỹi
)

+

γ

n∑
j=1

k∑
i=1

‖ fGlobal
i,j − fBias

i,j ‖2, (7)

where the regularizer γ prevents the fine-tuned block ΘB from destroying the well-

learned feature space given that only a few training examples are available. Overall,

we try to learn the bias term to increase the distance between classes that are close to

each other so that they are more distinguishable.

3.3.3. Inference

A query is classified by the trivial softmax output, but this time we use T real

queries. Our proposed fine-tuning method can be applied to any global representations

trained on base classes.
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3.4. Experimental Setup

3.4.1. Datasets

MiniImageNet [13] consists of 100 classes randomly selected from ILSVRC-2012

[46] and each class has 600 images, each sized 84 × 84. We follow the split proposed

in [47], namely 64, 16 and 20 classes for training, validation and testing, respectively.

TieredImageNet [48] has 608 classes randomly selected from ILSVRC-2012 [46] and

these classes are grouped into 34 higher level categories. They are then split into 20, 6

and 8 categories to further build 341, 91 and 160 classes for training, validation and

testing, respectively. A much larger number of images (totally 779, 165 images) are

sized 84× 84.

3.4.2. Evaluation

We report the performance averaged over 2, 000 randomly sampled tasks from the

test set to obtain the 95% confidence interval. We use T = 15 test queries for the 5-way

5-shot and the 5-way 1-shot, as in [13, 15, 47].

3.4.3. Implementation Details

For all the datasets, we report the results using ResNet-12 [49], which has four

blocks. Each block consists of three 3× 3 Convolution-BatchNorm-LeakyReLU (0.1)

and one 2×2 max pooling. The depths of the four blocks are 64→ 160→ 320→ 640.

In miniImageNet, we trained a network for 60 epochs (each epoch consisted of 1, 000

iterations). Initial learning rate was 0.1 and decreased to 0.006, 0.0012 and 0.00024

at 20, 40 and 50 epochs, respectively. In tieredImageNet, the network was trained for

100 epochs (each epoch consisted of 2, 000 iterations). Initial learning rate was 0.1 and

decreased to 0.006, 0.0012 and 0.00024 at 40, 80 and 90 epochs, respectively.

For self-mix, we randomly sampled a cropping region P1 = (rx1 , ry1 , rw, rh) from

an image. Length of the patch (rw, rh) was set to (W
2 , H

2 ). Then, a patch P2 from the

same input was sampled with randomly chosen (rx2
, ry2

) (6= (rx1
, ry1

)) and the same

(rw, rh). The code-level description is shown in Algorithm 1.

For self-distillation, auxiliary classifiers are branched from the 2nd and 3rd blocks

of ResNet-12. The two auxiliary classifiers have two and one new ResNet blocks, re-

12



Algorithm 1 Pseudo-Code of Self-mix
Input Image with size C×W× H

Length Patch size

1: function SELFMIX(Input, Length)

2: H = Input.size(2)

3: W = Input.size(1)

4: x = randint(0,W)

5: y = randint(0,H)

6: x1 = Clip(x - Length/2, 0, W)

7: x2 = Clip(x + Length/2, 0, W)

8: y1 = Clip(y - Length/2, 0, H)

9: y2 = Clip(y + Length/2, 0, H)

10: while true do

11: xn = randint(0+(x2 − x1)/2,W-(x2 − x1)/2)

12: yn = randint(0+(y2 − y1)/2,H-(y2 − y1)/2)

13: if yn! = y1 or xn! = x1 then

14: break;

15: end if

16: end while

17: Input[:,x1 : x2, y1 : y2] = Input[:, xn : xn + (x2 − x1), yn : yn + (y2 − y1)]

18: end function

spectively. All branches were initialized independently, which forces the network into

learning different posterior distributions. We use stochastic gradient descent (SGD)

with a Nesterov momentum of 0.9 and a weight decay of 0.0005. We fix the scale

parameter for the classifier to τ = 20.

For the local representation learner (LRL), we used the SGD optimizer and the

model was trained for 200 epochs per a task. The initial learning rates used for our

experiments are shown in Table 1 and were decreased by a factor of 10 at 80, 120, 160

epochs. To generate fake queries and novel weights, we applied horizontal flip, random

crop, color jittering and then we further applied regional dropout such as self-mix.
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Table 1: Initial learning rates and regularization parameters for the local representation learner.

Method miniImageNet tieredImageNet miniImageNet→ CUB

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

LR λ 1.00E-02 1.00E-01 1.00E-02 1.00E-01 1.00E-02 1.00E-01

Regularizer γ 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01 1.00E-01

Table 2: 5-way few-shot classification accuracies on miniImageNet and tieredImageNet with 95% confidence

intervals. All accuracy results are averaged over 2,000 tasks randomly sampled from the test set. LRL

denotes the local representation learner.

Method Backbone miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

LEO[29] WRN-28-10 61.76 ± 0.08% 77.59 ± 0.12% 66.33 ± 0.05% 81.44 ± 0.09%

MTL[30] ResNet12 61.20 ± 1.80% 75.50 ± 0.80% - -

AM3-TADAM[50] ResNet12 65.30 ± 0.49% 78.10 ± 0.36% 69.08 ± 0.47% 82.58 ± 0.31%

MetaOptNet[49] ResNet12 62.64 ± 0.61% 78.63 ± 0.46% 65.99 ± 0.72% 81.56 ± 0.53%

DC[17] ResNet12 62.53 ± 0.19% 78.95 ± 0.19% - -

CAM[51] ResNet12 63.85 ± 0.48% 79.44 ± 0.33% 69.89 ± 0.51% 84.23 ± 0.37%

CC+Rotation[18] WRN-28-10 62.93 ± 0.45% 79.87 ± 0.33% 70.53 ± 0.51% 84.98 ± 0.36%

CTM[28] ResNet18 64.12 ± 0.82% 80.51 ± 0.13% 68.41 ± 0.39% 84.28 ± 1.73%

Robust 20-dist++[19] ResNet18 63.73 ± 0.62% 81.19 ± 0.43% 70.44 ± 0.32% 85.43 ± 0.21%

Self-Augmentation ResNet12 65.27 ± 0.45% 81.84 ± 0.32% 71.26 ± 0.50% 85.55 ± 0.34%

Self-Augmentation + LRL ResNet12 65.37 ± 0.45% 82.68 ± 0.30% 71.31 ± 0.50% 86.41 ± 0.33%

3.5. Comparison with the State-of-the-Art Methods

We compare the proposed method with the state-of-the-art algorithms. As shown in

Table 2, self-augmentation with LRL clearly outperforms the others by a large margin.

It is worth noting that recent techniques [50, 28] perform well in certain environments

such as 1-shot or 5-shot, or on a certain dataset, while the proposed method works

decently in all settings. This indicates that it is worthwhile investigating the general-

ization ability of the standard supervision in relation to few-shot learning.

3.6. Domain Shift: miniImageNet to CUB

We further analyse the generalization ability and the network calibration of the

proposed framework. After training a network on miniImageNet, we perform 5-way

14



Table 3: 5-way few-shot classification accuracies on the domain shift (miniImageNet→ CUB) with the 95%

confidence intervals. *We re-implemented the official code [45] to evaluate 1-shot accuracies and 5-shot

accuracies were reported from [45]. ‘-’ denotes that the performance is not provided by the study.

Method
miniImageNet→ CUB

1-shot 5-shot

RelationNet∗ [26] 36.86 ± 0.70% 57.71 ± 0.73%

ProtoNet∗ [15] 41.36 ± 0.70% 62.02 ± 0.70%

Linear Classifier∗ [45] 44.33 ± 0.74% 65.57 ± 0.70%

Cosine Classifier∗ [45] 44.51 ± 0.80% 62.04 ± 0.76%

Diverse 20 Full [19] - 66.17 ± 0.55%

Self-Augmentation 51.50 ± 0.46% 72.00 ± 0.39%

+ LRL 51.65 ± 0.46% 74.20 ± 0.37%

(a) Input (b) Baseline (c) Self-Aug.
(d) Self-Aug.

+ LRL

(a) Baseline (b) Self-Mix

(c) Self-Distillation (d) Self-Augmentation

(a) Baseline (b) Self-Mix

(c) Self-Distillation (d) Self-Augmentation

Unseen Class1

Unseen Class2

Unseen Class3

Figure 3: Visualization using the class activation map [52] to show the regions that deep networks focus on.

classification on CUB [53]. This is a challenging problem as (1) CUB is designed for

fine-grained image classification with 200 bird species, (2) the distributions of the two

datasets are largely different and (3) we only have 1 or 5 training examples for few-shot

learning. With those difficulties, Table 3 shows that self-augmentation significantly

surpasses the previous works [26, 15, 45, 19].
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Table 4: Ablation study on miniImageNet, tieredImageNet and cross-domain benchmarks. Baseline refers

to a vanilla network without any regional dropout techniques. SD and SA denotes self-distillation and self-

augmentation, respectively.

Method miniImageNet tieredImageNet miniImageNet→ CUB

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Baseline 61.42 ± 0.45% 78.32 ± 0.33% 68.22 ± 0.50% 83.21 ± 0.36% 47.76 ± 0.44% 67.40 ± 0.38%

Cutout 62.38 ± 0.44% 79.18 ± 0.33% 69.40 ± 0.51% 84.27 ± 0.36% 47.46 ± 0.44% 67.79 ± 0.40%

Cutmix 62.81 ± 0.45% 79.82 ± 0.33% 69.09 ± 0.49% 84.21 ± 0.35% 48.35 ± 0.44% 67.77 ± 0.39%

Selfmix 62.85 ± 0.45% 79.83 ± 0.32% 69.95 ± 0.40% 84.39 ± 0.35% 48.73 ± 0.45% 69.20 ± 0.39%

Self-Distillation 63.11 ± 0.45% 79.93 ± 0.33% 70.05 ± 0.49% 84.92 ± 0.34% 48.91 ± 0.44% 69.45 ± 0.38%

SD + Cutout 64.61 ± 0.44% 81.57 ± 0.31% 70.76 ± 0.50% 85.50 ± 0.35% 48.94 ± 0.43% 69.65 ± 0.39%

SD + Cutout + LRL 64.93 ± 0.45% 82.34 ± 0.30% 70.82 ± 0.50% 86.15 ± 0.33% 48.93 ± 0.42% 73.37 ± 0.36%

SD + Cutmix 64.44 ± 0.45% 81.58 ± 0.32% 70.46 ± 0.49% 85.51 ± 0.34% 50.43 ± 0.45% 70.70 ± 0.39%

SD + Cutmix + LRL 64.67 ± 0.45% 81.52 ± 0.31% 70.48 ± 0.48% 85.60 ± 0.34% 49.88 ± 0.43% 72.35 ± 0.37%

Self-Augmentation 65.27 ± 0.45% 81.84 ± 0.32% 71.26 ± 0.50% 85.55 ± 0.34% 51.50 ± 0.46% 72.00 ± 0.39%

SA + LRL 65.37 ± 0.45% 82.68 ± 0.30% 71.31 ± 0.50% 86.41 ± 0.33% 51.65 ± 0.46% 74.20 ± 0.37%

3.7. Ablation Study

3.7.1. Effect of the Local Representation Learner

Fig. 3 shows that there exist cases where the local representation learner (LRL)

fixes the deep network to focus on more discriminative parts. As a result, only self-

augmentation with LRL correctly classifies the below images. This indicates that a

network can be further enhanced even with a few training examples using a carefully

designed strategy.

3.7.2. Comparison with Various Regional Dropout Techniques

As we proposed the framework consolidating regional dropout and self-distillation,

Table 4 shows that how performance changes by adopting various regional dropout

methods and self-distillation. Baseline refers to a network using light augmentation

such as random color jittering, cropping and horizontal flipping. The results indicate

four notable aspects: (1) Self-augmentation significantly outperforms the baseline us-

ing light augmentation only. (2) Although either regional dropout or self-distillation

can improve the generalization capability, exploiting both methods leads to higher per-

formance gains. (3) As discussed in Sect. 3.2.1, the proposed self-mix has a synergistic

effect with self-distillation as it does not require pixel removal [23] or mixed labels
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Table 5: Effect of label smoothing on miniImageNet. Applying label smoothing to each method decreases

their original performances for unseen classes.

Method Baseline Baseline Self-Distillation Self-Augmentation

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Test class Base class Unseen class

w/o label smoothing 80.22% 61.42% 78.32% 63.11% 79.93% 65.27% 81.84%

w label smoothing 81.36% 61.27% 77.03% 61.96% 77.45% 63.29% 78.24%

Gain (+1.14%) (-0.15%) (-1.29%) (-1.15%) (-2.48%) (-1.84%) (-3.60%)

A
c
c
u

ra
c
y

Number of Classifiers

A
c
c
u

ra
c
y

miniImageNet tieredImageNet

Number of Classifiers

60

65

70

75

80

85

2 3 4

1-shot

5-shot

65

70

75

80

85

90

2 3 4

1-shot

5-shot

Figure 4: Test accuracies (%) with various numbers of classifiers for self-distillation. In both cases, using

three classifiers shows the highest accuracy.

[24]. (4) When using cutmix [24] for the local representation learner, the performance

remains almost the same. As only a few training examples exist, we conjecture that

the mixed labels produced by cutmix increase the complexity of fine-tuning. To sum

up, although several regional dropout techniques have been studied, self-mix is more

flexible to be used with distillation or local representation leaning.

3.7.3. Effect of Label Smoothing

As we deal with a memorization problem of deep networks in terms of few-shot

learning, we further present the performance with label smoothing that is another way

to perturb output distributions. Though it is well-known that label smoothing is bene-

ficial for standard classification problems [3], Table 5 indicates that label smoothing is
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not effective for few-shot learning and there exist a significant performance drop with

self-distillation. Furthermore, it is worth noting that Table 4 also shows that cutmix,

which learns two labels simultaneously similar to label smoothing, has less perfor-

mance gain when using self-distillation.

3.7.4. Number of Classifiers

Fig. 4 shows that how different numbers of classifiers Ncls in Eq. 5 affect the clas-

sification performance. We can verify that there exists an optimal number of classifiers

and this can be seen as the trade-off between the amount of knowledge sharing and the

complexity of the parameter space.

4. Conclusion

In this paper, we show that unseen classes with a few training examples can be

classified with a standard supervised training. Especially, we aim at generalizing deep

networks to unseen classes by alleviating the memorization phenomenon, which is less

studied for few-shot learning. To achieve this, we design a framework using regional

dropout and self-distillation to perturb the input and output information. Especially,

we show that the newly proposed regional dropout, called self-mix, produces state-of-

the-art results when cooperating with self-distillation. We also present a local repre-

sentation learner to exploit a few training examples of unseen classes, which improves

the performance for all few-shot learning benchmarks and especially works well on

a cross-domain task. More importantly, we show that existing perturbation methods,

which are designed for a standard classification setting, such as cutmix, cutout and la-

bel smoothing are not the optimal choices for few-shot learning as they are not flexible

enough to be used with knowledge distillation or local representation leaning.
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